
Measuring Availability in Optimistic Partition-tolerant Systems
with Data Constraints

Mikael Asplund, Simin Nadjm-Tehrani
Department of Computer and Information Science,
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{mikas,simin}@ida.liu.se

Stefan Beyer, Pablo Galdamez
Instituto Tecnolgico Informtica

Universidad Politcnica de Valencia
Camino de Vera, s/n, 46022 Valencia, Spain

{stefan, pgaldamez}@iti.upv.es

Abstract

Replicated systems that run over partitionable environ-
ments, can exhibit increased availability if isolated parti-
tions are allowed to optimistically continue their execution
independently. This availability gain is traded against con-
sistency, since several replicas of the same objects could
be updated separately. Once partitioning terminates, di-
vergences in the replicated state needs to be reconciled.
One way to reconcile the state consists of letting the ap-
plication manually solve inconsistencies. However, there
are several situations where automatic reconciliation of the
replicated state is meaningful. We have implemented repli-
cation and automatic reconciliation protocols that can be
used as building blocks in a partition-tolerant middleware.
The novelty of the protocols is the continuous service of the
application even during the reconciliation process. A pro-
totype system is experimentally evaluated to illustrate the
increased availability despite network partitions.

1 Introduction

Prevalence of distributed services and networked solu-
tions has made many enterprises critically dependent on
service availability. Whereas earlier centralised solutions
were made resilient to service faults by deploying redun-
dancy, the new generation of distributed services need to
show resilience to overloads and network partitions. There
are many applications that require automatically managed,
distributed, secure, mutable object stores. A commercial
instance of this problem appears in Software distribution.
According to Sun Microsystems [4], network partitions are
indeed interesting to study since global corporate intranet-
works are typically not richly connected. Hence, service
availability of distributed data storage systems is potentially
affected by denial of service attacks (DoS) that render parts

of the network as inaccessible [6].

This paper addresses support for maintaining distributed
objects with integrity constraints in presence of network
partitions. Providing fault tolerance in such distributed
object systems requires relatively complex mechanisms to
properly handle all the different fault scenarios. One solu-
tion is to relieve the application writers, and get them to rely
on a middleware that provides fault tolerance services. This
is a direction pursued in the European DeDiSys research
project [9]. In particular, the algorithms for replication and
reconciliation implemented in this paper will be deployed
in an extension of CORBA middleware. However, they can
be considered as general building blocks to be integrated in
any middleware.

The basic problem of network partitions is that there is
no way of knowing what is happening in the other parts of
the system. A bank customer cannot make a payment if not
enough money exists on his/her bank account, and you can-
not book a flight that is already full. These kinds of integrity
constraints exist in most applications either explicitly or im-
plicitly in the operation semantics; but what happens if the
bank account is used for two payments at the same time in
two disconnected parts? One typically resorts to a “safe”
solution that implies periods of unavailability.

Another way to deliver service in a partitioned system
with integrity constraints is to act optimistically. This
means to provisionally accept some operations, but allow
them to be revoked or undone at a later stage, if necessary.
To revoke previously accepted operations might be unac-
ceptable in some cases, but there are also situations where
it is better than general unavailability. Another possibility
is to perform some kind of compensating action specific for
that operation. Many applications have a mix of operations
where some non-critical operations can be treated optimisti-
cally, while the critical operations must wait. We claim an
application can improve its overall availability by provision-
ally accepting operations that may later be revoked. We pro-
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pose protocols that allow for automatic reconciliation of the
state of the network, by replaying the (logged) operations
serviced during the partition and discarding some (revoca-
ble) operations that violate the integrity constraints in the
reconstructed state. The novelty of our implemented algo-
rithm is that it builds the new repaired network state and at
the same time serves the new incoming operations. That is,
operations arriving after network reunification but prior to
installation of the new state are not denied service.

The contributions of this paper are twofold. First, we
present the implementation of a previously unimplemented
reconciliation protocol[1] embedded as a middleware ser-
vice. The aim of the protocol is to give continuous ser-
vice during network partitions. Second, we show the im-
proved performance due to giving service during the de-
graded mode, and also during reconciliation phase after a
network partition. The experiments thus constitute valida-
tion tests for performance of the Java implementation of the
protocol. This provides a proof of concept for the algo-
rithms prior to integration in CORBA.

To provide a repeatable experimental setting for measur-
ing performance, we have implemented a synthetic applica-
tion that simulates changes of numerical values for object
states. This can, for example, be seen as an abstraction of
distributed sensor-actor systems, and fusion of data based
on reported measures. This application is introduced in Sec-
tion 2 and is used for explaining the reconciliation process.
The rest of the paper is organised as follows. Section 3
describes a partition-aware replication algorithm called P4,
and Section 4 describes the continuous service reconcilia-
tion protocol. In Section 5 we propose a set of metrics that
are suitable for evaluating availability in systems with opti-
mistic replication. Using these metrics we evaluate the pro-
posed algorithms in Section 6. Section 7 presents related
work, and finally we conclude and give directions for future
work.

2 Test application

A synthetic application has been developed to serve as a
test bed for trade-off studies. We describe it here to reuse
for illustration of the workings of the reconciliation process.

The application is composed of a set of real number ob-
jects. Possible operations are addition, multiplication and
division. An operation is applied to the current value with a
random constant. The constant is an integer uniformly dis-
tributed in the intervals [−10,−1], and [1, 10]. This creates
a total of 60 distinct operations. There are also integrity
constraints in the system expressed as: n1 + c < n2 where
n1 and n2 are object values and c is a constant. Although
the application is very simple, it is complex enough to give
an indication of how the algorithms perform. Moreover, the
application allows key system parameters to be changed for
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experimentation purposes.

3 Replication

The system modes of operation can be described as the
four phases depicted in Figure 1. We proceed by describing
the need for a replication protocol that allows consistency
to be temporarily violated but later restored.

In the passive replication model each object has a pri-
mary copy, and the distributed replicas are updated using
a replication protocol. Traditional pessimistic replication
techniques that attempt to provide single-copy consistency
[5] are not suitable for optimistic partitionable systems in
which more than one partition continues to accept updates
during partitioning. Replication protocols for such systems
need to temporarily accept possible inconsistencies. Hence
these protocols allow the state in different partitions to di-
verge. If strict consistency is to be restored when the system
recovers, a reconciliation protocol is required. Replication
and reconciliation protocols need to match each other, as
only inconsistencies that can be removed at reconciliation
time can be allowed.

An optimistic protocol might allow the degree to which
inconsistencies are allowed to be configured. We have de-
signed an optimistic replication protocol, called Primary Per
Partition Protocol (P4), which uses a new approach to trade
consistency for system availability. The protocol bases con-
sistency on integrity constraints. Integrity constraints can
be pre-conditions, which have to met before an operation
is executed, post-conditions, which have to be met after an
operation is executed or invariants, which are not associated
to an operation but to a set of objects and have to be met at
all times. The remainder of this section provides a short
summary of the protocol that is described in detail earlier
[6].

The protocol assumes the presence of a group member-
ship service that provides all the server nodes with a single
view of which nodes are part of the system or the current
partition. Furthermore, a group communication service pro-
vides the nodes with reliable FIFO broadcast according to



the definition by Hadzilacos and Toueg [12].
The protocol employs a relaxed passive replication

model. Read-only operations are allowed on any replica,
but write operations have to be directed to the primary copy
of the object being accessed. If the primary copy of the ob-
ject is in a different partition, a secondary copy is promoted
to a temporary primary. In order to increase system avail-
ability, we allow write operations on temporary primaries
in certain conditions. During partitioning, secondary copies
of an object might be stale, if the primary copy resides in a
different partition. During reconciliation, constraints might
be violated retrospectively, when missed updates are propa-
gated. Therefore, some operations that were performed dur-
ing partitioning might have to be undone to restore consis-
tency. This behaviour might be acceptable for the majority
of the operations, but there are some operations that should
never occur, if they might have to be undone later on.

These “critical operations” include operations on data
that require strict consistency at all times and operations
that simply cannot be undone, such as operations with ir-
reversible side-effects. We therefore allow the labelling of
integrity constraints as critical constraints.

A constraint labelled critical is a constraint that needs
up-to-date versions of all of the participating objects. Such
a constraint cannot be evaluated if a participating object is
stale. Furthermore, the protocol has to take certain precau-
tions to ensure that critical constraints are never violated “in
retrospect” during reconciliation. In contrast non-critical
constraints can be evaluated on stale objects. A non-critical
invariant constraint has to be re-evaluated during the recon-
ciliation; that is, the reconciliation protocol has to perform
constraint re-evaluation.

A write operation in our replication protocol in the ab-
sence of failures can be summarised in the following steps:

1. All object write invocations have to be directed to the
primary replica.

2. All the pre-condition constraints, associated with the
operation are evaluated. If a constraint is not met, the
invocation is aborted.

3. The operation is invoked. Nested invocations cause
sub-invocations to be started.

4. Once the primary replica has updated its local state, all
the post-condition and invariant constraints, associated
with the operation are evaluated. If a constraint is not
met, the invocation is aborted.

5. All primary replicas updated in the invocations propa-
gate the new object states to the secondary replicas.

6. Once this update transfer has terminated, the operation
result is returned to the client.

A failure might occur in the form of a node failure or
a link failure. Since we cannot distinguish between a failed

node and an isolated node, all failures are treated as network
partitions until recovery time. A write operation in degraded
mode is similar to that in normal mode with the following
additions:

1. If the primary copy of an object being written to is
not found, a secondary copy is chosen in some pre-
determined way, for example based on the replica iden-
tifier. The chosen secondary replica is promoted to a
“temporary primary”. This is not done, if the operation
has a critical constraint as a pre- or post-condition.

2. Objects that are changed are marked as “revocable”,
if any of the invariant constraints associated to the op-
eration that has been executed has been evaluated on
possibly stale objects.

3. Critical constraints are not evaluated, if a participating
object might be stale. If this were the case, the invoca-
tion is aborted.

4. Non-critical invariant constraints with possibly stale
objects are marked for re-evaluation at reconciliation
time.

5. Operations with critical constraints that include a re-
vocable object are not permitted, so that critical con-
straints cannot be violated retrospectively.

Note that the above description applies both to operation
in degraded mode and continuous service of incoming oper-
ations during reconciliation. In order to manage the recon-
ciliation process (see below) the replication protocol needs
to log those operations that have been serviced while in par-
tition. These operations need to be reconsidered during the
reconciliation phase.

4 Reconciliation

This section describes the implementation of a proto-
col that aims to continuously service client (write) requests
even during the reconciliation process. A formal descrip-
tion of the protocol with a proof of correctness was pre-
sented earlier [1]. Here we show the architectural units that
have been realised in Java and their interactions in terms of
pseudo code.

Figure 2 shows the basic architectural components of our
replication and reconciliation protocols. Each node contains
the middleware and a number of application objects. The
middleware is composed of a number of services, of which
the replication support is the focus of this paper. This com-
ponent is in turn composed of a replication protocol, i.e.,
P4, and a reconciliation protocol, i.e., the continuous ser-
vice (CS) protocol. These protocols rely on additional mid-
dleware services such as Group Communication (GC) and
Constraint Consistency Manager (CCM). The CCM is used
to check consistency of integrity constraints. The box with



Object

Middleware

Reconciliation
Manager

Node

Sandbox

Replication

Reconciliation

CCM CCM

Object

...

Support

Component

P4
GC

CS

Continuous Server

...

Figure 2. Architecture

”...” is an abstraction of other services in the middleware
not relevant for this evaluation. Our prototype implementa-
tion that is used for evaluating the reconciliation protocol is
based on this architecture.

We proceed by explaining the actions of the CS recon-
ciliation protocol. This protocol is faced with the task of
merging a number of operations that have been performed
in different partitions. It must also preserve constraint con-
sistency. Furthermore, as operations are replayed the client
perceived order on operations (for operations invoked by the
same client) is respected. In parallel with this process the
protocol takes care of operations that arrive at the reunified
but not fully reconciled partition.

Algorithm 1 Continuous Server
On reunify:
Send all logs to Reconciliation Manager(s)

On operation invocation:
If not stopped, apply operation
Check consistency, abort if not consistent
Send log to Reconciliation Manager
Suspend reply until later

On receive getState:
Send last stored object state (from normal mode)

On receive logAck:
Send suspended replies to client

On receive stop:
Stop accepting new operations
Send stopAck

On receive install:
Change state of local objects to received state

The reconciliation protocol is composed of two types of
processes: continuous servers and reconciliation managers.
Algorithms 1 and 2 show the pseudo code for the protocol
running at each node. Every node will run a continuous
server during the reconciliation, whereas only one elected
node will run the reconciliation manager. During recon-

ciliation, the reconciliation manager will replay previously
applied operations. This replay process is performed in a
sandbox environment, which contains the application ob-
jects and the basic middleware components that are required
for running the application on a single node.

Algorithm 2 Reconciliation Manager
On reunify:
Elect which node acts as reconciliation manager
Determine which objects to reconcile
Send getState request to servers

On receive log:
Add log to opset
Send logAck to server

On receive state:
Create object in sandbox environment

If opset not empty and all states received:
Replay first operation in opset in sandbox environment
Check consistency, abort if not consistent

If opset empty and all states received:
Send stop message to all servers

On receive stopAck:
Wait for opset to become empty
Send out new state to all servers

The responsibility of the continuous server is to accept
invocations from clients and sending logs to the elected rec-
onciliation manager during reconciliation. At the beginning
of each reconciliation phase the nodes in the repaired net-
work elect a reconciliation manager among themselves. The
reconciliation manager is responsible for merging server
logs that are sent during reconciling mode. Eventually,
upon reaching a stable state, the reconciliation manager
sends an install message with the new state to all servers
(see transition 4 in Figure 1).

During reconciliation mode, the state that is being con-
structed by the reconciliation manager may not yet reflect
all the operations that have arrived during degraded mode.
Therefore, the only state in which the incoming operations
can be applied to is one of the partition states from the de-
graded mode. In other words, we keep virtual partitions
for servicing incoming operations while the reconciliation
phase lasts.

Each continuous server will immediately send a log mes-
sage to the reconciliation manager if it receives an invoca-
tion during the reconciliation phase. The server will then
wait until it has received an acknowledge from the manager
before sending a reply to the client. When the manager has
finished replaying all operations, it sends a message to all
nodes to stop accepting new invocations. The manager will
continue accepting log messages from servers, even after a
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stop has been sent. Note also that the continuous servers
keep sending the logs until they have sent their acknowl-
edgements of the stop. However, once a stopAck message
has been received from a given server, then no further log
messages will arrive from it. This is to ensure that no oper-
ations are performed during the installation of a new recon-
ciled state. This (short) period is the only interval in which
the system is completely unavailable.

4.1 Example

To illustrate the potential effect of reconciliation as a re-
sult of replaying operations we show a trivial synthetic sce-
nario with one integrity constraint in Figure 3. We use the
application from Section 2, using two objects with an ini-
tial state 3 and 12 respectively. There is a constraint stating
that obj1 + 1 < obj2. During the degraded mode one op-
eration is performed in each partition on the first object. At
the start of the reconciliation the state is (4,12) and (9,12)
respectively. Just after the reconciliation starts, yet another
operation is invoked in the first partition. The reconcilia-
tion revokes operation 2 since it violates the constraint but
finally accepts operations 1 and 3. So the final state that
is installed is (7,12). For a deeper discussion on possible
operation orderings the reader is referred to [2].

5 Performance metrics

Availability is formally expressed as the probability of
a system being operational at any given point of time [20].
This is to be distinguished from reliability that measures
the probability of not observing any failures before a given
time point. Both reliability and availability have been ex-
tensively studied in the context of computer systems with

an emphasis on hardware failures to justify a claim on a
system’s dependability.

In the context of this paper we are faced with a service
that is to be available on a distributed (networked) plat-
form. Measuring availability of the service is possible by
performing a number of experiments on the system running
over some time interval. To compute the probability of the
service being available, one can measure the periods that
the service is operational during the experiments, compute
an average operational period, and then compute the prob-
ability measure by dividing the average operational period
over the chosen interval. This measure is of course highly
affected by the potential number of failures during the ex-
perimental period. These failures can be induced (injected)
during experimentation, but their likelihood has to be sup-
ported by some empirical evidence obtained from the appli-
cation domains, using the hardware and software character-
istics of the real application. However, this is not the whole
story. The core problem of defining metrics for consistency-
dependent distributed object systems is that in presence of
some degraded service, one has to identify what is exactly
meant by being ”operational” (which services, or which op-
erations under which conditions).

5.1 Partially operational

Figure 4 shows the set of arriving operations during a
given time interval. For a system to be considered fully op-
erational the operations that are invoked by clients have to
be performed together with checking integrity constraints.
If the integrity constraints can be checked, i.e., the system
is not partitioned, then the service is considered operational
even though the constraint may not hold (and thus the op-
eration not performed). If the integrity constraint cannot be
checked, then we are faced with one of two situations. Ei-
ther the integrity constraint is critical, in which case the op-
eration cannot be allowed (the system is non-operational),
or the constraint is non-critical. An operation with an as-
sociated non-critical constraint, which is invoked in a de-
graded mode, can be considered to render a system opera-
tional in the degraded mode. However, this is not the whole
story either. We need to consider what happens to this op-
eration once the degraded mode has ended. In some cases,
the operation will be considered as valid after returning to
the normal (fully consistent) mode of the system, and in
some cases this operation has to be revoked (undone) or
perhaps compensated, since the process of recovering from
the earlier failure has rendered this operation as unaccept-
able. The new metrics thus have to consider appropriate
measures that reflect these elements of partial availability
and apparent availability. Another aspect in devising the
set of experiments is a clear parameterisation in terms of
the load; not only in terms of the volume of operations that
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are invoked (classic throughput metrics), but also in terms
of the types of operations that are invoked: those subject to
critical integrity constraints and those subject to non-critical
constraints.

5.2 Load profile

Operations are classified in two categories: tradable
(those with associated non-critical integrity constraints),
and non-tradable (those with associated critical constraints).
Among those operations that are tradable we find operations
that violate their integrity constraints, and would not be ap-
plied in a normal mode in similar circumstances. This is
considered as a normal delivery of the service. We will de-
note these by ”not applied operations” in Figure 4. We also
find those that are provisionally applied (updating some ob-
ject state). In the latter category we find operations that
are later revoked (undone) when the partition failure is re-
covered from, and the reconciliation of states renders the
application of the operation as unacceptable (due to inter-
partition conflicts). Figure 4 shows these distinct load pro-
files.

Our evaluation metrics can be divided in two categories;
time-based and operation-based metrics. The first category
is typically based on the time spent in some segment of the
system life time. The second category is based on the count-
ing of the operations that pass through the system and are
treated in one way or the other (subsets from Figure 4).

5.3 Time-based metrics

We consider the following metrics:

• Apparent availability: Probability of (partial) opera-
tion at a time point; that is, the average interval that
the network is in partial/fully available mode divided
by the length of the experiments.

• Time spent in revoking (undoing) operations within the
experiment interval.

From the above, we are going to use the availability met-
ric as a measure for improved performance. However, we
need to complement this metric with other measurements in
order to identify the substance of improvement (i.e., exclud-
ing the apparent availability).

The second metric is indicative of the apparent availabil-
ity. That is, the higher the time spent for revocations the
lower is the real availability. As far as time for revoking
one operation is concerned, a real application has different
values attached to different revocations (compensations). In
our experimental setting, we choose to compute this time
based on an estimate of an undo-time per operation (referred
to as handling time in charts in Section 6, thus turning it into
a parameter).

5.4 Operation-based metrics

As mentioned above measurements of apparent avail-
ability are only meaningful if they are presented together
with an indication of the ”loss” from revoked operations.
To be specific about the level of service delivered to clients
we propose two operation-based metrics:

• The number of operations finally accepted during the
whole experimental interval.

• The proportion of revocations over provisionally ac-
cepted operations.

In addition, it may be interesting to study the proportion
of revocations over total arrived operations in a degraded
scenario for comparing different variations of reconciliation
protocols.

6 Evaluation

In this section we present an experimental evaluation of
the replication and continuous service reconciliation proto-
cols. As a baseline, we consider two alternatives: first, a
system that does not trade availability for consistency (us-
ing pessimistic protocols), and a second optimistic replica-
tion and reconciliation service. The second reconciliation
protocol does not accept new operations during the recon-
ciliation phase (similar to those presented in earlier work
[2]).

6.1 Simulation setup

The simulations were performed with J-Sim [24] using
the event-based simulation engine. A simple middleware
was constructed and the test application described in Sec-
tion 2 was implemented on top of it. The middleware is
based on the architecture in Figure 2. However, as the main



Table 1. Simulation parameters
Number of runs 100
Number of objects 100
Number of constraints 30
Number of critical constraints 10
Simulation time 70 [s]
Number of nodes 50
Number of clients 30
Mean network delay 0.1 [s]
Normal system load 120 [ops/s]

goal of the implementation was to evaluate the reconcilia-
tion protocol some parts of the system have been simpli-
fied. The group communication component is for example
simulated using a network component that also provides a
group membership service. This allows fault injection and
network delays to be controlled. Faults are injected by con-
figuring the location service component to resolve object
lookups in the same way as if there had been a network par-
tition. This is done in the beginning of each simulation run.

The simulations parameters that were constant in all ex-
periments are shown in Table 1. We base these figures on
data provided by industry partners, with real applications
that can benefit from partition tolerance, in the DeDiSys
project.

6.2 Results

In this section we provide the results of the performed
simulations.

In all of the following curves we compare three dif-
ferent protocol behaviours. All three measurements are
performed using the same application and random seeds.
Moreover, the middleware implementations only differ in
the places where the replication and reconciliation differ.
The first curve (“continuous”) in each graph shows a mid-
dleware that acts optimistically during the partition fault,
and then uses the continuous service reconciliation (CS)
protocol to merge the results. The first baseline that does
not accept invocations during reconciliation is denoted as
“stop-the-world”. Finally, the last (“pessimistic”) shows the
results for a pessimistic middleware which does not accept
invocations during a partitioned state.

The effect of handling rate In Figure 5 the apparent
availability is plotted against the handling rate of the rec-
onciliation manager. This rate is an estimate of the aver-
age time taken to reconsider a provisionally accepted op-
eration, replay it, and potentially undo it. The partition
lasted for 10 seconds in each run. The 95% confidence in-
tervals are within 0.35% for all measurement points. The
pessimistic approach gives just over 85% independently of
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the nature of operations that are potentially revocable (since
they are never run). This is natural since no operations are
performed during partitions. The continuous service proto-
col manages to supply nearly full availability except for the
small effect given by the time spent installing the new state.
However, the availability of “stop-the-world” depends very
much on the length of the reconciliation phase, which in
turn is decided by how fast the handling rate of the recon-
ciliation manager is.

There is an anomaly for the CS protocol for small han-
dling rates. There is no period of unavailability for these
rates. The reason is that the protocol will never reach the
stop state during the simulation time, and thus never be-
come unavailable. The termination proof from [1] gives that
a condition for the termination is H >

(
TD+7d
TF−9d

)
C ·I where

H is the (worst case) handling rate, TD the partition dura-
tion, d a bound on message and service time, TF the time
until next fault (in these runs the end of the simulation), C
the number of clients, and I the (worst case) invocation rate
for each client. If we put the (average) numbers from our
simulations in this inequality we find that the handling rate
must be at least 137 to guarantee termination. In the figure
we see that termination actually occurs for rates over 100
(indicated by the fact that the CS protocol drops from full
availability to just under 100%).

As the results in Figure 5 only give the apparent avail-
ability (as discussed in Section 5) we need also to compare
the second availability metric, which is how many opera-
tions we have finally accepted.

In Figure 6 the relative increase of finally accepted op-
erations compared to the pessimistic approach is plotted
against the handling rate. This graph is based on the same
experiment as Figure 5. The 95% confidence intervals are
within 1% for all measurement points. The optimistic ap-
proaches achieve better as handling rate increases. For large
enough handling rates they give significantly better results
compared to the pessimistic approach. The CS reconcilia-
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tion protocol only gives distinctly better results than ”stop
the world” for handling between 100 and 300 operations per
second. However, as the handling rate increases further the
difference becomes marginal.

This plot indicates that an estimate of the average han-
dling rate, based on profiling the application, is appropriate
as a guideline before selecting the CS protocol in a recon-
figurable middleware.

The effect of partition duration There are applications,
like telecommunication, where partitions do occur but a lot
of effort is spent to make them as short as possible so that
acting pessimistically will not cause a big decrease in avail-
ability. In Figure 7 we see the effect that the partition dura-
tion has on the apparent availability. For long enough par-
titions the only approach that gives acceptable results is the
continuous service reconciliation. The confidence intervals
for this graph are within 0.1% for all measurement points.

Both of the optimistic reconciliation protocols consid-
ered here are operation based. That is, they use a log
of operations that were performed in the degraded mode.
One can also perform state-based reconciliation where only
the current state of the partitions is used to construct the
new state. A state based reconciliation scheme might give
equally high apparent availability as the continuous service
protocol but instead it might suffer in terms of finally ac-
cepted operations [2].

A very interesting metric is the number of revocations
over provisionally accepted operations. This is the propor-
tion of operations that the client thinks have been performed
but which must be revoked/compensated. This is related
to, but should not be confused with, the collision probabil-
ity calculated by Grey et al. [11] to be proportional to the
square of the number of operations. Wang et al. [23] have
investigated the conflict rate for file systems. Common for
these two metrics is that they consider two replicas to be
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Figure 8. Revocations over Provisionally Ac-
cepted

in conflict if they have been updated concurrently. In our
model, on the other hand, a conflict occurs only as the result
of the violation of some integrity constraint. Such violations
can be caused by concurrent updates, but not necessarily.

In Figure 8 we see that as the partition duration increases
the ratio of revoked operations decreases. This is a bit
counter-intuitive, one would expect the opposite. However,
there is an explanation to this phenomenon. The cause lies
in the fact that in our synthetic application two partitions
perform similar kinds of client calls. This means that an op-
eration which has been successfully applied in one partition
is likely to be compatible with changes that have occurred
in the other as well. The longer the partition lasts, the more
operations are performed and the risk of different types of
operations in the two partitions decreases. Naturally, this
behaviour depends on the nature of the integrity constraints
and thus on the application. The confidence intervals are
within 6.9% for all measurement points.

The effect of load So far the experiments have been per-
formed with a constant arrival rate of 120 operations per
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Figure 9. Reconciliation Duration

second. To see the effect of load we have plotted the recon-
ciliation duration against load in Figure 9. Here, the 95%
confidence intervalse are within 1.6% for all measurement
points. The handling rate for this experiment was 300 ac-
tions per second. This figure might seem high compared to
the load. However, the reconciliation process is performed
at a single node which means that no network communica-
tion is needed. As can be seen in the figure the continuous
service protocol suffers more than the other protocols under
heavy load; especially, as it approaches the maximum load.
However, this does not translate to less apparent availability
as in the case of stop-the-world. The only period of unavail-
ability for the CS protocol is during the time between the
continuous servers receive a stop message from the recon-
ciliation manager and the time to receive the installed state.
The length of this period is not affected by the length of the
reconciliation phase. Thus, the apparent availability of CS
is not decreased (as was shown in Figure 5).

7 Related Work

In this section we will discuss how the problem of rec-
onciliation after network partitions has been dealt with in
the literature. For more references on related topics there
is an excellent survey on optimistic replication by Saito and
Shapiro [19]. There is also an earlier survey discussing con-
sistency in partitioned networks by Davidson et al. [8].

The CS protocol was recently presented as a formalisa-
tion in timed I/O automata [1]. Earlier studies [2] have com-
pared different versions of reconciliation protocols but none
of them with the feature of continuously serving during rec-
onciliation. Gray et al. [11] address the problem of update
everywhere and propose a solution based on a two-tier ar-
chitecture and tentative operations. However, they do not
target full network partitions but individual nodes that join
and leave the system (which is a special case of partition).
Bayou [22] is a distributed storage system that is adapted for
mobile environments. It allows updates to occur in a parti-

tioned system. Bayou can in principle deal with integrity
constraints. However, there is a limitation in the sense that
a primary server must be able to commit operations locally
(this prevents later revocations). This makes the use of sys-
tem wide integrity constraints hard or impossible.

Some work has been done on partitionable systems
where integrity constraints are not considered, which sim-
plifies reconciliation. Babaouglu et al. [3] present a method
for dealing with network partitions. They propose a solu-
tion that provides primitives for dealing with shared state.
They do not elaborate on dealing with writes in all parti-
tions except suggesting tentative writes that can be undone
if conflicts occur. Moser et al. [15] have designed a fault-
tolerant CORBA extension that is able to deal with node
crashes as well as network partitions. There is also a rec-
onciliation scheme described in [16]. The idea is to keep a
primary for each object. The states of these primaries are
transferred to the secondaries on reunification. In addition,
operations that are performed on the secondaries during de-
graded mode are reapplied during the reconciliation phase.
This approach is not directly applicable with integrity con-
straints.

There are some systems that use more advanced opti-
mistic replication techniques, which allow the degree to
which inconsistencies are allowed to be configured. None
of these protocols are aimed at operating fully in a parti-
tioned system. They therefore do not provide the reconcil-
iation algorithms for such a scenario. However, it is inter-
esting to compare the way they approach configurable con-
sistency with our integrity constraint based approach. Yu
and Vahdat [25] use consistency units (conits) to specify
the bounds on allowed inconsistency. A conit is a set of
three values representing “numerical error”, “order error”
and “staleness”. Numerical error defines a weight of writes
on a conit that can be applied to all replicas, before update
propagation has to occur. Order error defines the number of
outstanding write operations that are subject to re-ordering
on a single conit. Finally, staleness defines the time update
propagation can be delayed. The system does not support
partitioning, although the key concept of conits could be
used in a partitioned context. In CoRe [10] the principle
of specifying consistency is extended to allow the program-
mer to define consistency using a larger set of parameters.
AQua [7] approaches the solution from the other direction:
configuration of the allowed consistency in order to increase
availability; that is, by allowing availability requirements to
be specified. In AQua “quality objects” are used to specify
quality of service requirements.

Most works on reconciliation algorithms dealing with
constraints after network partition focus on achieving a
schedule that satisfies order constraints. Lippe et al. [14]
try to order operation logs to avoid conflicts with respect
to a before relation. However, their algorithm requires a



large set of operation sequences to be enumerated and then
compared. The IceCube system [13, 18] also tries to or-
der operations to achieve a consistent final state. However,
they do not fully address the problem of integrity constraints
that involve several objects. Phatak et al. [17] propose an
algorithm that provides reconciliation by either using mul-
tiversioning to achieve snapshot isolation or using a recon-
ciliation function given by the client. Snapshot isolation is
more pessimistic than our approach and would require a lot
of operations to be undone.

8 Conclusions and Future Work

In case of a network partition fault in a distributed sys-
tem, there are two basic approaches: pessimistic and opti-
mistic replication. We have shown that the optimistic solu-
tion does pay off in terms of availability even in systems
with data constraints that have to be reconciled later on.
Moreover, we have identified the need for additional avail-
ability metrics (e.g., number of accepted operations, pro-
portion of revoked operations) to evaluate these systems.
Using these metrics, we have evaluated an implementation
of a reconciliation protocol [1] that aims at delivering con-
tinuous service during the reconciliation protocol.

The results show that for long partition durations this
protocol gives the best performance in terms of apparent
availability as well as number of applied operations. More-
over for longer partition durations, the risk of having to re-
voke a previously accepted operation can decrease for some
applications.

Naturally, the gain comes with a cost. Apart from the fact
that operations have to be revoked or possibly compensated
during reconciliation, there will be an overhead associated
with this solution. Currently, we are evaluating this pro-
tocol as a CORBA extension to make it partition-tolerant.
This evaluation will include latency measurements to de-
termine the overhead induced by the protocols. A natural
continuation for this work is to extend it to more dynamic
environments where partitions are more frequent and where
the network topology is constantly changing.

The current implementation updates replicas with the
installed state by sending the entire state. This is obvi-
ously not reasonable in a system with a large state. A rela-
tively easy modification is to send increments, that represent
changes to the state of various replicas.
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