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a b s t r a c t

Anomaly detection in information (IP) networks, detection of deviations from what is con-

sidered normal, is an important complement to misuse detection based on known attack

descriptions. Performing anomaly detection in real-time places hard requirements on

the algorithms used. First, to deal with the massive data volumes one needs to have effi-

cient data structures and indexing mechanisms. Secondly, the dynamic nature of today’s

information networks makes the characterisation of normal requests and services difficult.

What is considered as normal during some time interval may be classified as abnormal in

a new context, and vice versa. These factors make many proposed data mining techniques

less suitable for real-time intrusion detection. In this paper we present ADWICE, Anomaly

Detection With fast Incremental Clustering, and propose a new grid index that is shown to

improve detection performance while preserving efficiency in search. Moreover, we pro-

pose two mechanisms for adaptive evolution of the normality model: incremental exten-

sion with new elements of normal behaviour, and a new feature that enables forgetting

of outdated elements of normal behaviour. These address the needs of a dynamic network

environment such as a telecom management network. We evaluate the technique for net-

work-based intrusion detection, using the KDD data set as well as on data from a telecom

IP test network. The experiments show good detection quality and act as proof of concept

for adaptation of normality.

ª 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The threats to computer-based systems on which several crit-

ical infrastructures depend are alarmingly increasing, thereby

increasing the need for technology to handle those threats

(Yegneswaran et al., 2003). Increasing use of software compo-

nents brings the benefit of rapid deployment and flexibility,

together with the vulnerability to accidental and targeted mis-

use, making service availability the key challenge for many

businesses and government agencies. The cycle from detec-

tion of some vulnerability in a software product, and the cre-

ation and application of a patch in all critical systems is
unfortunately too long. It is long enough for malicious actors

developing an attack tool, releasing it to a wider group, and

launching massive attacks to take place before the patches

are in place. One example is the Zotob-A worm and its vari-

ants (F-secure, 2005). It took only four days from the release

of the patch by Microsoft (9 August 2005) before the worms

exploiting the vulnerability were spreading on the Internet

(13 August 2005).

Rapid patching is important but not enough (Lippmann

et al., 2002). For a production system continuous patching

may not be viable due to system complexity and diversity as

well as compatibility requirements. For critical systems,
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defence in depth is needed incorporating many different secu-

rity technologies (Venter and Eloff, 2003). This includes fire-

walls at network boundaries, and on individual hosts,

removal of unused software and services, virus scanners,

and so on; but it is increasingly evident that intrusion detec-

tion systems should be part of the hardened defence.

Intrusion Detection Systems (IDS) attempt to respond to

this trend by applying knowledge-based techniques (typically

realised as signature-based misuse detection), or behaviour-

based techniques (e.g. by applying machine learning for detec-

tion of anomalies). Also, due to increasing complexity of the

intrusion detection task, the use of many IDS sensors to in-

crease coverage, and the need for improved usability of intru-

sion detection, a recent trend is alert or event correlation

(Morin and Hervé, 2003; Haines et al., 2003; Chyssler et al.,

2004). Correlation combines information from multiple sour-

ces to improve information quality. By correlation the

strength of different types of detection schemes may be com-

bined, and weaknesses compensated for.

The main detection scheme of most commercial intrusion

detection systems is misuse detection, where known bad behav-

iours (attacks) are encoded into signatures. This type of misuse

detection faces problems unless the signature database is kept

up to date, and even then can only detect attacks that are well

known and for which signatures have been written.

An alternative approach is anomaly detection in which nor-

mal behaviour of users or the protected system is modelled,

often using machine learning or data mining techniques. Dur-

ing detection new data are matched against the normality

model, and deviations are marked as anomalies. Since no

knowledge of attacks is needed to train the normality model,

anomaly detection may detect previously unknown attacks.

If an attack tool is published before a patch is applied and be-

fore the attack signatures are developed or installed, the

anomaly detection system may be the only remaining de-

fence. Some attack types, including a subset of denial of ser-

vice and scanning attacks, alter the statistical distribution of

the system data when present. This implies that anomaly de-

tection may be a general and perhaps the most viable ap-

proach to detect such attacks.

Anomaly detection still faces many challenges, where one

of the most important is the relatively high rate of false alarms

(false positives). The problem of capturing a complex normal-

ity makes the high rate of false positives intrinsic to anomaly

detection. We argue that the usefulness of anomaly detection

is increased if combined with further aggregation, correlation

and analysis of alarms, thereby minimizing the number of

false alarms propagated to the administrator (or automated

response system) that further diagnoses the scenario.

The fact that normality changes constantly makes the false

alarm problem even worse. A model with acceptable rates of

false alarms may rapidly deteriorate in quality when normal-

ity changes over time. To minimize this problem and the

resulting additional false alarms, the anomaly detection

model needs to be adaptable.

The training of the normality model for anomaly detection

may be performed by a variety of different techniques and

many approaches have been evaluated. One important tech-

nique is clustering, where similar data points are grouped to-

gether into clusters using a distance function. As a data
mining technique, clustering fits very well for anomaly detec-

tion, since no knowledge of the attack classes is needed whilst

training. Contrast this to classification, where the classifica-

tion algorithm needs to be presented with both normal and

known attack data to be able to separate those classes during

detection.

In this paper we present Anomaly Detection With fast In-

cremental Clustering (ADWICE), a novel adaptive anomaly de-

tection scheme, inspired by the BIRCH clustering algorithm

(Zhang et al., 1996), and extended with new capabilities. It is

based on an earlier presented version of the algorithm (Bur-

beck and Nadjm-Tehrani, 2004) but complements the original

technique with a novel search index that increases detection

quality, and provides new means to handle adaptation (forget-

ting). We show the application of the new mechanisms in two

settings: (1) an emulated test network at a major Telecom op-

erator in Europe (Swisscom) for evaluating the scalability and

timeliness of the algorithm, and (2) the comparative analysis

of the detection quality of the algorithm based on the only

common (open) data source available – the KDD99 attack

data. Data mining approaches to anomaly detection are a re-

cent area of exploration, and more work needs to be done to

clarify their strengths by studies in several application do-

mains. Therefore, this paper does not attempt to justify the

appropriateness of clustering as a whole or compare perfor-

mance with alternative machine learning work. The inter-

ested reader is referred to an earlier report (Burbeck, 2006)

that covers some of this ground.

The paper is organised as follows. In Section 2 the motiva-

tion of this work and perspective with respect to related works

is provided. Next we present the context of ADWICE within

the Safeguard agent architecture. Section 4 describes the tech-

nique used, and evaluation is presented in Section 5. The final

section discusses the results and presents some remaining

challenges for future work.

2. Motivation

2.1. IDS data problems and dependencies

One fundamental problem of intrusion detection research is

the limited availability of good data to be used for evaluation.

Producing intrusion detection data is a labour intensive and

complex task involving generation of normal system data as

well as attacks, and labelling the data to make evaluation pos-

sible. If a real network is used, the problem of producing good

normal data is reduced, but then the data may be too sensitive

to be released for public research comparison.

For learning based methods, good data are not only neces-

sary for evaluation and testing, but also for training. Thus ap-

plying a learning based method in the real world puts even

harder requirements on the data. The data used for training

need to be representative to the network where the learning

based method will be applied, possibly requiring generation

of new data for each deployment. Classification based

methods (Elkan, 2000; Mukkamala et al., 2002), or supervised

learning, require training data that contain normal data as

well as good representatives of those attacks that should be
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detected, to be able to separate attacks from normality. Com-

plete coverage of even known and recent attacks would be

a daunting task indeed due to the abundance of attacks en-

countered globally. Even worse, the attacks in the training

data set need to be labelled with the attack class or classes.

This is in contrast with clustering-based methods that require

no labelled training data set containing attacks (Portnoy et al.,

2001; Sequeira and Zaki, 2002; Guan et al., 2003), thereby re-

ducing training data requirement. There exist at least two

approaches.

When doing unsupervised anomaly detection a model based

on clusters of data is trained using unlabelled data, normal

as well as attacks. The assumption is that the relative volume

of attacks in the training data is very small compared to

normal data, a reasonable assumption that may or may not

hold in the real world context for which it is applied. If this

assumption holds, anomalies and attacks may be detected

based on cluster sizes. Large clusters correspond to normal

data, and small clusters possibly correspond to attacks.

A number of unsupervised detection schemes have been

evaluated on the KDD data set with varying success (includ-

ing the above named works). The accuracy is, however, rela-

tively low which reduces the direct applicability in a real

network.

In the second approach, which we simply denote ( pure)

anomaly detection in this paper, training data are assumed to

consist only of normal data. Munson and Wimer (2001) used

a cluster based model (Watcher) to protect a real web server,

proving anomaly detection based on clustering to be useful

in real life.

Acceptable accuracy of the unsupervised anomaly detec-

tion scheme may be very hard to obtain, even though the

idea is very attractive. Pure anomaly detection, with more

knowledge of data used for training, may be able to provide bet-

ter accuracy than the unsupervised approach. Pure anomaly

detection, similar to unsupervised anomaly detection, avoids

the coverage problemof classification techniques, and requires

no labelling of training data. Generating training data in

a highly controlled network now simply consists of generating

normal data. This is the approach adopted in this paper, and

the normality of the training data in our case is ensured by ac-

cess to a 100-node test network build specifically for experi-

mental purposes in the European Safeguard project.1

In a real live network with connection to Internet, data

can never be assumed to be free of attacks. Pure anomaly de-

tection also works when some attacks are included in the

training data, but those attacks will be considered normal

during detection and therefore not detected. To increase de-

tection coverage, attacks should be removed to as large an

extent as possible, making coverage a trade-off with data

cleaning effort. An efficient approach should be to use exist-

ing misuse detectors with updated rule-bases in the prepara-

tory phase, to reduce costly human effort. Updated signature-

based systems should with high probability detect many of

the currently known attacks, simplifying removal of most at-

tacks in training data. A possible complementary approach is

to train temporary models on different data sets and let them

1 The Safeguard project was an IST FP5 European project run-
ning 2001–2004.
vote on normality during a pre-training phase to decide what

data to use for the final normality model.

Certain attacks, such as Denial of Service (DoS) and scan-

ning can produce large amounts of attack data. On the other

hand, some normal types of system activities might produce

limited amounts of data, but still be desirable to incorporate

into the detection model. Those two cases falsify the assump-

tion of unsupervised anomaly detection and need to be han-

dled separately. Pure anomaly detection such as ADWICE

does not have those problems since detection is not based

on cluster sizes.

2.2. IDS management effort

One of the inherent problems of anomaly detection is the false

positives rate. In most settings normality is not easy to cap-

ture. Normality changes constantly, due to changing user be-

haviour as well as hardware or software changes. An

algorithm that can perfectly capture normality of static test

data, will therefore not necessarily work well in a real life set-

ting with changing normality. The anomaly detection model

needs to be adaptable. When possible, and if security policy al-

lows, it should be autonomously adaptive to minimize the hu-

man effort. Otherwise, if automatic updates are undesirable,

an administrator should to be able to update the anomaly

model with simple means, without destroying what is already

learnt. Also the effort spent updating the model should be

minimal compared to the effort of training the initial model.

ADWICE is fully incremental, supporting easy adaptation

and extension of the normality model. By fully incremental,

we mean that instead of extensive periodic retraining sessions

on stored off-line data ADWICE has on-line training capabil-

ities without destroying what is already learnt. Also, when

subsets of the model are no longer useful, those clusters can

be forgotten.

2.3. Scalability and performance issues

For critical infrastructures or valuable company computer-

based assets it is important that intrusions are detected in

real-time with minimal time-to-detection to minimize the con-

sequences of the intrusion. An intrusion detection system in

a real-time environment needs to be fast enough to cope

with the information flow, have explicit limits on resource us-

age and also needs to adapt to changes in the protected net-

work in real-time.

Many proposed clustering techniques require quadratic

time for training (Han and Kamber, 2001), making real-time

adaptation of a cluster-based model hard. Also they may not

be scalable, requiring all training data to be kept in main

memory during training, which limits the size of the trained

model. We argue that it is important to consider scalability

and performance in parallel to detection quality when evalu-

ating algorithms for intrusion detection. Most work on appli-

cations of data mining to intrusion detection considers those

issues to a very limited degree or not at all. ADWICE perfor-

mance is linear in the number of input data thereby reducing

training time compared to other algorithms. Training time as

well as detection time is further reduced by using an inte-

grated search index.
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To sum up, when compared with similar approaches

ADWICE:

� Is scalable, since it avoids keeping data in memory, repre-

senting clusters by compact summaries.

� Has good performance since it uses local clustering and an

integrated tree index for searching the model.

3. The Safeguard context

Safeguard (2001–2004)wasaEuropeanresearchprojectaimingto

enhance survivability of critical infrastructures by using agent

technology. The Safeguard agent architecture is presented in

Fig. 1. The agents should improve survivability of large complex

critical infrastructures (LCCIs), by detecting and handling intru-

sions as well as faults in the protected systems. Much of the di-

agnosis and detection, however, builds upon existing sensors

and (infosec) devices that are already in place in many such

networks. The main contributions of Safeguard is the conceptu-

alisation of the needed functions, development of new tech-

niques for anomaly detection, and the addition of correlation

engines and automatic reaction mechanisms for recovery and

self-healing. Theparallel activities of these agents relieve the hu-

man operators, while at a same time allow dynamic adaptation

to new needs in terms of situation awareness of operators.

The key to a generic solution applicable in many infrastruc-

tures is in the definition of roles for various agents. These are be-

lieved tobe commonfor the defence of many infrastructures, but

should be instantiated to more specific roles in each domain. The

Safeguard project demonstrated the instantiation of this agent

architecture to electricity and telecom management domains.

ADWICE was developed as the anomaly detector engine for

one instance of a Safeguard agent and demonstrated in the tele-

com domain. In recent years, the algorithm has been improved

and further developed. Before presenting the details of ADWICE,

it is relevant to describe the background against which it was de-

veloped.The Safeguard generic roles can be described as follows:

– Wrapper agents wrap standard infosec devices and existing

LCCI diagnosis mechanisms, and provide their outputs after

Fig. 1 – The Safeguard agent architecture.
some filtering and normalisation for use by other agents. Ex-

amples are Snort, Syslog, Samhain and other host or net-

work sensors.

– Topology agents gather dynamic network topology infor-

mation, e.g. host types, operating system types, services

provided, known vulnerabilities.

– Hybrid detector agents utilise domain knowledge for a given

infrastructure, but combine with behavioural intrusion de-

tection mechanisms.

– Correlation agents identify problems that are difficult to di-

agnose with one source of information in the network, by

using several sources of information from wrapper, topol-

ogy, or hybrid detector agents. Use the data sources to order,

filter and focus on certain alarms, or predict reduced avail-

ability of network critical services. An example is a correla-

tion agent that performs adaptive filtering and aggregation

of the alarms to reduce the (false) alarm rates.

– Action agents enable automatic and semi-automatic res-

ponses when a problem is definitely (or with high probabil-

ity) identified.

– Negotiation agents communicate with agents in other LCCIs

to request services and pass on information about major

security alarms.

– HMI (Human–Machine Interface) agents provide an appro-

priate interface, including overview, for one or many system

operators. An example element of such an interface is a

security dashboard indicating the (application-dependent)

health of the network.

– Actuators are wrappers for interacting with lower layer soft-

ware and hardware (e.g. changing firewall rules, adjusting

configurations of detection agents/sensors).

Note that several instances of each agent type may be pres-

ent to provide resilience and the benefits of distribution.

In the contextof a management network for telecom service

providers the following needs were identified and addressed:

� Reducing information overload (Chyssler et al., 2004).

� Increasing coverage by providing new sources of informa-

tion using e.g. anomaly detection ((Burbeck and Nadjm-

Tehrani, 2004) and the extensions in this paper (Bigham

et al., 2003; Gamez et al., 2005)).

� Increasing information quality by reducing false positives

(Chyssler et al., 2004).

� Collating information, such as correlating alarms (Chyssler

et al., 2004) and combine with topology information (dem-

onstrated in the final Safeguard demo).

� Presenting a global view of a network (demonstrated in the

final Safeguard demo).

This paper presents one instance of Hybrid detector agent.

The notion of hybrid comes from combining ADWICE together

with a white list, i.e. a simple specification based element (see

Sekar et al., 2002), deployed to detect anomalies.

4. The anomaly detection algorithm ADWICE

This section describes how ADWICE handles training and de-

tection. The present implementation of ADWICE requires data
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to be numeric. Non-numeric data are, therefore, assumed to

be transformed into numeric format by pre-processing.

4.1. Basic concepts

An ADWICE model consists of a number of clusters, a number

of parameters, and a tree index in which the leaves contain

the clusters. We reuse the central idea of BIRCH, that is, to

store only condensed information (cluster feature) instead of

all data points of a cluster. A cluster feature is a triple CF¼ (n,

S
!

, SS) where n is the number of data points in the cluster, S
!

is the linear sum of the n data points and SS is the square

sum of all data points. Given n d-dimensional data vectors vi

and a cluster CF representing {vi i¼ 1,., n}, the centroid v0

and radius R(CF) are defined as:

v0 ¼
Xn

i¼1

vi=n (1)

R
�
CF
�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðvi � v0Þ2=n
s

(2)

R is the average distance from member points in the cluster to

the centroid and is a measure of the tightness of the cluster

around the centroid.

Given the CF of a cluster, the centroid v0 and radius R

may be computed. The distance between a data point vi and

a cluster CF is the Euclidian distance between vi and the

centroid, denoted D(vi, CF) while the distance between two

clusters CFi and CFj is the Euclidian distance between their

centroids, denoted D(CFi, CFj). If two clusters CFi ¼ ðni; S
!

i;SSiÞ
and CFj ¼ ðnj; S

!
j;SSjÞ are merged, the CF of the resulting clus-

ter may be computed as ðni þ nj; S
!

i þ S
!

j;SSi þ SSjÞ. This also

holds if one of the CFs is only based on one data point making

incremental update of CFs possible.

A leaf node contains at most LS (leaf space) entries, each

of the form (CFi) where i ˛ {1,., LS}. Each CFi of the leaf

node must satisfy a threshold requirement (TR) with respect

to the threshold value T which is evaluated to see if a cluster

may absorb more data points. Two different threshold re-

quirements have been evaluated with ADWICE. The first

threshold requirement where R(CFi)<¼ T corresponds to

a threshold requirement suggested in the original BIRCH pa-

per and is therefore used as base line in this work (ADWICE-

TRR). A large cluster may absorb a small group of data

points located relatively far from the cluster centre. This

small group of data points may be better represented by

their own cluster since detection is based on distances. A

second threshold requirement was therefore developed

where D(vi, CFi)<¼ T needs to hold to allow the cluster to

absorb the new data point vi. This version was evaluated

as ADWICE-TRD.

4.2. Training

The algorithm for training works with a parameter M (maxi-

mum size of the model, denoted by total number of clusters,

thus restricting memory requirements), and a parameter LS

(leaf size, denoting maximum number of clusters in each

leaf). Some additional parameters are specific to the type of
index tree used, and those are explained together with the in-

dices later.

Given a model and a new data vector v, a search for the

closest cluster is performed. If the threshold requirement is

fulfilled, the new data point may be merged with the closest

cluster, otherwise a new cluster needs to be inserted. If the

size (number of clusters) of the model has reached the maxi-

mum M, the threshold T is increased, the model rebuilt, and

then v is inserted in the new model.

Below is an algorithmic description of the training phase of

ADWICE, in which only the main points of the algorithm are

presented and some simplifications made to facilitate presen-

tation. Note that we have abstracted away the index, and pres-

ent the specific workings of the original BIRCH index as well

a grid based index in the next sections.

train(v, model) 
 closestCF = findClosestCF(v, model) 
  IF thresholdRequirementOK(v,closestCF) THEN 
   merge(v,closestCF) 
  ELSE 
   IF size(model) >= M THEN 
    increaseThreshold() 
    model = rebuild(model) 
    train(v, model) 
   ELSE 
    leaf = getLeaf(v,model) 
    IF spaceInLeaf(leaf) THEN 
     insert(newCF(v), leaf) 
    ELSE 
     splitLeaf(leaf, newCF(v)) 

Rebuilding the model requires much less effort than the

initial insertion of data since only clusters rather than individ-

ual data points are inserted, and the number of clusters is sig-

nificantly less than the number of data points. If the increase

of T is too small, a new rebuild of the tree may be needed to

reduce the size below M again. A heuristic described in the

original BIRCH paper may be used for increasing the threshold

to minimize the number of rebuilds, but in this work we use

a simple constant to increase T conservatively (to avoid influ-

encing the result by the heuristic).

If it is possible to add clusters to the model (the size is still

below M ), we find the leaf where the new cluster should be in-

cluded and insert the cluster if there is still space in the leaf.

Otherwise we need to split the leaf, and insert the new cluster

in the most suitable of the new leaves.

4.2.1. Using the original BIRCH index
The original BIRCH index consists of a CF tree, which is

a height-balanced tree with four parameters: branching factor

(B), threshold (T ), maximum number of clusters (M ), and leaf

size (LS). Each non-leaf node contains at most B entries of the

form (CFi, childi), where i ˛ {1,., B} and childi is a pointer to the

node’s i-th child. Each CF at non-leaf level summarises all

child CFs in the level below.

� Finding the closest cluster is done by recursively descending

from the root to the closest leaf, and in each step choosing

child i such that D(v, CFi)<D(v, CFj) for every other child j.

� When inserting new data into the tree all nodes along the

path to the root need to be updated. In the absence of a split,
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the CFs along the paths to the updated leaf need to be

recomputed to include v by incrementally updating the

CFs. If a split occurred, we need to insert a new non-leaf en-

try in the parent node of the two new leaves and recompute

the CF summary for the new leaves. If there is free space in

the parent node (i.e. the number of children is below B) the

new non-leaf CF is inserted. Otherwise the parent is split

in turn. Splitting may proceed all the way up to the root in

which case the depth of the tree increases when a new

root is inserted.

� When splitting a leaf, the two farthest CFs of the leaf are se-

lected as seeds and all other CFj from the old leaf are distrib-

uted between the two new leaves. Each CFj is merged with

the leaf with the closest seed.

Of the three parameters T, B and M the threshold T is the

simplest to set, as it may be initialised to zero. The branching

factor B influences the training and detection time but may

also influence detection accuracy. The original paper suggests

using a branching factor of 15, but of course they do not con-

sider anomaly detection accuracy since the original algorithm

is not used for this purpose. To our knowledge this is the first

use of the CF based approach to anomaly detection.

The M parameter needs to be decided using experiments.

Since it is only an upper bound of the number of clusters pro-

duced by the algorithm it is easier to set than an exact number

of clusters as required by other clustering algorithms. As M

limits the size of the CF tree it is an upper bound on the mem-

ory usage of ADWICE. Note that in general M needs to be set

much lower than the number of data represented by the nor-

mality model to avoid over-fitting (i.e. training a model which

is very good at the training data but fails to produce good re-

sults for testing data that differs more or less from the training

data). M also needs to be set high enough so that the number

of clusters is enough for representing normality.

4.2.2. Problems of original BIRCH index
The original BIRCH index is not perfect. An intrinsic property

of the basic search mechanism results in a sub-optimal

search. That is, the search for the closest cluster sometimes

selects the wrong path, and ends up in the wrong end of the

tree. This is due to the very condensed information available

to guide the search in each non-leaf. Index errors may influ-

ence the detection quality (and evaluation) of an algorithm.

Though an initial evaluation of the algorithm showed inter-

esting results (Burbeck and Nadjm-Tehrani, 2004) we are in-

terested in pinpointing the extent of improvement possible

if index errors are completely removed. Table 1 shows how

Table 1 – Consequences of index errors for anomaly
detection

Data is Model
covers data

Expected
evaluation

Evaluation
with index

error

Normal Yes True negative False positive

Normal No False positive False positive

Attack Yes False negative True negative

Attack No True positive True positive
index error influences anomaly detection results in general

when a testing data vector is compared to the model.

If the type of data is not included in the trained normality

model an anomaly detection algorithm with index-errors

returns the correct result, since there is no close cluster to

find anyway. However, there are two cases where index errors

may produce erroneous results. If the new data point is nor-

mal, and the model includes a close cluster, an index error re-

sults in a false positive instead of a true negative, thereby

decreasing detection quality. On the other hand, if the new

data are anomalous and such data have previously been (erro-

neously) included into the model, or if the attack data are very

similar to normal data, the index error may result in a true

positive, improving detection quality. In other words, index

errors make the behaviour of the detection scheme unpredict-

able, since quality may both increase and decrease. The

index errors do not completely invalidate evaluation, since if

training data are to a large extent normal, the second case

of error (causing improvement) is improbable. Still the

result may be improved using an index not causing index er-

rors. In this paper we address this issue by introducing

a new index.

4.2.3. The Grid-index
Our third implementation of ADWICE aims to improve the in-

dex errors caused by the original BIRCH index, but maintain its

incremental training capabilities.

There are two possibilities for handling the adaptability re-

quirement. The index may be updated together with the clus-

ters whenever model change occurs (which is the BIRCH

approach) or the index may be independent of changes to

the model. ADWICE-Grid follows the second principle.

A subspace of d-dimensional space is defined by two vec-

tors, Max and Min for each dimension, specifying for each di-

mension an interval or slice. A grid is a division of space into

subspaces. In two dimensions this results in a space divided

into rectangles. The idea of the new grid index is to use

a grid tree where each node specifies a subspace of a certain

depth corresponding to the depth of the node. Leaves contain

the clusters, and are the maximum depth of subspaces for

each part of the tree. Fig. 2 shows a two-dimensional grid di-

vided into subspaces together with the corresponding grid

tree (the tree is further explained below). Note that not all sub-

spaces contained by leaves need to be at the same level and

that empty subspaces have no corresponding leaf. Our intui-

tion and experience tells us that such a grid is sparsely popu-

lated. This means that suitable primitives such as hash tables

(rather than lists) should be used to avoid empty subspaces

take up space in the index tree.

Before starting with the implementation we tested the per-

formance of the primitive operations used in an index tree. In

case of the BIRCH index, the primitive operation is the dis-

tance function computing the Euclidian distance in multi-

dimensional space. A performance evaluation shown in

Fig. 3 revealed that a hash function call is 6–15 times faster

than one call to the distance function depending on the num-

ber of dimensions (60–20). Since at each node of the CF tree of

BIRCH, up to B (normally set to 10–20) branches may exist, us-

ing a hash table could be 100 times faster when the distance

function is applied multiple times during linear search of
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Fig. 2 – Illustration of the basic notions of the grid and grid tree.
a non-leaf node to find the correct child. This means that there

is room for additional processing with the new index.

Our grid index consists of a grid tree, which is a sparse, pos-

sibly unbalanced tree with three parameters, threshold (T), leaf

size (LS) and maximum number of clusters (M ). Each dimen-

sion i of the d-dimensional space is assumed to have a maxi-

mum (Maxi) and a minimum (Mini). These are in practice

realized during feature extraction for unbounded domains,

and lead to the division of the current dimension i in a certain

number of intervals/slices (NumSlicesi) with a certain width

(SliceWidthi). A function getSliceDimension(depth) is devised

which maps a node depth to one dimension. Each non-leaf

node of depth j contains at most NumSlicesi children where

each child of a non-leaf node is an entry in a hash table. The

hash table is a mapping from interval number to a child node.

� To find the closest cluster of a new data item v in a node with

depth j (starting with the root), we first compute the slice di-

mension i¼ getSliceDimension( j). In the current node we

then only consider dimension i of v. Given the value of v in

dimension i (v[i]), the number of the interval into which v

fits is computed. This interval number is mapped to a child

using the hash table. In this way we find our way down to

a leaf, where the data are located. In this leaf we may then

do linear search among the clusters to find the closest.

Unfortunately there is a complication that makes the index

more complex. There is no guarantee that the closest cluster

actually is located in the same leaf as the data point itself.

Merging of a data point with the closest cluster CFi may be

0
2000
4000
6000
8000

10000
12000
14000
16000

Hash D( ) 60 dim. D( ) 40 dim. D( ) 20 dim.

O
p

e
r
a
t
i
o

n
s
/
m

s

Fig. 3 – Performance of primitive index operations: original

distance compared to a hash function.
performed if the D(v, CFi)< T. This means that the closest CFi

may be located inside any of the subspaces reachable within

a distance T of the data point v. Accordingly we possibly

need to search multiple paths at each node in the tree,

depending on the value of T. At each non-leaf node at depth

i we compute a search width [v[i]� T, v[i]þ T]. All slices that

overlap the search width are searched to find the closest clus-

ter. Since space is sparse, many slices are not occupied. Since

only children for occupied intervals exist as hash table entries,

empty intervals do not need to be searched.

During training, there are two cases when the nodes of the

grid tree need to be updated:

� If no cluster is close enough to absorb the data point, v is

inserted into the model as a new cluster. If there does not

exist a leaf subspace where the new cluster fits, a new leaf

is created. However, there is no need for any additional up-

dates of the tree, since nodes higher up do not contain any

summary of data below.

� When the closest cluster absorbs v, its centroid is updated

accordingly. This may cause the cluster to move in space.

A cluster may potentially move outside its current subspace.

In this case, the cluster is removed from its current leaf and

inserted anew in the tree from the root, since the path all the

way up to the root may have changed. If the cluster was the

only one of the original leaf, the leaf itself is removed to keep

unused subspaces without leaf representations.

Compared to the continuously updated original BIRCH in-

dex, the need for grid index updates are very small, since

the first case above requires only insertion of one new leaf,

and the second case occurs infrequently.

In case of a split of a leaf, the original leaf is transformed to

a non-leaf node. The new node computes its split dimension

according to its depth in the tree, and the clusters of the orig-

inal leaf are inserted in the new node resulting in creation of

leaves as children to the node.

In most cases not all dimensions need to be used for slicing

(thus limiting the height of the tree), assuming that the func-

tion getSliceDimension(depth) is selected appropriately. How-

ever, if the situation arises that all dimensions have been used
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for slicing, and still the number of clusters to be inserted does

not fit in one leaf due to the limited leaf size (LS), then the LS

parameter for that leaf can be increased, affecting only that

leaf locally. This is the approach that our current implementa-

tion adopts. An alternative or complementary approach to

handle this situation is to rebuild the tree using a smaller

width of the intervals for each dimension.

The getSplitDimension(depth) should be defined manually

or automatically according to properties of the input data to

avoid a tree with a large depth. For example, if all data have

the same or almost the same value in a certain dimension,

this dimension is not useful for slicing, since the depth of

the tree will increase without distributing the clusters into

multiple children.

4.3. Detection

The detection procedure is the same for any choice of index.

During the detection the model is searched for the closest

cluster CFi (using the index). Then the distance D(v,CFi)

from the centroid of the cluster to the new data point v is

computed. Informally, if D is small, i.e. lower than a limit,

v is similar to data included in the normality model and v

should therefore be considered normal. If D is large, v is

an anomaly.

Let the threshold T be the limit (L) used for detection. Using

two parameters E1 and E2, MaxL¼ E1� L and MinL¼ E2� L may

be computed. Then we compute the belief that v is anomalous

using the formula below:

Belief ¼
0 if D �MinL
1 if D �MaxL

D�MinL
MaxL�MinL if MinL < D < MaxL

8<
: (3)

A belief threshold (BT) is then used to make the final deci-

sion. If belief� BT, we consider v anomalous and raise an

alarm. The belief threshold may be used by the administrator

to change the sensitivity of the anomaly detection. For the rest

of the paper, to simplify the evaluation, we set E1¼ E2¼ E so

that v is anomalous if and only if D>MaxL.

For the grid tree the initial search for the closest cluster dif-

fers slightly from the search during training. When deciding

search width now MaxL rather than T needs to be used. Since

the BIRCH index uses no notion of search width, search during

detection is exactly the same as during training.

4.4. Adaptation of the normality model

As described earlier, agents need to be adaptable in order to

cope with varying LCCI conditions including changing nor-

mality. Here we describe two scenarios in which it is very use-

ful to have an incremental algorithm in order to adapt to

changing normality.

Scenario 1: New cases of normality require the model to adapt

incrementally. In some settings, it may be useful to let the nor-

mality model relearn autonomously. If normality drifts slowly,

an incremental clustering algorithm may handle this in real-

time during detection by incorporating every test data classi-

fied as normal with a certain confidence into the normality

model. If slower drift of normality is required, a subset of
those data based on sampling could be incorporated into the

normality model. Even if autonomous relearning is not

allowed in a specific network setting, there is need for model

adaptation. Imagine that the ADWICE normality model has

been trained, and is producing good detection results for a spe-

cific network during some time interval. However, in an exten-

sion of the interval the administrator recognizes that

normality has changed and a new class of data needs to be in-

cluded as normal. Otherwise, this new normality class pro-

duces false positives. Due to the incremental property, the

administrator can incorporate this new class without relearn-

ing the working fragment of the existing normality model. The

administrator may interleave incremental training with de-

tection completely eliminating the need for downtime re-

quired by non-incremental approaches.

Scenario 2: The opposite scenario is when the model of nor-

mality needs to shrink. That is, something that was consid-

ered normal earlier is now considered as undesirable. In our

approach this situation is adapted to by forgetting the seg-

ment of normality that is no longer considered as normal.

This too can be performed autonomously or manually. The

current autonomous forgetting process checks the model pe-

riodically (CheckPeriod) to decide what clusters can be forgot-

ten. If the difference between current time and time of last

use is larger then a forgetting threshold (RememberPeriod),

the cluster is removed from the model. The rest of the model

is not influenced.

Each time a cluster is used, either during training or detec-

tion, forgetting of the cluster is postponed, similar to the pos-

itive influence of repetition in case of human learning.

5. Evaluation

In all the following experiments ADWICE with a grid index is

used unless otherwise stated. To make all data numeric,

non-numeric features ranging over n values are made nu-

meric by distributing the distinct values over the interval [0,

1]. However, two distinct values of such a feature (e.g. http,

ftp), should be considered equally close, regardless of where

in the [0, 1] interval they are placed. This intuition cannot be

captured without extending the present ADWICE algorithm.

Instead the non-numeric values with n> 2 distinct values

are scaled with a weight w. If w/n> 1 this forces the algorithm

to place two data points that differ in such non-numeric

multi-valued attributes in different clusters. This builds on

the assumption that the threshold should be significantly

less than one (M [ distinct number of combinations of

multi-valued non-numeric attributes). This should be

enforced since numerical values are scaled to [0, 1]. Otherwise,

a large difference in numerical attributes will anyway cause

data to end up in the same cluster, making the model too gen-

eral. If those multi-valued attributes are equal, naturally the

difference in the numerical attributes decides whether two

data items end up in the same cluster.

5.1. Data sets

Performing attacks in real networks to evaluate on-line

anomaly detection is most often unrealistic. Our work deals
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with this inherently synthetic situation as follows. We

choose to start evaluation of detection quality using the

KDDCUP99 intrusion detection data set (Hettich and Bay,

1999) to be able to compare the results with earlier evalua-

tions, and test the scalability of ADWICE with respect to

number of features and real-time properties. Despite the

shortcomings of the DARPA related data sets (Mahoney

and Chan, 2003; McHugh, 2000) they have been used in at

least twenty research papers and are unfortunately cur-

rently the only openly available data set commonly used

data for comparison purposes. Since the KDD data set is al-

ready pre-processed into session records suitable for classi-

fication, it is an efficient way of evaluating a method over

many attack types. The purpose of this evaluation is there-

fore a proof of concept for ADWICE, including the improved

grid index. We then go on to evaluate the algorithm in the

Safeguard test network built with the aim of emulating a re-

alistic telecom management network.

The original KDD training data set consists of almost five

million session records, where each session record consists of

41 fields (e.g. IP flags set, service, content based features, traf-

fic statistics) summarizing a TCP session or UDP connection.

Three features, protocol, flag and service, are multi-valued

non-numeric features and are transformed accordingly. Since

ADWICE assumes all training data to be normal, attack data

are removed from the KDD training data set and only the

resulting normal data (972 781 records) are used for training.

All 41 fields of the normal data are considered by ADWICE to

build the (41-dimensional) model.

The testing data set consists of 311 029 session records of

which 60 593 is normal and the other 250 436 records belong

to 37 different attack types ranging from IP sweeps to buffer

overflow attacks. The use of the almost one million data re-

cords for training and more than 300 000 data for testing in

the evaluation presented below illustrates the scalability of

ADWICE.

To illustrate forgetting and incremental training a data set

generated at the Safeguard test network was used. A period of

three days’ (2004-03-08 00:00 until 2004-03-11 00:00) data are

used for training an initial model, while the following seven

days of data (2004-03-11 00:00 until 2004-03-19 11:00) are

used for testing. The features include source and destination

IP and port, time of day, connection length, bytes transferred

and a flag indicating a parsing error. At this point no features

are based on content, to avoid degrading performance of pre-

processing (parsing tcpdump data and computing features)

due to the real-time requirement of the Safeguard architec-

ture. Fig. 4 shows how the Hybrid detection agent with

ADWICE remotely accesses its data sources inside the Safe-

guard test network and after processing sends alarms to a cor-

relation agent performing aggregation.

5.2. Detection quality of ADWICE

We have evaluated three different versions of ADWICE as

shown in Fig. 5. The trade-off between detection rate and false

positives rate are realised by changing the detection parame-

ter E (from 5 on the leftmost measure to 1 on the rightmost).

The difference between ADWICE-TRR and TRD is the

threshold requirement (see Section 4.1). Both use the original
CF-tree index. ADWICE-TRR is the variant that most closely

resembles the BIRCH clustering algorithm. ADWICE-TRD im-

proves detection quality by using distance not only for detec-

tion but also for the threshold requirement. ADWICE-Grid

uses the distance based threshold requirement and the new

grid index rather than the original BIRCH index, eliminating

the index-misses and thereby further improving the result.

Significant reduction of ADWICE false alarms using time-

stamp-based aggregation at correlation level is possible.

ADWICE-TRD was successfully tested with this technique,

the results of which can be found in earlier publication (Bur-

beck and Nadjm-Tehrani, 2004).

5.3. Incremental training

An important feature of this work is that the original model,

known to reflect recent normality, does not need to be

retrained as soon as new cases of normality are encountered.

This is especially valuable in dynamic sectors like the telecom

where additions of new services and operations are a norm.

We evaluated this feature on three days of training data

from the Safeguard test network for building an initial nor-

mality model. The model is then used for detection on the

seven days of testing data. When certain types of traffic

(new cases of normality) start producing false alarms the ad-

ministrator tells ADWICE to incrementally learn the data

causing those alarms to avoid similar false alarms in the

future. Fig. 6 shows alarms for host x.x.202.183 in three
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scenarios. Period number 1 starts at time 2004-03-11 00:00

(start of testing data) and each 2-h period presents the sum

of alarms related to host x.x.202.183 during the corresponding

time interval. At 2004-03-14 12:00, corresponding to period

number 43, the host is connected to the network.

In the first scenario, no incremental training is used, and

the testing is performed on the original model. This corre-

sponds to the first curve of Fig. 6. We see that when the host

connects, ADWICE starts to produce alarms and this con-

tinues until the testing ends at period 102.

In the second scenario the administrator recognizes the

new class of alarms as false positives. She tells ADWICE to

learn the data resulting in those false alarms at time 2004-

03-14 17:55 (end of period 45). The second curve shows that

many of the original false alarms are no longer produced.

However, at regular intervals there are still many alarms.

Those intervals correspond to non-working hours.

In the third scenario incremental training is done in two

steps. After the first incremental training at 2004-03-14, a sec-

ond incremental training is initiated at 2004-03-15 07:55 (end

of period 52) when the administrator notices that false alarms

related to host x.x.202.183 are still produced. Fig. 6 shows how

almost all alarms now disappear after the second incremental

training period.

The need for the two-step incremental learning arouse

since the model differs between working hours and non-

working hours. The alarms the administrator used for initial

incremental training were all produced during working hours

(2004-03-14 12:00 to 2004-03-14 17:55).

5.4. Forgetting

In this section we illustrate the use of forgetting. A model is

trained on data from three days of data and is then used for

detection with and without forgetting on the following seven

days of data. Fig. 7 shows alarms for one instance of traffic

(host x.x.202.73, port 137) that ceases to be present in the (nor-

mal) testing data, making that kind of traffic anomalous. With

forgetting this fact is reflected in the normality model. In this

experiment a CheckPeriod of 12 h and RememberPeriod of

three days (72 h) are used.

When traffic from host x.x.202.73 on port 137 is again visi-

ble in data (periods 55–66) the traffic is detected as anomalous.

Without forgetting these anomalies would go undetected.
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5.5. Timing and throughput studies

During our experiments we concluded that the agent was able

to process 1400 to 1900 session records per second. This was

the case when data were read from a local file and using

a model size of 12 000 clusters. The agent was executing on

a host with Pentium 4 1.8 GHz processor with 512 MB memory.

In the safeguard test network multiple network sniffers

were used as illustrated in Fig. 4. Since one agent needs in-

formation from multiple hosts, remote data access has to

be used. We observed that if the hosts on which the sniffers

executed became overloaded, the sniffers would start drop-

ping packets and attacks could pass by without detection.

An alternative was tested with the agent running at its

own host, avoiding the danger of the sharing the processing

resources with a sniffer. The down side was the additional

time required to process data. When accessing multiple files

remotely we used encryption of traffic by SSH. This de-

creased performance resulting in 500 session records pro-

cessed per second.

6. Conclusions and future work

We have developed and evaluated an approach to fully adap-

tive anomaly detection and shown its feasibility and scalabil-

ity with convincing results. Details of the implementation of

a number of Safeguard agents including the agent that uses

ADWICE, and details of selected IP packet features, and the

Telecom test network can be found in a recent thesis (Burbeck,

2006). This also includes a detailed review of other works on

agents for intrusion detection, clustering-based anomaly de-

tection, and representatives from the non-clustering-based

approaches, excluded here due to space limitations.

In clustering-based works, real-time detection and indexes

for fast matching against the normality model are not part of

the basic detection approach. We think however, that it is im-

portant to include the index in the detection scheme from the

start, since the index may influence not only performance, but

also other properties such as adaptiveness.

Our experience with incremental training indicates the

need for new techniques to complement the anomaly detec-

tor. Julisch (2003) describes how clustering of alarms is used

to identify root causes (e.g. misconfiguration of a system

resulting in false alarms). This technique could be used to sug-

gest to the administrator that large classes of similar alarms
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may possibly be false positives that should be included into

the model by incremental training.

Preliminary evaluations show that there may be a need

for the administrator to tell the anomaly detector to learn

not only the data producing the alarm, but also a generalisa-

tion of data. For example, the two-step incremental training

in Section 5.3 would not have been necessary if the adminis-

trator could have told the system to learn that the data pro-

ducing alarms was normal both during working and non-

working hours. Those experiences call for intelligent tools

to help the administrator maintain an anomaly detector in

a real environment.

We have here evaluated two kinds of threshold require-

ments using radius (TRR) or distance (TRD). Using distance

produces better detection quality but using the radius is

more resistant to outliers of data raising the question whether

a combination of these two could lead to the best of both

worlds. Also forgetting may be used for handling outliers. Ex-

tensions of the work will consider cluster size and frequency

of usage when deciding whether a cluster ought to be forgot-

ten. Large clusters, corresponding to very common normality

in the past, should be very resistant against forgetting. With

this approach also outliers resulting in small clusters in the

model could be handled by forgetting them. Another improve-

ment would be to gradually decrease the influence of clusters

over time, rather than forgetting them completely.

For full evaluation of forgetting and incremental training,

a long period of data should be used. We see this work as

a proof of concept. It is improbable that parts of normality

should be forgotten already after a few days in a real net-

work. Producing good public data for intrusion detection

evaluation including anomaly detection and correlation is

still an important task for the intrusion detection community

and we think collaboration on this task is very important.

Two approaches exist:

� A test network or simulator can be used for generation of

data, thereby realising a fully controlled environment.

Generation of publicly available data sets in the Safeguard

test network is ongoing, but requires more resources, pri-

marily to generate good normal data, but also to perform

attacks.

� Data can be collected from real live networks. Here, normal-

ity is no longer a problem, but privacy is, and so is the issue

of attack coverage. Emerging tools (Bishop, 2004) can be used

to sanitize data with some limitations. Sanitizing data while

keeping relevant properties of data so that intrusion detec-

tion analysis is still valid is not easy, especially for unstruc-

tured information, for example, network packet content.

Attacks may have to be inserted into data off-line if enough

real attacks are not present in data, since performing at-

tacks in a real network is typically not a viable option.

We would like to explore both paths for evaluation of fu-

ture work. Finally, it is worth highlighting that ADWICE is

a general anomaly detector that can be applied to multi-di-

mensional data from other critical infrastructures. Applica-

tion of the algorithm in new domains, and in particular, on

sensor data from water management systems, is a topic for

current study.
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