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Abstract— This paper presents a resource-efficient protocol
for opportunistic routing in delay-tolerant networks (DTN).
First, our approach exploits the context of mobile nodes
(speed, direction of movement and radio range) to estimate
the size of a contact window. This knowledge is exploited
to make better forwarding decisions and to minimize the
probability of partially transmitted messages. Optimizing
the use of bandwidth during overloads helps reduce energy
consumption since partially transmitted messages are useless
and waste transmission power. Second, we use a differen-
tiation mechanism based on message utility. This allows
allocating more resources for high utility messages. More
precisely, messages are replicated in the order of highest
utility first, and removed from the buffers in the reverse
order. To illustrate the benefit of such a scheme, global accu-
mulated utility is used as a system-wide performance metric.
Third, we present a combined fragmentation/redundancy
scheme which not only improves delivery ratio but also, if
infrastructure is available, allows messages to be completed
by pulling dropped fragments.

Simulations illustrate the benefit of our model and show
that our scheme provides lower overhead and higher deliv-
ery ratio, as well as higher accumulated utility compared
to a number of well-known algorithms including Maxprop
and SprayAndWait.

Index Terms— DTN, Routing, Opportunistic, Contact Win-
dow, utility, fragmentation

I. INTRODUCTION

Delay-tolerant networks (DTN) define an abstraction
layer on top of transport layer and below application
layer, called bundle layer. As no assumption can be made
about underlying networks, this overlay architecture is
responsible for routing data from source to destination.
DTN neither defines any fixed-length data units nor puts
any upper or lower bounds on application data unit
size. The bundle layer is responsible for the end-to-end
delivery mechanism of messages, called virtual message
forwarding ( [1], [2]). DTN uses a minimal conversational
model. Therefore, DTN applications should be designed
in such a way as to optimize the number of end-to-
end transactions, using larger, self-contained messages.
Although a large bundle size is beneficial in a store-
and-forward context, it may pose new challenges when
it comes to resource-constrained networking.
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In particular, considering that networking activities
account for 10-50% of the energy spent by a mobile
device [3] and the gap between battery capacity and
mobile-device energy requirements is increasing, design-
ing energy-efficient network architectures is vitally im-
portant.

Motivated by these two factors, large bundle size in
DTN and a constant need for energy-efficient schemes,
we propose in this work: (1) an energy-efficient manner
to treat large bundles in intermittent connectivity when
fragmentation is not available, (2) a mechanism to deal
with transient overloads in traffic volumes by prioritizing
messages according to size and utility, (3) methods to
further boost delivery ratio when additional technologies
such as fragmentation and coding are available. Utility is
a general term to measure benefit. We assume there is a
system-wide agreement about what benefit accrues from
delivering a packet relative to the resources it uses.

In this paper, we demonstrate distributed mechanisms
at node level that optimize the use of transmission power
during relays, as well as bandwidth and memory during
overloads. DTN architecture actually offers three relative
priority classes which differentiate traffic based on an
application’s expression of urgency at the message source.
These have some impact on solving traffic contention as
well as resource allocation. For example, in the current
reference implementation [4], when storage at one node
becomes short, expiration of bundles will start with the
low priority class. While this is a suitable mechanism for
differentiation at user level, it does not take account of
message size and thereby does not provide an optimized
use of resources at system level. In this paper we show
how ”per bit utility” can be combined with the traditional
idea of priorities to achieve better use of resources at
system level.

The contributions of this paper are as follows. We
present a utility-aware DTN routing scheme, Opportunis-
tic Routing with Window-Aware Replication (ORWAR),
based on calculation of the maximum deliverable bundle
size estimated from the mobility context. The proposed
algorithm uses a fixed number of message replicas similar
to those described by Spyroupoulos et al. [5]. In our
case these copies are not automatically distributed at
the first meeting but based on the evaluation of the
contact window currently at a node’s disposal. ORWAR
selects the most valuable message to be sent, whose size
does not exceed the doable limit and thus avoids partial
transmissions. Selection of a message is based both on



the size and contact characteristics and the utility per bit
of the message. We compare performance of ORWAR
in terms of overhead, delivery ratio and latency, as well
as system-wide accumulated utility with other protocols:
MaxProp [6], SprayAndWait [5], Prophet [7], among
others. We demonstrate improved delivery ratio by up
to 15% more when using large messages and show that
this degrades gracefully when higher loads are injected
in the system. We then evaluate the performance when
fragmentation/coding is variable and show that the ideal
fragmentation size should be in the range of the previ-
ously calculated contact window. When fragmentation is
possible we propose a scheme using a more expensive
infrastructure to pull the dropped fragments.

This paper is an extension of a preliminary work
on ORWAR [8] presented earlier. The work has been
extended in three directions: (1) Extensive simulation
of all routing schemes in different scenarios allowing
to determine a confidence interval, (2) Extension of the
framework by adding fragmentation/redundancy which
shows substantial gains in delivery ratios on top of the
base protocol, (3) Improvement of the delivery ratio by
pulling the dropped fragments when an infrastructure
network can be used for the “’last few”. Hence, the earlier
DTN approach is shown to work in a hybrid context. As a
target application for this work we can imagine an urban
scenario where all nodes are mobile, and use short-range
interfaces for opportunistic communications. In the latter
part of the paper we demonstrate that in a crisis scenario
where the (celular) infrastructure is highly overloaded, the
opportunistic scheme can be combined with a selective
use of the infrastructure resources to increase the capacity
of the DTN network.

In the next section we provide a background to rout-
ing in delay-tolerant networks and related problems. In
section III we present ORWAR. Section IV is devoted to
comparative evaluation of the protocols whilst in section
V we present the additional benefits of the fragmentation
/ coding scheme. The paper ends with some conclusions
and ideas for future work.

II. BACKGROUND AND RELATED WORK

Our work benefits from and builds upon a large body
of work in opportunistic routing. This section, divided
into four categories, introduces some key elements by
referencing related works. We start by arguing that bundle
size is an important factor in opportunistic DTN routing,
especially within the mobility context. Then, we review
replication as a method to increase delivery probability
in an opportunistic environment. In the third subsection
we cover techniques such as message differentiation used
as an effective means to control resource allocation and
key success criteria of a routing scheme. We conclude
by describing fragmentation and redundancy mechanisms
and their benefits in an opportunistic context.

A. Mobility and bundle size

Considering a network of nodes advancing at vari-
ous speeds, it is obvious that the delivery ratio is not
driven solely by the nominal available bandwidth. Ott and
Kutscher [9], after carrying out extensive laboratory and
field measurements, show that cars can reach about 1800
m of connectivity when connecting to a stationary WLAN
point of access on a highway and moving at 120 km/h.
They show that the size of data exchanged is between 30
and 70 MB in one pass. This implies that for mobile
adhoc transfers there is a maximum size limit for the
bundle to be exchanged depending on relative speed. To
transmit a bundle exceeding this size, a node has no other
alternative than to wait for a better contact opportunity
(i.e. a node with lower relative speed) or to use proactive
fragmentation. In a disaster scenario [10], there may be
little prior knowledge about mobility patterns, but the
type of communication and size of data/messages to be
exchanged is likely to be known among rescue teams.

Another study by Ott and Kutscher [11] shows that
application protocols are differently suited for DTN, those
with less interactive features performing better. For exam-
ple, while email exchange is fundamentally asynchronous,
the present application protocols for sending (SMTP)
and retrieving (POP3, IMAP4) mails are fairly verbose,
involving numerous message exchanges, and often require
user credentials to be provided. DTN suggests combining
all application level data and metadata to form a single
bundled message, in order to minimize the number of end-
to-end transactions. For example, all IMAP4 metadata
(login-name, password, host, port etc.) and actual data
(attachment(s) if applicable) can be sent together, bundled
into one single message. In the absence of a DTN
bundle layer size limit, we can expect messages to get
bigger in size. In our work we take message size and
relative speed into account when selecting the window
for forwarding/replication. In the rest of the paper bundles
and messages are used interchangeably.

B. Message replication

Opportunistic routing makes no assumption about the
contact schedule between nodes. In order to cope with
this uncertainty, some routing algorithms forward multiple
copies of each message to a few custodians in order to
increase the chance that at least one copy will be delivered
[12]. This also decreases delivery latency. However, it also
consumes resources (bandwidth and implicitly energy, as
well as storage at custodians) proportional to the number
of copies. Therefore, a whole class of algorithms avoid
replication, such as Prophet [7], which makes use of his-
toric encounters to estimate probability and only forwards
messages to some neighbor whose probability exceeds a
certain threshold. The Epidemic protocol [13] is an early
replication attempt but this strategy works well only when
message volume and node density are very low. Other
protocols, like SprayAndWait [5], overcome the overhead
problem of epidemic schemes by maintaining only a
controlled number of copies in the network. They also



show that the number of copies necessary is independent
of network size. Our algorithm uses a similar replication
mechanism but with a different message selection scheme.
Further up on the complexity scale, one of the best
performing protocols, MaxProp [6], also uses multiple
copies. Besides, Maxprop calculates the cost for each
route while also leveraging delivery notifications to purge
old replicas. MaxProp is intended for use in storage and
bandwidth-constrained environments; therefore, it purges
messages that have a lower chance to be delivered.

C. Resource-centric routing

Traditional routing schemes usually focus on selecting
the delivery path by optimizing a simple metric (number
of hops or delay). For DTN networks, as Zhang suggested
in her survey [14], the success criteria of a routing
scheme are still a research topic. Most protocols still try
to maximize delivery ratio or to minimize transmission
delay between source and destination. However, there are
other criteria to be taken into account. Reducing overhead,
for example, is an important topic, especially in order to
improve energy efficiency. Even if bandwidth is sufficient
for the given load, every transmission consumes power
and depleted battery levels can be of concern. Many
DTN scenarios depend on devices with limited energy
supplies and energy-aware frameworks are of high interest
in all mobile contexts. There are several approaches which
deal with energy constraints in a DTN environment. One
proposal is to control radio wakeup intervals [15] or
neighborhood sensing [16] by probing algorithms which
trade off energy consumption against the probability of
missing a contact. However, this will usually imply further
degrading connectivity as network interface sleep time is
increased. Another proposed solution is to architecture
the network into multiple tiers as in Zebranet [17] or
DataMules [18], thus maximizing energy savings at one
single tier - namely the most sensitive one - the sensor
tier. However, such a network specialization is hard to
implement in social, urban scenarios where heterogeneity
is the key and association/dissociation of nodes to the
network is very dynamic. Our approach to this problem
is to select the message replica in a contact-window aware
manner, that limits energy waste.

A rather different approach is to introduce utility and
differentiation between messages when dealing with re-
source allocation. This has been studied in fully connected
mobile ad-hoc networks [19] where construction of the
route also involves maximizing the accumulated utility
for the whole network. In the context of DTNs, Balasub-
ramanian et al. [20] use utility in order to optimize re-
sources with respect to delay related metrics, in particular
minimizing average delay, minimizing missed deadlines
or minimizing maximum delay. In our case the use of
utilities will result in efficient use of transmission power
and optimization of bandwidth and memory. Spyropoulos
et al. [21] use utility to choose the fittest custodian node
to carry the message. However, in both papers, there is
no network-wide optimization of the accrued utility.

In our work, we use the concept of utility for network-
wide optimization, and relate it to message priority to
enforce differentiation. The global optimization mecha-
nism is, however, built-in in the routing algorithm in a
distributed fashion.

Another important aspect that we focus on is node den-
sity. Earlier work has studied similar allocation schemes
in highly overloaded and dense networks [19]. Zhang [14]
and Erramilli et al. [22] show that in sparse networks dif-
ferences between routing protocols are more accentuated
as a bad forwarding decision could lead to infinite delay
without rollback possibility, due to shortage of contacts.
In our case, we have chosen a very sparse test bed.

D. Message fragmentation and DTN

The ability to fragment bundles, either prior to trans-
mission (proactive fragmentation) or while in transit (re-
active fragmentation) has been introduced early in the
DTN design [23]. As Bundle Layer is agnostic about
lower layers, the DTN architecture cannot rely on them
for fragmentation. Instead, it is the responsibility of upper
layers (bundle layer, application layer) to limit the impact
of a challenged environment by using smaller messages
[24]. There is no notion of Maximum Transmission Unit
defined in DTN, but, as our simulation confirms in section
V, there is a best-fitted fragment size, which is shown
to be related to the smallest contact window within a
network with a given mobility.

The vast majority of routing protocols (SprayAndWait
[5], MaxProp [6], RAPID [20]) consider bundles as
indivisible, making routing decisions simpler. Jain et al.
formulate the problem of optimizing the probability of
successful message delivery by splitting, replicating and
erasure coding [25]. This problem is complex even when
study is limited to the simpler case where delivery proba-
bilities remain constant over time. In this work, we adopt
a practical solution where fixed sized fragments, created
by proactive fragmentation, are routed independently over
different paths and reconstructed at destination.

Transferring large data in small fragments without
explicit acknowledgments may lead to reliability degrada-
tion in best-effort networks because all fragments should
arrive at destination in order for the initial message to
be reconstructed [26]. Redundancy ratio can then be
chosen to improve delivery ratio while keeping volume
transferred over the network at an acceptable limit. A
redundancy mechanism, such as the one indicated by
Byers et al. [27], overcomes the need for receiving a fixed
set of messages before reconstruction. It represents a way
to regenerate messages at destination from a proper subset
of all fragments with low overhead using Reed-Solomon
or Tornado codes. In this paper, the choice of the exact
erasure coding algorithm is not important, as we focus
on showing that fragmentation and coding are especially
worthwhile if only the “last few” fragments can be pulled
via an alternative infrastructure that is more reliable but
highly expensive.



III. CONTACT BASED ROUTING

This section describes Opportunistic Routing with
Window-Aware Replication (ORWAR), a distributed al-
gorithm running at bundle layer.

A. Protocol design rationale

ORWAR uses local connectivity knowledge in order to
route messages from source to destination. Connectivity
knowledge is not available in advance but is gathered
from the vicinity on a peer-to-peer basis during contact.
Specifically, we know neither message arrival rate nor
meeting schedule, so routing is completely opportunistic.
However, a node knows its own vectorial speed.

There are two design criteria for our algorithm. First,
one goal of the algorithm is to optimize system level
resources, in particular energy and bandwidth. Message
priority levels are a simple means of achieving differenti-
ation when resources are scarce. However, when message
sizes vary considerably we need a more fine-grained
differentiation mechanism. Thus, we propose utility/bit as
an abstract declaration of the benefit of one transmission
in comparison to others. Assuming that every message
comes with a given utility value, accumulated utility can
be used as a system-level evaluation metric. Note that
the unit for measuring utility is unimportant since it only
reflects a global measure of benefit. Second, we strive
for a high delivery ratio in partitioned networks. For this
we use store-and-forward and replication mechanism in
DTNs. In order to make replication energy-efficient, we
propose the decision to be based on both utility/bit for
involved messages and local connectivity characteristics.

To perform routing under intermittent connectivity,
ORWAR proposes a multi copy routing scheme, using
a controlled replication and a fixed number of copies
distributed over the network. At each contact the node
tries to forward half of the message copies, keeping the
rest for itself. Up to now, this is similar to the SprayAnd-
Wait mechanism presented by Spyropoulos et al. in [5].
However, enhancements are done in 4 directions:

1) Messages with the best utility per bit ratio are
first selected and they are sent only if their size
meets contact properties, thus diminishing partially
transmitted messages.

2) The replication factor is a function of message
utility, thus increasing delivery probability and di-
minishing latency for bundles with highest utility.

3) Purging messages from the buffer starts with the
least utility per bit message.

4) Bundles known to be delivered are removed.

B. Algorithm data structures

Every node i keeps the following data structures: 1)
the message queue (mg;), that includes information about
utility (ug) and size (s;) for each message my, kept
in utility/bit order, and 2) a record of known delivered
messages (kdm;). In presence of unlimited message sizes,
we assume finite buffers for custodians.
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Figure 1. ORWAR queue

Figure 1 shows the structure of the message queue. New
messages from the application layer as well as those from
neighboring peers are inserted in the correct position with
respect to the uy /s, ordering. Messages are deleted from
the lower end of the queue. This might occur when a new
message with higher utility per bit rate is to be inserted
and the queue is full. In order to relate to the notion
of priority in DTNs we have chosen 3 values of utility
to reflect differentiation amongst messages. However, the
approach is general and can be extended to multiple levels
of utility. In this work the utility per message is time-
invariant. An extension of the work may consider time-
varying utilities. Every message header also includes Ly
which denotes the intended number of message copies.

Finally, TT' Ly, is an application-based parameter that
indicates time to live for a message. This can be im-
plemented as an absolute value where all nodes can be
considered to have access to synchronized clocks (e.g.
GPS based), or an interval to be decremented at each
node that the message arrives at using the local clock of
that node.

kdm; is used to keep track of delivered messages
using a hash table where the keys are the IDs of the
messages. These records are exchanged at each meeting
and all messages known as delivered are subsequently
deleted from the message queue. The size of kdm; will be
kept to a minimum using the message time-to-live (1'7'L)
parameter as described in the algorithm shown below.

C. Contact window

Before sending or relaying a message the algorithm
computes the size of largest transferable message S,qx
between 2 meeting neighbors. This is used to avoid
sending messages that have definitely no chance of get-
ting transmitted in the given contact window, thereby
allocating resources to those that do. Both energy and
bandwidth are optimized by the following 2 steps: 1)



b End Contact
Contact Window

Start Contact

Figure 2. Estimation of the contact window

keeping messages in utility/bit order and 2) selection of
messages that fit into s,,q4.

Given 2 nodes advancing at a vectorial speed of 7; and
U; respectively, having the radio range r; and r;, we can
calculate the contact window time ¢.,, as being:

b= 2 * minﬁi,rﬁ* cos o 0
v — 5|

where « is the angle between the relative speed 7 =
7; — v, and the line connecting the two nodes at contact
time, as depicted in Figure 2 in which dashed trajecto-
ries denote movement of nodes. This equation assumes
of course that our nodes are confined to a 2D space,
that radio ranges are perfect circles and that no signal
obstruction, diffusion or scattering occurs. Under these
assumptions nodes will be in contact as long as distance
between them will not exceed the minimum radio range
man(r;,7;). In ORWAR each node estimates the contact
window from node speed (7;, T;) and transmission range
(73, T;) using equation (1).

Of course, mobility implies that nodes can change
speed or movement path during a given transmission. If
the actual contact window is different from calculated
tew then it is possible that the transmission of some
selected message will fail or the selection is suboptimal.
Although these cases cannot be avoided, calculating the
fittest message to relay is by far a better solution than
randomly taking any. Moreover, in some scenarios, e.g.
in a city where nodes (cars, pedestrians) have mostly
rectilinear trajectories (given by streets) we expect that
velocity will be mostly constant for the short interval of
the contact.

Having calculated the contact window, maximum ex-
changeable message s,,q, can be then easily calculated
from device radio properties (b = data rate) as follows:

Smaw = D * tew ()

By preventing the node from transmitting a message
which has no chance to complete, ORWAR achieves two

objectives: 1) limiting overhead in terms of bandwidth,
and 2) conserving power as radio energy is not wasted
for messages that cannot be sent anyway.

D. Algorithm description

The pseudo-code for the algorithm is described in
Figure 3. The algorithm has two main parts: generation of
a packet from an application, and exchange of metadata
and forwarding at each new encounter. The former leads
to insertion of the new message in the mgq of the node
in the order of utility/bit. The latter, data exchange and
forwarding, has a number of phases. First, each node
updates its kdm list using the knowledge of its neighbors
in their respective kdm. Known delivered messages that
appear in the node’s mgq are then deleted. Furthermore,
messages that are older than their stipulated T7TL are
removed from the queue in order to stop their spreading
in the network.

Second, the contact window for each pair of nodes
at the encounter is computed. This contact window is
used to directly deliver messages that are destined for
a neighbor first. Then, messages held in the node queue
are forwarded as replicas in the order of utility/bit. This
continues until the contact window ends.

At each new hop messages are replicated as follows.
Similar to binary SprayAndWait [5], Ly is divided by
2 at each replication. The initial value of Lj is chosen
according to Table I, where L and A are algorithm
parameters.

TABLE L
INITIAL MESSAGE COPIES AS A UTILITY FUNCTION

Priority Class | Utility | Lj=# message copies
High 3 L+ A

Medium 2 L

Low 1 L-A

IV. EVALUATION
A. Simulation setup

We evaluate the performance of ORWAR in compari-
son with five well-known delay-tolerant network routing
protocols: MaxProp [6], SprayAndWait [5], Prophet [7],
Epidemic [13] and DirectDelivery. We use ONE (Op-
portunistic Network Environment) [28], a powerful tool
for generating mobility traces, running DTN simulations
with different routing protocols, visualizing simulations
interactively in real time, and presenting the results after
their completion. ONE version 1.3 comes with the follow-
ing protocol implementations: MaxProp, SprayAndWait,
Prophet, Epidemic and DirectDelivery and we have run
the evaluation using these shipped protocol versions. As
both SprayAndWait and ORWAR use fixed number of
replicas, we make sure both are run in the evaluation
with the same replication factor (L=6). Since messages
are evenly distributed between 3 utility classes in our
experiment, the total (maximum) number of copies in the



For, each node i:

v; /I node vectorial speed

T /' node radio range

kdm; /' known delivered messages

maq; // current message queue
For each message my:

idy, // message id

Uy, /I message utility

Sk /I message size

Ly, /I message # copies

foreach initiation of message mj do
| insert my, in mg; (based on ug/sg);
foreach meeting between i and j do
// signaling
send ©;, 7, kdm; to j;
receive v—;,rj, kdm; from j;
kdm; = kdm; U kdm;
remove my, from mgq; if idx € kdm;;
if TTLy, expired then
remove my, from mg;;
L remove idy from kdm;;
// from equation (1) and (2)
2« man(r;, ;) * cosa
o7 — ;]
// sending thread
foreach my € mq;, if sp < Smasz do
if destination(my)=; then
// direct delivery
send my, to j;

x b;

Smaxr =

Smazx = Smaxz — Sks

else if L, > 1 then

// j is custodian
send my with Ly /2 to j;
Lk = Lk/2;

L Smaz = Smaz — Sk

// receiving thread
foreach m received from j do
if m= ACK}, N j=destination(my,) then
insert idj, into kdm;;
remove my from mg;;
else if m = m;, then
// data messages
send ACK}, to j;
Smaz = Smazx — Sk
if s, < space available in mq; then
| insert my in mg; (based on uy/sk);
else if 3 m,, € mq; such that
(ug/Sk > Un/Sn) A (sk < Eifrf s;) then
delete m,, to mus: in MQ; ;
insert my, in mg; (based on wy/sk);
else
| drop my;

Figure 3. ORWAR pseudo-code

system is not different from SprayAndWait, thus giving

us comparable results. ORWAR just applies a bigger
replication factor (L + A) for high utility messages and
a smaller one (L - A) for low utility messages. In our
work we experimentally found the ideal A as being
about L/3, thus in our evaluation A = 2. Prophet [7] is
run with the following parameters: delivery predictability
Ppy = 0.75, scaling constant 3 = 0.25 and aging
constant v = 0.98.

In the evaluations below we consider a city setup with
126 nodes (80 pedestrians, 40 cars, 6 trams) sharing a
4500m x 3500m playground. All input parameters in
this section were chosen with the following goals in
mind: 1) as close as possible to real-life (e.g. speeds),
and 2) in conformity with the recommended parameters,
such as those suggested by comparable protocols (e.g.
replication factor L). Every point plotted in the figures
of this section is the result of 10 measurements where
we vary the initial node position and initial direction of
movement. The confidence interval is relatively small, i.e.
1-4% of the average value. We assume that each node has
a network interface allowing a transmission range of 10m
for pedestrians and 20m for cars and trams. For both cars
and trams we consider a transmission speed of 250kBps
(2ZMbps). Buffers are considered to be SMB except for
trams which are 50 MB. The mobility pattern is close to
reality, pedestrians, cars and trams follow a map-based
movement. Cars drive only on roads and trams run only
on their well-defined itinerary (we kept the Helsinki map
and the original setup in order to maintain comparable
results). Speeds for cars are set in the interval [10, 50]
km/h and for pedestrians [1.8, 5.4] km/h and pauses are
randomized. The network is still very sparse, with the
accumulated transmission area for all nodes being 0.25%
of the playground, and total meeting time accounts for
about 3% of elapsed time. Each simulation runs for 12
hours and in our setup message TTL is considered to be
infinite. We consider a mix of bundle sizes corresponding
to:

¢ 1000 short messages averaged at 100B,
o 1000 documents averaged at 10kB,
o 1000 multimedia files averaged at 1MB.

Size distribution is shown in Figure 4. Every message
comes with a constant utility which is evenly distributed
over size classes, i.e. every size class (short messages,
documents and multimedia) has an equal number of
bundles of utility 1, 2 and 3. In what follows we refer
to this size distribution as S.

P

# of Bundles .

Bundle Size

-

| |
100B 10kB 1MB
(Short Message) (Office Document) (Multimedia)

[logarithmic]

Figure 4. Size distribution in standard message set (S)



B. Message size implications

We run the first experiment in order to analyze the
impact of message size. Starting from the standard mes-
sage size distribution S, we gradually divide the size
and increase the number of messages. That is, we start
injecting 3000 messages at initial size, then 6000 mes-
sages where message size is halved, finishing with 30000
messages with the initial size divided by 10. Thus, at
every simulation the same total amount of data is injected
into the system.
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Figure 5. Delivery ratio versus message size

Figure 5 shows that ORWAR has the best delivery ratio
and performs better when bigger messages are injected
into the system. When analyzing overheads, defined here
as the number of transmitted bundles divided by the num-
ber of messages delivered to destination, Figure 6 shows
that ORWAR has the lowest overhead after DirectDeliv-
ery. Moreover, it compares favorably with SprayAndWait
by a margin of roughly 10% which can be explained by
the fact that ORWAR diminishes partial transmissions.
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Figure 6. Overhead versus message size

From these 2 figures we can conclude that ORWAR
has the best overall performance over the comparable
algorithms. Moreover, when larger messages are to be
transmitted, ORWAR advantages increase. Thus, it ap-
pears as an effective alternative for cases where larger
messages are to be transmitted and fragmentation is
not available/desirable. Based on the overview of how

30 # messages (x 103)

ORWAR compares with the other 5 schemes, in the
subsequent sections of the paper we are going to present
only the best performing protocols: MaxProp, ORWAR
and SprayAndWait.

C. Energy implications

The main goal in designing ORWAR was diminish-
ing partial transmissions in order to save energy. We
have shown that ORWAR has 10% less overhead than
SprayAndWait and much less overhead compared with
other schemes. Although protocol overhead defined as the
number of transmitted messages divided by the number
of delivered messages is widely used in the literature,
simply counting the number of messages would po-
tentially disadvantage protocols that use (small sized)
acknowledgements, such as MaxProp, over those that do
not, such as SprayAndWait. Instead of focusing on a
number of bundles which might have very different sizes,

“DirectDelivery we focus on the total amount of data transmitted, aborted

or dropped. Moreover, overheads are related to different
mechanisms: connection abortions (i.e. neighbor out of
reach whilst sending message, wireless contention), mes-
sages sent but dropped (i.e. buffer shortage at custodians)
or inherent to replication factor (number of copies in the
system). By estimating contact window and estimating
Smaz> ORWAR tries to diminish transmission abortions.
Therefore, we consider this as an appropriate metric for
measuring “waste cost”.

In the next experiment we increase network load by
gradually increasing the number of messages whilst keep-
ing the average message size - as defined by S. We start
with 3000 messages injected within 12 hours and show
the effect of higher load - 6000, 9000, 12000 messages,
up to 60000 messages.

Figure 7 depicts the accumulated size of aborted trans-
missions on the y axis.
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Figure 7. Partial transmission total size versus load

In addition to MaxProp and SprayAndWait, we plot
in Figure 7 a new curve - ORWAR without the module
responsible for estimating contact window. Thus, we can
directly measure the added value of the contact win-
dow estimation, and separate that from other ORWAR
mechanisms, such as queue management or utility-based
replication. We can measure an improvement by a 4



to 6 factor against both MaxProp and SprayAndWait.
The remaining aborted transmissions in ORWAR can
be explained by nodes changing trajectories or speed
during message transmission, or by wireless contention.
Obviously these cases cannot be avoided, and we show
that computing the contact window gives a 50% reduction
of aborted transmissions over not calculating it at all.

Note that in our scenario the overhead of transmitting
the speed and radio range at each contact is negligible
(in a 10~° magnitude order) compared with the benefits
of partial transmission savings. Consider 4 bytes per
message (for vectorial speed) times 3 x 10 contacts that
we have in our simulation and compare them with the
Gigabytes savings as presented in Figure 7.

As ORWAR computes the most valuable message to be
sent in a given meeting context, we expect that it will not
always send small messages at the cost of dropping the
bigger ones. It would be unacceptable that energy savings
would be at the cost of delivering less data. To verify this,
we plot in Figure 8 the throughput achieved during 12
hours.
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Figure 8. Throughput versus load

It shows that ORWAR sends 10-90% more data than
SprayAndWait and MaxProp over the same interval of
time (12h). It also shows that throughput is increased
at the same rate when using contact window estimation.
To conclude, in this section we have shown that the
accumulated volume of aborted messages is very favor-
able against competing protocols and, most importantly,
limiting the biggest message to be sent within 4,
gives a 50% reduction over not limiting it at all. By
estimating the contact window and selecting the “fittest”
message to be sent, ORWAR will not only diminish partial
transmissions, but it will also increase throughput.

D. Load implications

In Figure 9 we return to the study of the delivery ratio
and increase the load on the network. We inject 3000,
6000, and up to 60000 messages over 12h, keeping the
message distribution S.

ORWAR not only has the best overall delivery ratio but
also its relative performance compared to other protocols
increases at higher loads. The explanation is that ORWAR
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Figure 9. Delivery ratio versus load

maintains a low overhead which pays off when the net-
work is congested. Other mechanisms, such as effective
queue management, utility-based replication, usage of
acknowledgements, and contact window estimation are
also contributing.

Congestion occurs when critical resources, such as
buffer space or transmission window, are finite during
increased loads. Basically, adding more buffer space on
nodes will only change the point where the system
becomes overloaded, but will not affect protocol behavior
in other ways. However, we believe that in mobile sce-
narios buffer space is the least problematic of the scarce
resources.

As far as latency is concerned, which we study in
Figure 10, ORWAR performs second best after SprayAnd-
Wait. This is reasonable as the messages will stay longer
in the buffers in order to get the suitable contact window.
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Figure 10. Median latency versus load

A major benefit of ORWAR is demonstrated in Fig-
ure 11 where we plot the accumulated utility.

Note that utility is accounted for only if the respec-
tive bundle reaches destination. Because messages are
treated differently according to their utility, that is, more
resources are available for high utility messages, ORWAR
obtains a higher accumulated utility over the same interval
of time. Note that we compute accumulated utility in
the same way for all algorithms. We recall that 3 utility
classes are used in these experiments, thus accumulated
utility is computed as a function of the number of mes-
sages delivered in each utility class, as follows:
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Figure 11. Accumulated utility versus load

1
AccUtility = Z w; X 1, 3)
3

where: u; = message utility class (see table 1)
n; = # messages delivered within the class

The higher accumulated utility for ORWAR is ex-
plained by a higher replication rate for high utility mes-
sages, and deleting low utility messages first. All in all,
ORWAR shows a better performance compared to the best
2 of the alternative protocols.

E. Mobility implications

We are interested in how node speed affects ORWAR
performance and more precisely when related to contact
window estimation. We have shown in Figures 7 and 8
that by sending only messages that have a good chance
to arrive within the contact window, we diminish par-
tial transmissions without diminishing delivery ratio and
even increasing throughput. Those gains correspond to a
medium speed in table II. We are going to extend these
measurements to other speeds.

TABLE II.
DIFFERENT SPEEDS TEST BED

Speed Pedestrians Cars and trams
High 3.9-10.8 km/h | 20-100 km/h
Medium | 1.8-5.4 km/h 10-50 km/h
Low 0.8-3.7 km/h 5-25 km/h

Figure 12 shows the relative reduction of partial trans-
missions (RRPT) when using the contact window, defined
as:

RRPT =1 — Sorw aARr/Sowecw 4

where:

Sorwar = total data volume lost due to message
abortion using ORWAR with Contact Window.

Sowocw = total data volume lost due to message
abortion using ORWAR without Contact Window.

Irrespective of speed and message load we see that the
relative reduction of partial transmissions is between 40%
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and 60%. It also appears that gains are more significant
at higher speed. At medium speed - which is the most
likely situation to find in a city scenario - the gain is still
significant (around 55%).

V. FRAGMENTATION IN A HYBRID SETTING

In the previous section we have presented ORWAR
as an efficient routing solution when fragmentation is
not available. We have also argued why we expect big
messages to be the rule rather than the exception in DTN.

In this section we consider what gains can be made
if fragmentation is indeed an option and some or all
nodes support it. We will show that delivery ratio
can be improved by 30-35% just by using fragmen-
tation/redundancy with ORWAR. These figures are in
absence of another complementary infrastructure network.
We then go on and study the benefit of having some
help from another infrastructure (e.g. cellular) to boost
the benefits of fragmentation in a hybrid DTN context.

In many papers on DTN in a mobile context we find
delivery ratios below 90%, and this is barely acceptable
in real life scenarios. From a practical point of view,
most mobile devices nowadays come with two or more
network interfaces. Interfaces such as WIFI or Bluetooth
can be used in a first phase on a partitioned mobile ad-hoc
base. Others, such as UMTS/HSPA, WIMAX can then
be used only to complete what was not delivered in the
first phase. This section presents a scheme that combines
benefits from a cheap but less reliable ad-hoc network
(DTN) and a high-cost but reliable alternative network
(infrastructure).

We consider a system consisting of mobile nodes (cars,
pedestrians or trams), each having 2 interfaces, one for
access to the partitioned mobile ad-hoc network and the
other to the infrastructure network. We assume that all
nodes move and are within the reach of the infrastructure
access point. Figure 13 explains the proposed mechanism
materialized in 4 steps:

1) Fragmentation/Coding: A bundle of size s is en-
coded into n, s/m sized data-blocks (where n >
m). Encoding is based on Reed-Solomon or Tor-
nado codes [27] which allow reconstruction of the
original message from any m different fragments
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arrived at destination. In our example, a 500kB
message is encoded in n = 11 fragments (identified
in Figure 13 as messages 1 to B, in hexadecimal)
each of 50kB, meaning that a 10% redundancy is
used (m = 10).

2) DTN forward: All these fragments are forwarded
independently over a DTN network; some can arrive
at destination whilst others cannot. In our example
fragments 3 and 9 failed to arrive at destination.

3) Infrastructure download: Destination node re-
quires m different fragments for reconstructing the
message and decides to download the rest via
infrastructure (the pull phase). In our example only
1 fragment is still needed (10 different messages at
destination) and fragment 9 is chosen.

4) Reconstruction: Message is reconstructed from the
m different fragments available (m = 10).

Note that most of the transmissions are done over the
DTN network and that infrastructure is used only to
complete when the first fails to deliver. Fragmentation and
coding are the key to the scheme, allowing infrastructure
download to be kept at a minimum. Steps 3 and 4 require
some glue code to be added below the application layer
at each end. It is responsible for selective pulling at the
receiver end and response to pull at the sender end.

This scheme is orthogonal to the choice of routing
algorithm but in the next subsection we will combine
it with ORWAR and later return to a comparison with
SprayAndWait where the same mechanism of fragmenta-
tion/redundancy was also adapted.

A. Fragmentation size

We use proactive fragmentation, meaning fragmenta-
tion is decided in advance at the source node. We have
identified 3 criteria when selecting fragmentation size:

1) Fragmentation size (sy) should not exceed expected
maximum transferable size determined by the con-
tact window. This corresponds to the s;,4, already
introduced in ORWAR and this limit is relevant for
every contact in the network. In other words:

sf < min(Smaz,ij)
where: sy = size used for fragmentation
Smaaw,i,j = estimated max. transferable message
between node ¢ and node j

2) Using fine grained fragments helps minimize in-
frastructure download. This scheme allows down-
loading via the infrastructure of only the fragments
missing. As the size of one fragment decreases, the
system will download a smaller volume through
the infrastructure, which is helped by a higher
fragmentation degree.

3) Too much fragmentation increases latency. The bun-
dle is reconstructed at destination when the last
of the m fragments arrives at destination. When
many small fragments are used, more fragments
implies multiplications of paths, whereby end-to-
end latency corresponds to the highest latency path.

From a DTN perspective one of the following 3 cases
may occur:

« Complete deliveries (CD) - when the bundle can be
reconstructed at destination from fragments arriving
only through DTN (at least m out of n fragments
were delivered at destination)

« Partial deliveries (PD) - when k fragments arrived
at destination (1 < k < m), meaning that the
bundle can be reconstructed only by downloading
the remaining necessary fragments via infrastructure

o No delivery (ND) - meaning that no fragment was
delivered at destination. This case is the worst case
because the destination node does not know that a
bundle has been sent, therefore it does not know
when to initiate an infrastructure download.

We evaluate the hybrid scheme in ONE [28] in which
we have implemented fragmentation. In the following 3
plots we inject 1000 messages where size distribution is
the previously defined S. We vary fragmentation size from
no fragmentation at all up to 1kB fragment size whilst
redundancy remains constant at 10%. Node mobility is
map-based and corresponds to the half-day model defined
in ONE. All other settings are those referred to in sec-
tion IV except the replication factor L and the protocol
parameter A. In this section we use: L = 12 and A = 4.
This is due to the fact that with smaller fragments we can
afford to have more copies.

In the following 3 Figures we are going to highlight
in light colours the best results (50 kB fragments) and
in dark colours the results in absence of fragmentation.
All results are the average of 10 runs with different seeds
(initial node positioning, direction and speed).

Figure 14 shows the total size of all completed bundles
CD arrived at destination via DTN mechanisms, meaning
that partial deliveries PD are excluded from this count.
We note that the delivery ratio reaches a maximum when



w
o
o

N
o
o

N
o
o

Total size complete deliveries (MB)
s @
o o

a
o

o

no 1M 500k 180k 100k 50k 10k 5k 2k 1k

Fragmentation size

Figure 14. Complete deliveries (CD) Total Size vs. Fragmentation size

fragment size is between 180kB and 50 kB. Indeed,
calculating what would be the worst case contact window
in this scenario, we find that this corresponds to 2 cars
running in opposite directions at 50 km/h, which also
corresponds to 180kB.
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In Figure 15 we confirm that, due to path multiplica-
tion, latency is increased as fragmentation increases. With
such an increase in latency and in presence of a bounded
TTL we would get more downloads via the expensive
infrastructure.

In Figure 16 we show the total size of fragments
downloaded via the infrastructure and we note that a
fragmentation range from S50kB to 180kB remains in-
teresting but, when fine grained fragmentation is used,
this diminishes the part retrieved via infrastructure, as
expected.

The benefits of fragmentation are obvious here: instead
of downloading 170MB via the infrastructure (which
would be the total amount of lost messages in absence
of fragmentation - as shown by the chartbar in Figure 16)
only a third of this is pulled when using a hybrid scheme
with 50kB sized fragmentation.

B. Load implications

In previous sections we have shown that ORWAR
performs well against other protocols when increasing
load is injected in the system. This is due to taking into
account message utility when forwarding decisions are
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Figure 16. Infrastructure download vs. Fragmentation size

made. However, fragmentation implies that the contact
window has now a negligible effect as we are dealing with
small fragments (50kB) where almost no partial transmis-
sions are encountered. Therefore, when fragmentation is
used, we would like to demonstrate that the competitive
advantage of ORWAR is at least maintained.

In order to evaluate this in the fragmentation context,
we compare ORWAR with SprayAndWait. Load is sim-
ulated by increasing the inital message size by factors
of up to 10 and by keeping fragmentation size constant
(50kB). As load grows, the number of partial deliveries
(PD) increases at the expense of complete deliveries (CD).
Although fewer and fewer complete bundles are delivered
at destination, by using the hybrid DTN /Infrastructure
scheme, finally all of them can be reconstructed at des-
tination by pulling, despite the expensive infrastructure
download.
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In Figure 17 we plot system utility taking into account
complete deliveries (CD) but also total deliveries (CD
+ PD). Partial deliveries are also beneficial as they al-
low diminishing costly download via infrastructure. We
notice that at higher load, fewer and fewer bundles are
completely delivered to destination. Instead, there are
increasingly more bundles in PD. ORWAR shows better
resilience to load than SprayAndWait. System-wide utility
increases with added load, with roughly 15-25% improve-
ment over SprayAndWait. This shows that utility driven



routing decisions are worthwhile, especially in highly
loaded scenarios.
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ORWAR was designed with the goal of diminishing en-
ergy consumption by limiting overheads. Next we look at
overhead (defined as total volume transmitted / total vol-
ume arrived at destination) retaining only the DTN part.
Figure 18 shows that although ORWAR delivers more in
terms of both delivery ratio and utility, the number of
transmissions remains relatively small. The competitive
advantage against SprayAndWait is also about 20% and
rather independent of load.

In this subsection we have shown that, even when
fragment size is smaller than biggest transferable message
over the given contact window so that contact window
calculation makes less benefit, other ORWAR built-in
mechanisms remain of interest.

VI. CONCLUSION

The massive body of work on routing protocols in
mobile ad hoc networking assumes end-to-end connec-
tivity, a property that is believed to be absent in several
applications of such networks. In this paper we address
the routing problem in sparse networks and propose a
new routing algorithm that exploits the store-and-forward
mechanism in delay-tolerant networking. The paper pro-
poses an algorithm, ORWAR, that combines selected
replication and delivery acknowledgment from existing
routing algorithms with two novel features in the DTN
context: (1) the use of message utility as a parameter
in the selection of replicated messages as well as buffer
management, and (2) the use of estimated contact window
for selecting the optimal message to forward at any op-
portunity. Moreover, we analyze effects of fragmentation
on ORWAR and show that this substantially improves
performance especially when combined with pulling of
the last few fragments via a complementary infrastructure
network.

In a simulation setting we have illustrated the superior
performance of the algorithm in comparison with existing
algorithms (Direct Delivery, Epidemic, Prophet, MaxProp
and SprayAndWait), including detailed studies in relation
to the closest algorithms (SprayAndWait and MaxProp).
We added the notion of utility to the messages generated

by ONE, where three classes of messages have been
generated with equal probability. The analysis shows that
ORWAR has a similar or better delivery ratio as compared
to MaxProp and SprayAndWait, while creating far less
overhead. It also shows a 10% higher delivery ratio com-
pared to SprayAndWait with an overhead that is around
10% lower. Because of producing little overhead, OR-
WAR relative performance will increase at higher loads.
We show that the benefit of using ORWAR is especially
significant when having to deal with larger messages. To
our knowledge, this is the first routing scheme well-suited
for large message sizes, and taking account of resource
optimization at the same time. Another gain from the use
of ORWAR results when the accumulated utility is used
as a metric for evaluation, whereby a gain of 25-50% is
demonstrated compared to baseline algorithms. The added
benefit increases as the load increases in the network.

A further study of a hybrid DTN/Infrastucture scheme
was demonstrated to lead to most of the traffic being
routed via a DTN network, allowing pulling of remaining
lost fragments via infrastructure.

This work can be extended in several directions. An
obvious extension of the work is the validation of our
approach on an emulated network of physical nodes. In
particular, whether the real-time estimation of the contact
window indeed leads to optimized packet transmission
is the next step of the study. Second, the algorithm can
be made more adaptive to changing network conditions
and traffic characteristics by producing replications of
messages at different quality of service levels according
to dynamic network conditions. One approach would be
to take account of the diminishing TTL as messages are
selected for forwarding. Another would be to take account
of time varying utility functions.

Studying algorithm performance within other DTN ap-
plications e.g. in a disaster scenario is also an interesting
direction to pursue.
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