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Abstract

Failure Mode and Effects Analysis (FMEA) is a well-
known technique widely used for safety assessment in the
area of safety-critical systems. However, FMEA is tradi-
tionally done manually which makes it both time-consuming
and costly, specially for large and complex systems. Also,
small modifications in the design may result in a complete
revision of the initial FMEA.

This paper presents a tool support for automated incre-
mental component-based FMEA of SW and HW. It is based
on component safety interfaces and a formal compositional
safety analysis method. This tool support enables engineers
to focus on more important steps in the safety assessment
process. Also, during system upgrades, the tool incremen-
tally registers the changes and identifies possible effects in
the FMEA which enables the use of earlier safety analysis
results. Finally, this formal approach based on design mod-
els of the components and the system always creates FMEAs
which are consistent with the system design.

1 Introduction

Many safety-critical domains such as the automotive and
aerospace industries are facing an increase in the complex-
ity in hardware and software. This is the effect of the cost-
efficient introduction of more advanced features in cars and
aircrafts and replacing mechanical functions with software
and hardware. A big challenge in these industries is now to
lower the costs and decrease time-to-market while coping
with the increased complexity and ensuring safety.

One way of dealing with the problems of increased com-
plexity in the design is component-based system develop-
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ment [17, 4] (CBSD) which promotes compositional de-
velopment and component reuse. However, the use of
commercial-off-the-shelf components (COTS) in safety-
critical system is highly unexplored. There are no obvious
methods to incorporate knowledge about functions and re-
silience of COTS in safety assessments.

Traditional methods such as Failure Mode and Effects
Analysis (FMEA) and Fault-Tree Analysis (FTA) [10] are
well known in the reliability engineering discipline. How-
ever, these techniques become intractable to use since the
complexity of the systems makes failure propagation hard to
derive and often produces extremely large fault trees. One
way of dealing with the increased complexity in safety as-
sessment is to integrate the two separate activities of design
and safety analysis through introduction of formal meth-
ods [3, 9]. With this approach, the safety assessment is
based on the system design model augumented with formal
failure models. This model-based approach enables verifi-
cation tools, such as model checkers, to automatically check
if the system design tolerates the modelled failures at design
time.

A novel attempt to combine the component-based ap-
proach with safety-critical systems while integrating de-
sign and safety analysis uses the concept of safety inter-
faces [6, 5]. Briefly, the safety interface can be seen as a
formal description of the component in terms of failures
directly affecting the component. This approach enables
a compositional safety-analysis where the safety interfaces
of component are used for overall system safety analysis.
The compositional approach to safety analysis becomes ef-
ficient upon component reuse and upgrades since earlier
safety analysis results can be partially reused during the new
safety analysis. However, for practical use, the use of safety
interfaces needs to be incorporated in current engineering
methods and tools.

In this paper we present a tool support for an auto-
matic synthesis of FMEA from the safety interfaces of the



components in the system while performing a system-level
safety analysis. This framework also supports an incre-
mental FMEA upon reuse of components, where the ef-
fect of changes in the component aaembly are automati-
cally updated in the FMEA table. The process is automated
by a prototype tool that generates FMEA matrices and the
method is evaluated by application to a hydraulic control
system in an aerospace application.

2 Related work
There are a number of approaches addressing the prob-

lems related to manual FMEA using different techniques
for automatic generation of FMEA tables. However, most
of these approaches does not use any formal design models
to generate the FMEA. Instead, they require safety engi-
neers to specify impact of component failures on the sys-
tem. This requires in-depth knowledge about all individual
components in the system.

Grunske et. al. [7] proposes a method for automated
FMEA. In their approach, FMEA tables are built from engi-
neering diagrams that have been augmented with informa-
tion about component failures. Safety analysis is performed
on the composed system and it requires explicit modelling
of failure behaviour and propagation inside a component.
Our approach is based on support for automatic generation
of safety interfaces and enables compositional reasoning.

Papadopolous et. al. [11] extend a functional model of
a design with Interface-Focused FMEA. In [12, 13], the
authors propose an automated FMEA. However, their ap-
proach requires a special characterization of failure logic
(failure annotations) for each component while our ap-
proach is based on the actual design model. Their approach
also lacks formal verification support and suffers from com-
binatorial explosion in large fault trees.

The ESACS project [3] applied a model-based safety
analysis approach using Statechart models. Within this
project, a tool (FSAP/NuSMV [2]) for automating fault in-
jection, automatic fault tree construction and failure order-
ing analysis has been developed. However, it only generates
flat fault tree structures (and-or) which may become incon-
venient for large systems, and the approach does not support
compositional safety assessment.

Raheja [16] presents a method called Software System
FMEA (SSFMEA) which is an extended form of FMEA for
software. However, the approach is not component-based
and the analysis is not incremental.

A number of approaches for automated FMEA has been
proposed for use in analyzing electrical systems [15, 14,
18]. Some of these, for example [15, 18], have an incre-
mental approach, but are based on simulation to generate
the FMEA. This makes the method impractical for complex
systems with large state spaces since it will become impos-
sible to simulate every state in the system. Our approach of

using model checking promises adherence to a given safety
property and computes efficiently.

3 Synthesizing FMEA

In previous work, we have presented a method for gen-
erating safety interfaces for components [6]. The safety in-
terface generation tool serves as a front-end to Esterel Stu-
dio and uses the built in model checker to verify the design
and to analyse the failure effects [5]. This section outlines
the procedure for analysing the effect of failure modes at
system level and deriving the cFMEA table. It also de-
scribes how system FMEA are generated and how incre-
mental analysis is supported.

3.1 Component FMEA (cFMEA)

Given a set of fault modes and a system level safety
property, the safety interface of a component captures the
behaviour of the component in presence of faults in its en-
vironment w.r.t to the safety property. The safety interface
makes explicit which single and double faults the compo-
nent can tolerate. For every fault mode in the safety inter-
face, there is a corresponding assumption that needs to be
fulfilled by the environment in order for the component to
be resilient to the fault mode. The main purpose of the as-
sumptions is to enable formal assume guarantee reasoning
on the system assembly in order to analyse overall safety.

However, since safety interfaces only specify which fault
modes it might tolerate, there are fault modes that we still
need to consider in the overall safety analysis that are omit-
ted in the safety interfaces. Thus, the procedure of generat-
ing cFMEA tables must consider every fault mode affecting
the component, both those in the safety interface and those
not in the safety interfaces.

For every fault mode in the safety interface, we generate
a row in the cFMEA matrix. By traversing the elements in
the safety interface, we can extract the necessary and use-
ful information to be placed in the different columns in the
cFMEA row. First, we add the name identifier and the type
of the fault mode. At this stage, we also create a descrip-
tion field in the FMEA row which enables safety engineers
to add a complete description of the fault mode. Then, we
need to consider what possible effect the fault mode will
have. Since by definition of the safety interface, each failure
mode is analysed w.r.t to a safety property ϕ, the violation
of ϕ is also the possible effect. Thus, we need to consider
the assumptions that are needed for the component to be re-
silient to the failure mode. If the component is resilient to
the failure mode in any environment, then the failure mode
will not effect ϕ.

However, the assumptions can contain a very large num-
ber of variable constraints. In the current version of the
front-end to Esterel [5] these assumptions are generated as
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Figure 1. The tool chain.

formulas constraining the input variables. This format is not
optimal for reading and understanding the context. Thus,
we transform the assumptions to something more useful for
engineers and store them in the cFMEA table. One trans-
formation is to extract those variables that the assumption is
constraining. This will at least show the safety engineer on
what components and signals the component under study is
directly relying.

For those faults that do not exist in the safety interface,
we create a FMEA row but add “Unknown” to the effect
column since we do not know the effect. This marks this
failure mode as a failure that needs to be reconsidered by
other means.

Also, we add cells for the traditional properties used in
FMEA such as severity, probability, criticality, likelihood
for detection. However, no knowledge about these concepts
is stored in the safety interface, but can be added later in the
safety assessment process by safety engineers.

3.2 System-Level FMEA

The system FMEA is constructed using information in
each cFMEA and the partial results from the compositional
safety analysis. Every cFMEA is parsed for information,
and while the compositional safety analysis produces re-
sults, the system FMEA is generated.

System level safety analysis investigates the effect of ev-
ery single fault in the system and every double fault. The
local effect of failure modes are found in the safety inter-
faces, together with the assumptions that the component
makes on the environment. By using compositional proof
rules[6], these known assumptions of every component can
be checked considering other components as part of the en-
vironment.

Failures modes that can lead to an unsafe state are
marked with a red icon. Failure modes that cannot directly
contribute to a hazardous event are marked green.

3.3 Incremental FMEA
The automated component FMEA helps system develop-

ers to study the effect of propagation of a fault mode from
a component input towards a change in the outputs that vi-
olates a given safety property ϕ. However, the effect of
changing or upgrading a component in a safety-critical sys-
tem often results in a complete revision of the initial FMEA.
This is due to the fact that the traditional FMEA is not sup-
ported by formal methods and the previous results must be
proven to hold in the new system.

In our approach, a new component comes with its (auto-
matically generated) safety interface. When a component is
replaced, the new safety interface is first used to generate a
new cFMEA, as described in Section 4.2. By inspecting the
cFMEA of the new component, and comparing with the old
cFMEA, we can get an initial intuition if the new compo-
nent will affect overall safety in the system. Our prototype
tool at least identifies differences in the assumptions on a
syntactical level and marks these rows with a yellow warn-
ing sign.

Also, since our system-level safety analysis is composi-
tional, a change in one component essentially creates a need
for repeating part of the analysis at the system level. What
needs to be rechecked due to the ripple effects is identified
by the compositional rules used in the analysis. Partial re-
sults from the initial analysis can be reused, which is not the
case for traditional FTA or FMEA.

In our approach, since FMEA tables are constructed
from the component design model, the FMEA remains con-
sistent. Hand written FMEA tables are both error prone and
could create inconsistencies between the real design and the
analysed failure behaviour.

4 Tool support
The tool chain supporting our framework is shown in

Fig 1. The generation of safety interfaces is automatically
done using a front-end to Esterel studio [6]. The output of
this tool is safety interfaces for every component. In this
paper we present a prototype developed in Java that reads
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Figure 2. The hydraulic leakage detection
system.

component safety interfaces, and produces cFMEA tables.
As of now, the output is parsed and displayed in a table in
the application, but can also be exported into XML-format
which enables a wide range of options for further usage.
The XML-file can be nicely visualised using XSL (the eX-
tensible Stylesheet Language) as a table in a web browser,
or can be imported into any FMEA tool that supports XML
import.

Using the safety interfaces for compositional analysis is
supported by a previously developed safety analysis tool
that also uses the built in design verifier in Esterel Stu-
dio. Extending our FMEA generator and combining with
the current safety analysis tool, the FMEA table can be in-
crementally generated using the cFMEA tables of the com-
ponents and the partial results from the safety analysis tool.

5 Case study: Hydraulic System

As a proof of concept we have applied our method to
the leakage detection subsystem of the hydraulic system of
the JAS 39 Gripen multi-role aircraft, obtained from Saab
Aerosystems. The system has been decomposed into com-
ponents (see Figure 2). Both the original system model
presented in [9] and our component-based version are de-
scribed in the language of Esterel [1], a synchronous lan-
guage whose compiler ensures the nonblocking property
upon composition. For a short description of the function-
ality and the safety requirements, see [6].

5.1 Fault modes

A total of eighteen fault modes were identified (pre-
sented in Table 1). In an earlier study fifteen fault modes
were studied which included both physical faults in the four
shut-off valves but also random faults in the three compo-
nents [8]. However, since we omit the valves in our analysis
(consider them to be a part of the environment) some of the
faults identified in the original analysis do not exist, while
we introduce some new faults in our system.

For each signal in the system, a corresponding fault

Fault Type Comp. Input
F1 Random H-ECU CheckOK
F2 Random PLD1 SensorHigh_1B
F3 Random PLD1 SensorHigh_1C
F4 Random PLD1 SensorHigh_2B
F5 Random PLD1 SensorHigh_2C
F6 Random PLD1 SensorLow_1B
F7 Random PLD1 SensorLow_1C
F8 Random PLD1 SensorLow_2B
F9 Random PLD1 SensorLow_2C
F10 Random PLD2 CheckOK
F11 Random PLD2 ShutOffRequest_1B
F12 Random PLD2 ShutOffRequest_1C
F13 Random PLD2 ShutOffRequest_2B
F14 Random PLD2 ShutOffRequest_2C
F15 Random PLD2 ValveSensor_1B
F16 Random PLD2 ValveSensor_1C
F17 Random PLD2 ValveSensor_2B
F18 Random PLD2 ValveSensor_2C

Table 1. Identified possible faults in the hy-
draulic system

mode was identified. Every fault mode in the system was
classified as a random fault. Since all signals in the sys-
tem are pure (i.e. Boolean), a random fault can non-
deterministically switch the signal from high to low and
vice versa. In practice, this is modelled by setting this signal
as a free (un-restricted variable) to the affected component.

5.2 Automatic cFMEA generation
The production of the cFMEA tables for each component

generates FMEA tables for every single fault and combina-
tion of double faults. Fig. 3 shows the result of the single
fault cFMEA of component PLD2 as presented in the tool.
The green icons in the left cell indicate that the component
is resilient to that failure mode, i.e. that the failure mode
will not have any effect on overall safety in terms of safety
property ϕ′.

Note that one cFMEA is created for every component,
and every system typcially has many safety properties. In
this case, since we only consider one safety property ϕ,
one failure mode is only analysed in terms of one safety
property. When analysing many safety properties, one fail-
ure mode can have different impacts on withholding differ-
ent safety properties, thus appearing in many rows in the
cFMEA.

5.3 System-level FMEA generation
System-level safety analysis is performed with the safety

interfaces of PLD1, PLD2, and H-ECU as input. While



Figure 3. The cFMEA for PLD2 (only subset of all faults).

Figure 4. The FMEA for the whole system (only subset of all faults).

Figure 5. The cFMEA for PLD2’ (only subset of all faults).



analysing system-level fault resilience of every single and
double fault, the system FMEA is automatically generated.
Information is received from each cFMEA and from the
analysis results in order to generate each FMEA row in the
table.

The resulting system FMEA can be seen in Fig. 4. In
this table, we can see that no single or double fault of a
single component will cause a threat to system-level safety.
Also, the system is resilient to any double fault from multi-
ple components.

5.4 Incremental FMEA
Now let’s assume that we need to update PLD2. Thus,

we create a component PLD2’. However, the updated com-
ponent PLD2’ does not work as intended. PLD2 should
check all possible shut-off requests and ensure that no two
valves will close at the same time. However, the developer
of PLD2’ has forgotten to check one of the combinations of
shut-off requests from the H-ECU. The automatically gen-
erated cFMEA of the new component PLD2’ can be seen in
Fig 5.

In the cFMEA, we actually see the effect of the differ-
ence between PLD2 and PLD2’. The tool identifies which
rows have been effected and highlights these with a yellow
warning sign to the right. Every failure mode can now have
the effect of not satisfying ϕ′ which is also marked with the
red warning signs to the right. Using the “Relying input”
column, we can see that PLD2’ for example is relying on
the inputs of ShutOffLow 1B and ShutOffLow 2B in order
to satisfy the safety property. Further in-depth analysis on
exactly how these signals effect safety is done by analysing
the safety interface, in particular the assumptions for every
failure mode.

When this change has been done in the system, a new
system-level safety analysis can be done. According to the
compositional rules in [6], only parts of the analysis is af-
fected by the change which avoids a complete re-analysis
of the system. While performing the safety analysis, the
tool automatically generates the system FMEA table. The
new FMEA table is compared to the initial table, but in this
case no change is detected by the tool (i.e. the new FMEA
looks like Figure 4). This means that the overall safety is
not effected by replacing PLD2 with the faulty PLD2’.

6 Conclusions
Failure Mode and Effects Analysis serves as an impor-

tant part of the safety assessment process for safety-critical
systems. However, due to the increased complexity of the
systems, the process of FMEA becomes troublesome, both
in terms of time but also actually identifying the effect of
every failure mode.

In this paper we have presented an automatic approach
to incremental FMEA of component-based systems. The

approach is based on the formal framework of safety inter-
faces and compositional safety analysis. This practical use
of safety interfaces for analysing component-based fault tol-
erant systems has many benefits:

• It eliminates much of the manual work of creating
FMEA tables for the engineers, enabling them to fo-
cus on more important steps in the safety assessment
process, such as failure identification or failure mitiga-
tion actions.

• Deriving component and system FMEA tables using
their design models, the resulting FMEA is always
consistent with the system design.

• This approach automatically generates a FMEA table
with qualitative information which may serve as basis
for future quantitative analysis and eventual design de-
cisions.

• Critical effects of new components in the system are
automatically identified.

• The incremental approach decreases the analysis
workload upon component upgrades and reuse since
results of partial analysis at both component and sys-
tem level can be reused.

This approach has been implemented in a prototype
which is integrated with previously developed tools, creat-
ing a tool-chain from deriving component safety interfaces
to the automatic generation of system FMEA tables.

More work is needed to fully utilise the potential of this
approach. Future research directions include creating more
advanced analysis of the comparison between component
assumptions. This could enable an increased knowledge for
integrators during component upgrades.

Also, adding quantitative reasoning to this framework
would be a suitable extension. The use of probabilistic
model checking could be one step towards an integrated
qualitative and quantitative analysis framework.

Another step for future work would be to focus on
common-cause faults. As of now, this approach does not
handle those types of faults but their effect is of course an
important part of the safety assessment.
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