
Toward Adaptive Control of QoS-Importance
Decoupled Real-Time Systems

Mehdi Amirijoo∗, Per Brännström∗, Jörgen Hansson†, Svante Gunnarsson‡, Sang H. Son§
∗Department of Computer and Information Science, Linköping University, Sweden, {meham,x06perbr}@ida.liu.se

†Software Engineering Institute, Carnegie Mellon University, USA, hansson@sei.cmu.edu
‡Department of Electrical Engineering, Linköping University, Sweden, svante@isy.liu.se
§Department of Computer Science, University of Virginia, USA, son@cs.virginia.edu

Abstract—This paper deals with differentiated services in
real-time systems. Tasks submitted to a real-time system are
differentiated with respect to importance and QoS requirements.
We use feedback control to enforce the requirements in QoS and
ensure a hierarchical admission policy based on the importance
of the tasks. The results show that the requirements are met
during steady state when the workload is constant. The feedback
control approach does not satisfactorily manage QoS when there
is a sudden and significant workload change (transient state)
due to the time-variant nature of the system. To address this, we
present preliminary and promising results using adaptive control,
and report on some challenges we are facing when applying the
theory.

Index Terms—Automated resource allocation, workload man-
agement, adaptive control, differentiated services

I. INTRODUCTION

In this paper we study real-time systems delivering differen-
tiated services. There is a deadline associated with each task,
which marks the point in time at which the task must finish
its execution. Tasks in the system are classified into classes,
where each class has (i) a level of importance and (ii) a quality
of service (QoS) requirement in terms of the ratio of tasks
missing their deadlines, i.e., deadline miss ratio. The QoS
decreases as the deadline miss ratio increases. During system
overload the execution of some tasks has to be rejected or
their execution postponed for some time. Deciding which task
to admit is based on the importance level of the task; least
important tasks are rejected in favor of more important tasks
during overloads. We assume that accurate execution time
estimates of tasks are not available, hence, actual execution
times may deviate significantly from estimates. Further, we
assume that the energy supply to the system is infinite (i.e.,
no battery is used).

Systems with the above mentioned characteristics are found
in client/server applications where clients submit requests that
must comply with deadlines. For example, the client may
request a live TV feed, resulting in the server to periodically
encode and transmit frames to the client. The clients may
choose from subscriptions that differ with respect to video
quality, i.e., deadline miss ratio of the video encoding task.
Further some clients may be willing to pay more for subscrip-
tions with higher availability. This corresponds to a high level
of importance of the video encoding task.

The first contribution of this paper is a performance specifi-
cation model that enables the tasks to be classified according
to their importance and QoS requirement. The expressive
power of the performance specification model allows a system
operator to specify the desired nominal system performance
and system adaptability in the face of unexpected failures or
load variation. The second contribution is an architecture and
an algorithm, based on feedback control [1], for managing
the workload. Performance studies show that the suggested
approach fulfills the QoS and importance requirements when
the workload is constant. Rapid changes in workload, which
puts the system in transient state, are handled less satisfactorily
due to the time-varying nature of the system. For this we
suggest an adaptive control framework that is able to react
to changes in system parameters.

The rest of this paper is organized as follows. In section II
a model for specifying the QoS and importance requirements
is described. In section III, we present the approach and
in section IV, the results of performance evaluations are
presented. We are currently in the process of extending the
approach presented in this paper with adaptive control [2] and
in section V we report on initial findings and some experiences
that we are facing at the moment of the writing. Related work
is described in section VI and in section VII we give the
conclusion.

II. SYSTEM SPECIFICATION

Tasks are classified into service classes based on their
importance. There are V service classes and a service class is
denoted with svcv , where 1 ≤ v ≤ V . Within a service class,
tasks are further divided into subclasses, where each subclass
represents a unique QoS requirement. In other words, sub-
classes of a service class hold tasks that are equally important
but that have different QoS requirements. A subclasses of a
service class svcv is denoted by sbcv,bv (1 ≤ bv ≤ Bv), where
Bv is the number of subclasses in svcv . Tasks in sbcv,bv are
more important than tasks in sbcv′,bv′ if and only if v < v′, for
any bv and bv′ . For any b′v where 1 ≤ b′v ≤ Bv and b′v 6= bv ,
tasks in sbcv,b′v and sbcv,bv are equally important, however,
they have different QoS requirements.

The QoS requirement of each subclass is specified as fol-
lows. Let T be the sampling period. If not specified otherwise,
let varv,bv (k) denote the variable var of sbcv,bv during the



p

s

steady-state

+-

M

T
va

lu
e

time

2%

Figure 1. Definition of settling time (Ts) and overshoot (Mp)

co
nt

1,
1

co
nt

V
,B

V

C
ap

ac
ity

A
llo

ca
to

r

AC1,1

server1,1cs
1,1

r1,1

svc1,1

ACV,BV

serverV,BVcs
V,BV

rV,BV

svcV,BV

M
on

ito
r

m1,1

mV,BV

... ...

δcm
1,1

δcm
V,BV

...

mr
V,BV

mr
1,1

Tasks

Admit

Admit

+-

+-

...

...

...

Figure 2. QoS management architecture using feedback control

time interval (k−1)T < t ≤ kT . The number of tasks missing
their deadlines is given by nv,bv

Miss(k). A task is terminated if it
has completed before its deadline or has missed its deadline.
The number of terminated tasks is denoted with nv,bv

Term(k).
QoS is expressed in terms of the reference, overshoot, and
settling time [1] of deadline miss ratio

mv,bv (k) =
nv,bv

Miss(k)

nv,bv

Term(k)
.

The desired miss ratio during during nominal system operation
is called the reference. Overshoot Mv,bv

p is the worst-case
system performance during the transient phase (see Figure 1)
and it is given in percentage. Settling time T v,bv

s is the time
for the overshoot to decay and stay within 2% of the reference
(see Figure 1).

The following example shows a specification of QoS re-
quirements: {m1,1

r = 0.20,m1,2
r = 0.10,m2,1

r = 0.05, m2,2
r =

0.15,m3,1
r = 0.15}. For all subclasses T v,vb

s ≤ 85s and
Mv,vb

p ≤ 35%. We see that tasks in sbc1,1 are more important
than tasks in sbc2,1, however, the QoS requirement for sbc1,1 is
weaker than the QoS requirement for sbc2,1, i.e., m1,1

r > m2,1
r .

This shows that the specification of importance is decoupled
from the specification of QoS.

III. APPROACH

A. Architecture

The architecture of our QoS management scheme is given in
Figure 2. To provide individual QoS guarantees for each task
subclass we have to enforce isolation among the subclasses
by bounding the resources given to the tasks in each subclass.
This is achieved by using servers [3]. Let serverv,bv denote
the server for sbcv,bv and cv,bv

s denote the capacity (in terms
of execution time) of serverv,bv . We assign priorities to the
servers according to their importance, i.e., serverv,bv has
higher priority than serverv+1,bv+1 . Servers within a service
class have the same priority, i.e., serverv,1, . . . , serverv,Bv

have the same priority. In general, serverv,bv serves any pend-
ing tasks in its ready queue within the limit of cv,bv

s or until
no more tasks are waiting, at which point serverv,bv becomes

m
v,bv

c
v,bv

clt
v,bv cut

v,bv

1

0

v,bv

Figure 3. The relation between capacity and deadline miss ratio

suspended and the next server in svcv , i.e., serverv,bv+1

becomes active. If serverv,bv is the last server of svcv (i.e.,
bv = Bv), then serverv+1,1 becomes active. The server
serverv′,bv′ is suspended and serverv,bv is reactivated if and
only if v < v′, new tasks in sbcv,bv arrive, and cv,bv

s > 0.
The capacity is replenished periodically with the sampling
period T . Earliest deadline first (EDF) (see e.g., [3]) is used
to schedule the tasks within each server.

At a sampling instant k, the difference between each con-
trolled variable mv,bv and its reference mv,bv

r is formed and
fed into the respective deadline miss ratio controller contv,bv .
Based on this each deadline miss ratio controller computes
a requested change δcv,bv

m to cv,bv
s . If mv,bv is higher than

mv,bv
r , then a positive δcv,bv

m is returned, requesting an increase
in the capacity so that mv,bv converges to its reference. The
requested change in capacity of all subclasses is given to the
capacity allocator, which distributes the capacities according to
the service class level. During overloads it may not be possible
to accommodate all requested capacities. Instead, the amount
of capacity rv,bv that is not accommodated is returned to the
admission controller, which rejects tasks with a total execution
time of rv,bv .

B. Modeling and Controller Design

For the purpose of the controller design we have modeled
the controlled system using Z-transform theory [1]. Starting
with the manipulated variable, the total capacity during period
(k − 1)T < t ≤ kT is,

cv,bv (k) = cv,bv (k − 1) + δcv,bv
m (k − 1). (1)

Note, the total capacity cv,bv includes the capacity given
to the server cv,bv

s and rv,bv . Now, there exists a nonlinear
relation between cv,bv and mv,bv , as shown in Figure 3. For
capacities less than the lower threshold cv,bv

lt all tasks miss
their deadlines, hence, mv,bv = 1. The miss ratio mv,bv

decreases as cv,bv increases, since more CPU time is allocated
to tasks. There exists an upper threshold cv,bv

ut at which mv,bv

becomes zero. We linearize the relationship between mv,bv

and cv,bv at the vicinity of mv,bv
r , i.e.,

mv,bv (k) = Θv,bv (k)cv,bv (k) (2)

where Θv,bv (k) is the time-varying miss ratio gain, see Fig-
ure 3, which among other factors depends on the incoming
workload in sbcv,bv . Equations (1) and (2) give that,

mv,bv (k) = mv,bv (k − 1) + Θv,bv (k)× δcv,bv
m (k − 1). (3)

For now we assume that Θv,bv (k) is constant and consider the
time-varying case in section V where we discuss extensions



with adaptive control [2]. By taking the Z-transform of (3),
where Θv,bv (k) is constant, we obtain the transfer function,

P v,bv (z) =
Mv,bv (z)

∆Cv,bv
m (z)

=
Θv,bv

z − 1
. (4)

We now investigate whether a proportional (P) controller [1]
is enough in terms providing a zero steady state error, i.e., a
zero difference between mv,bv

r (k) and mv,bv (k) during steady
state. The P controller has the transfer function KP , where
KP is a tunable parameter. The closed loop function from
Mv,bv

r (z) to Mv,bv (z) is given by

Gv,bv
c (z) =

Kv,bv

P Θv,bv

z − (1−Kv,bv

P Θv,bv )
.

For the closed-loop system to be stable the pole must be
within the unit circle, i.e., 0 < Kv,bv

P Θv,bv < 2. Under the
assumption that the closed-loop system is stable, then the
steady state error is zero since Gv,bv

c (1) = 1 [1]. Hence, a
P controller is sufficient.

The simplicity of the model (4) facilitates the derivation of
the settling time. Assume that mv,bv

r (k) is a step function, i.e.,
mv,bv

r (k) = 1 for k ≥ 0 and mv,bv
r (k) = 0 for k < 0. Then,

Mv,bv (z) = Gv,bv
c (z) z

z−1 and for k ≥ 0 we have that

mv,bv (k) = 1− (1−Kv,bv

P Θv,bv )k. (5)

Using (5) we obtain that the settling time is,

T v,vb
s =

⌈
ln 0.02

ln(1−Kv,bv

P Θv,bv )

⌉
T.

For example, by setting Kv,bv

P = 0.21
Θv,bv

we obtain that
T v,vb

s = 85s given that T = 5s. We have carried out an
experiment where we have set the load to 200% (for details see
section IV-A) and found that Θ1,1 ≈ −0.00077. This gives that
K1,1

P ≈ −273 according to above (note that Θ1,1 is negative).
We have for simplicity used the same KP for all subclasses,
i.e., Kv,bv

P = −273 for all v and bv .

C. Capacity Allocation

Figure 4 shows how cv,bv
s and rv,bv are computed. This al-

gorithm implements the capacity allocator in Figure 2. We start
allocating capacities with respect to the service classes, starting
with subclasses in svc1. The requested capacity qv,bv

req (k + 1)
of subclass sbcv,bv is the sum of the previously computed ca-
pacity qv,bv (k) and the requested change in capacity δcv,bv

m (k)
that is given by the controller (line 7). Then we compute the
sum qv

req(k + 1) of the requested capacities of all subclasses
of service class svcv (line 8). The ratio ratiov of requested
capacity qv

req(k + 1) that can be allocated is derived (lines
10-14). The assigned capacities are computed by taking the
product of the requested capacities and the ratio (line 18).

If the entire requested capacity cannot be accommodated,
i.e., ratiov < 1, we enforce the capacity adjustment by
rejecting more tasks, i.e., increasing rv,bv (k + 1) (lines 19
and 20). However, if the requested capacity is accommodated
then we try to reduce the number of rejected tasks (lines

ComputeCapacity(δc1,1
m (k + 1), . . . , δc

V,BV
m (k + 1))

1: q(k + 1) ← 0
2: for v = 1 to V do
3: qv

req(k + 1) ← 0
4: rv(k + 1) ← 0
5: for bv = 1 to Bv do
6: rv(k) ← rv(k) + rv,bv (k)

7: qv,bv
req (k + 1) ← max(0, qv,bv (k) + δcv,bv

m (k))

8: qv
req(k + 1) ← qv

req(k + 1) + qv,bv
req (k + 1)

9: end for
10: if 0 ≤ qv

req(k + 1) < T − q(k + 1) then
11: ratiov = 1
12: else
13: ratiov =

T−q(k+1)
qv

req(k+1)

14: end if
15: q(k + 1) ← q(k + 1) + qv

req(k + 1)× ratiov

16: wv ← T − q(k + 1)
17: for bv = 1 to Bv do
18: qv,bv (k + 1) ← qv,bv

req (k + 1)× ratiov

19: if ratiov < 1 then
20: rv,bv (k + 1) ← rv,bv (k) + qv,bv

req (k + 1)− qv,bv (k + 1)
21: else if rv(k) > 0 then
22: rv,bv (k + 1) ← rv,bv (k)− rv,bv (k)

rv(k)
wv

23: qv,bv (k + 1) ← qv,bv (k + 1) + rv,bv (k)− rv,bv (k + 1)
24: q(k + 1) ← q(k + 1) + rv,bv (k)− rv,bv (k + 1)
25: else
26: rv,bv (k + 1) ← 0
27: end if
28: end for
29: end for
30: qs(k + 1) ← T − q(k + 1)
31: for v = 1 to V do
32: for bv = 1 to Bv do
33: cv,bv

s (k + 1) ← qv,bv (k + 1) +
qs(k+1)

B
34: end for
35: end for

Figure 4. The capacity allocation algorithm

21-24). The rejected capacity rv,bv (k + 1) is lowered and
additional capacity is allocated to compensate for the decrease
in rv,bv (k + 1) (lines 22 and 23). If the requested capacity is
accommodated and no tasks were rejected during the previous
sampling interval then we do not reject any tasks during the
next sampling interval, i.e., we set rv,bv (k + 1) to zero (lines
25 and 26). Finally, after the capacity allocation we check to
see whether there is any spare capacity qs(k + 1), which is
evenly distributed among the servers (lines 31-35). B denotes
the total number of subclasses, i.e., B =

∑V
v=1 Bv .

The algorithm in Figure 4 runs in the worst-case in
O(V Bmax), where Bmax = max1≤v≤V Bv . Hence, the
time complexity is pseudo-polynomial [4], showing that the
algorithm scales well with the number of service classes and
number of subclasses.

IV. PERFORMANCE EVALUATION

A. Experiment Setup

One simulation run lasts for 2000s of simulated time. For all
the performance data, we have taken the average of 10 simula-
tion runs and derived 95% confidence intervals. We consider
aperiodic tasks where the average execution time aeti of a
task τi is uniformly distributed between 1ms and 10ms, i.e.,
U : (1ms, 10ms). The actual execution time of an instance of
τi is given by the normal distribution N : (aeti,

√
aeti). The

average inter-arrival time and the relative deadline of τi are



set to aeti×slackfactori, where the slack factor is uniformly
distributed according to U : (50, 100). The inter-arrival times
are exponentially distributed. The workload of τi is given by

1
slackfactori

.
To assess whether the importance requirement of the tasks

is satisfied we measure the admission ratio,

arv,bv (k) =
nv,bv

Admit(k)

nv,bv

Submit(k)

where nv,bv

Admit(k) is the number of admitted tasks and
nv,bv

Submit(k) is the number of submitted tasks in sbcv,bv during
the time interval (k − 1)T < t ≤ kT .

In the experiment presented here, we consider five sub-
classes sbc1,1, sbc1,2, sbc2,1, sbc2,2, and sbc3,1. The QoS spec-
ification given in section II is used. The workload submitted
to the real-time systems is distributed among the subclasses
according to 25%, 10%, 25%, 25%, and 15%. The workload
distribution captures the cases when the workload is equally
divided among the subclasses in a service class (subclasses in
svc2) and the case when the workload is not equally divided
among the subclasses in a service class (subclasses in svc1).
No workload is submitted before time 0s, hence, the critical
instant occurs at 0s which produces the worst-case workload
change. This puts the system in a transient state, where m and
ar vary significantly in response to the change in workload.
The transient state is followed by the steady state where m
and ar have settled.

B. Experiment 1: Steady State

The goal of this experiment is to see how the approach
reacts to increasing submitted load. We show that a given
system specification is satisfied. We have set Kv,bv

P = −273
for all subclasses. We measure m and ar and apply loads
from 20% to 500%. The applied workload during a simulation
run is constant and we increase the workload between the
runs. Recall from section IV-A that the workload increases
stepwise at time 0s. This causes a transient state followed by
a steady state where m and ar have converged. We measure
the system performance during steady state (the transient state
performance is examined in detail in section IV-C) and, as
such, we start measuring m and ar at 700s. Figure 5 shows
m and ar. The dashed lines denote the references.

Starting with the admission ratio given in Figure 5, we note
that as the load increases the admission ratio ar3,1 of subclass
sbc3,1, representing the least important tasks, decreases. When
most of the tasks in sbc3,1 are rejected, the admission ratio of
sbc2,1 and sbc2,2, i.e., ar2,1 and ar2,2 starts decreasing. For
loads over 300% the admission ratio of sbc1,1 and sbc1,2 starts
decreasing. Hence, the strict hierarchical admission policy,
where the least important tasks are rejected in favor of the
most important tasks, is enforced. Turning to deadline miss
ratio, we note that mv,bv increases as the load increases,
reaching the references at 100% load. The miss ratio is close
to the reference for loads greater than 100%, hence, the QoS
requirement is satisfied. Note that mv,bv (k) is computed over
admitted tasks, hence, mv,bv (k) = 0 when arv,bv (k) = 0.

50 100 150 200 250 300 350 400 450 500
0

0.5
1

ar
1,

1

 

 

50 100 150 200 250 300 350 400 450 500
0

0.5

1

ar
1,

2

50 100 150 200 250 300 350 400 450 500
0

0.5

1

ar
2,

1

50 100 150 200 250 300 350 400 450 500
0

0.5

1

ar
2,

2

50 100 150 200 250 300 350 400 450 500
0

0.5

1

load (%)

ar
3,

1

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

m
1,

1

 

 

50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

m
1,

2

50 100 150 200 250 300 350 400 450 500
0

0.05

m
2,

1
50 100 150 200 250 300 350 400 450 500

0

0.1

m
2,

2

50 100 150 200 250 300 350 400 450 500
0

0.1

load (%)

m
3,

1

Figure 5. Experiment 1: Varying load

In summary we have shown that the approach provides
reliable performance that is consistent with the system speci-
fication. More specifically, the admission mechanism enforces
the strict hierarchical admission policy, where the least im-
portant tasks are rejected and the most important tasks are
admitted and executed. Also, the experiments show that during
nominal system operation (steady state) the QoS requirement
is satisfied with respect to the references for the deadline
miss ratio, i.e., the deadline miss ratio equals the desired miss
ratio. This is a key step toward performance management for
systems where importance and QoS are decoupled.

C. Experiment 2: Transient State

Studying the average performance is often not enough when
dealing with dynamic systems and, therefore, we study the
transient performance. In section III-B we mentioned that the
same control parameter Kv,bv

P is used for all subclasses. The
goal of these experiment is twofold. First, we establish whether
it is sufficient to use the same Kv,bv

P for all subclasses. Second,
we show if a constant Kv,bv

P results in similar settling times
for different loads.

We first investigate the response of the deadline miss ratio
for m1,1(k) and m2,1(k) when the load is set to 200% and
the same KP is used for sbc1,1(k) and sbc2,1(k). As we can
see in Figure 6(a), there is a significant difference in settling
times between m1,1(k) and m2,1(k), thus, using the same KP

is not sufficient. By decreasing K2,1
P , i.e., increasing |K2,1

P |,
we obtain shorter settling times as shown in Figure 6(b).



50 100 150 200 250
0

0.2

0.4

m
1,

1

50 100 150 200 250
0

0.2

0.4

0.6

time (s)

m
2,

1

(a)

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

time (s)

m
2,

1

K
P
 = −273

K
P
 = −500

K
P
 = −1000

(b)

Figure 6. Transient performance when 200% load is applied.

100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (s)

m
1,

1

K
P
 = −273

K
P
 = −1000

K
P
 = −3000

Figure 7. Transient performance when 500% load is applied.

Consequently, to provide similar QoS guarantees with respect
to settling time there is a need to use different KP for the
subclasses.

Next, we investigate the response of m1,1(k) when the load
is 500% and K1,1

P = −273. Recall, that we computed this
value for K1,1

P based on 200% load. As we can see from
Figure 7 the settling time increases significantly when the load
is 500% (compare to the settling time in Figure 6(a) where
200% load is applied). By reducing K1,1

P we can decrease the
settling time as shown in Figure 7. We conclude that there is
a need to alter KP as a function of the load applied on the
system. The control parameter KP must decrease as the load
increases.

From the experiments in this section we draw two conclu-
sions. First, we showed that the settling time of the controlled
variable deadline miss ratio varies significantly between the
subclasses. Although, the deadline miss ratio converges to
the reference, as predicted by the theory in section III-B,
there is a difference in the convergence rate. As such, it
is insufficient to design controllers based on experimental

co
nt

1,
1

co
nt

V
,B

V

C
ap

ac
ity

A
llo

ca
to

r

AC1,1

server1,1cs
1,1

r1,1

svc1,1

ACV,BV

serverV,BVcs
V,BV

rV,BV

svcV,BV

M
on

ito
r

m1,1

mV,BV

... ...

δcm
1,1

δcm
V,BV

...

mr
V,BV

mr
1,1

Tasks
Estimator1,1Controller 

Design1,1

Model Parameters

...

Ts
1,1 Mp

1,1

Ts
V,BV Mp

V,BV

Admit

Admit

+-

+-
...

...

...

... ...

...
KP

1,1 KP
V,BV

Figure 8. QoS management architecture using feedback control

data from one single subclass. Second, we showed that the
control parameters must vary with the load in order to provide
settling time guarantees. These observations suggest that we
need to pursue an approach allowing the control parameters
to adapt according to prevailing conditions. We are currently
investigating this approach and we report on some initial
findings and experiences in the following section.

V. EXTENDING WITH ADAPTIVE CONTROL

As we noted in section IV-C significantly different settling
times were observed among the subclasses and for varying
workload. There is a rich body of knowledge within the signal
processing and control community regarding time-varying
systems, e.g., gain scheduling and self-tuning regulators [2].
Gain scheduling is less attractive in our case since we have
to build controllers for each subclass and different workloads.
Instead, we pursue the approach where self-tuning regulators
are used. Here we estimate the system parameters in real-time
and update the control parameters accordingly, as shown in
Figure 8.

In the following we drop the superscript v, vb when the
notion of subclass is not of primary interest. The signals δcm

and m of a subclass are forwarded to the respective estimator,
which estimates the parameters of the controlled system. Given
the QoS specification in terms of the overshoot Mp and settling
time Ts, the control parameter KP is updated once a new
model parameter estimate is available. The design of KP is
carried out through pole placement where the position of the
poles is constant, i.e., the settling time of m is preserved from
one update to another.

We assume the following model structure
m(k) = ϕT (k)Θ0(k) + e(k), where ϕT (k) =
(m(k − 1), . . . , δcm(k − 1), . . . ) is the regression
vector of the lagged variables m(k) and δcm(k),
Θ0(k) = (Θ0

1(k),Θ0
2(k), . . . )T is the true system parameters

that we wish to estimate, and e(k) is the measurement
disturbance [5]. When estimating system parameters there
is a significant advantage in incorporating available prior
information. For example, we could assume the structure
given by (3), i.e., m(k) = Θ1(k)m(k−1)+Θ2(k)δcm(k−1).
However, Θ1 = 1 according to (3), hence, we only estimate
Θ2(k). We use (3) and introduce the model

δm(k) = m(k)−m(k − 1) = Θ1(k)δcm(k − 1).



Now that we have arrived at a model the next question is
which algorithm to choose for estimating Θ1(k). Let Θ̂(k)
be the estimate of Θ0(k). There is a vast choice of different
algorithms in the literature, e.g., recursive least squares (RLS),
RLS with exponential forgetting, least mean squares (LMS)
and normalized LMS (NLMS) [2]. There is also the possibility
to model Θ0(k) as a time-varying process,

Θ0(k + 1) = Θ0(k) + w(k) (6)

and use a Kalman observer to estimate Θ0(k) [6]. These
algorithms have a common structure,

Θ̂(k) = Θ̂(k − 1) + P (k)ϕ(k)
(
m(t)− ϕT (k)Θ̂(k − 1)

)

and they differ the criterion they are minimizing, e.g., least
squares or least mean squares. The choice of criterion de-
termines P (k). The RLS with exponential forgetting and the
Kalman observer approach are useful when handling time-
variant systems, i.e., when (6) applies. However, one of the
problems with exponential forgetting is that P (k) diverges
when δcm(k) = 0. The main obstacle with using a Kalman
observer is that the variance of w(k) must be known; this
knowledge is often lacking [6]. We have therefore in our work
chosen to use a more pragmatic approach, namely, the LMS
algorithm P (t) = γ, which is commonly used for estimating
systems [6].

Our initial results show that the estimates Θ̂(k) converge
toward Θ0(k) as long as the controlled system is excited. In
our simulations we have assumed that the workload is con-
stant. This represents the worst-case scenario from a system
identification perspective as we do not have any disturbances,
causing δcm(k) to fall into a steady state. Also we have
observed that the settling time of the estimate is significantly
longer than the settling time of m(k). As such, δcm(k) ≈ 0
before the estimate has converged. Once δcm(k) ≈ 0, no
additional information about the controlled system is gained
and this causes the estimate to drift.

To allow the estimate to converge when the workload is
constant (representing the worst-case) we are considering em-
ploying an approach where we periodically add a disturbance
to δcm(k). The estimation is turned on while the disturbance
exists and turned off when the disturbance is removed to avoid
the estimate to drift. The disturbance should be active long
enough for the estimate to converge. This way we can track
the system and adapt the control parameters at the expense of
variations in m(k), which causes a degradation in QoS. We
expect, however, δcm(k) to vary naturally due to alterations in
workload and, as such, the addition of a disturbance to δcm(k)
will not be necessary for the majority of time.

VI. RELATED WORK

Due to space limitation we mainly discuss adaptive control.
For references to computer performance control we refer to
[1]. Abdelzaher report on some results on workload parameter
estimation using the RLS method [7]. Lu et al. applied
adaptive control in Web servers with the goal of controlling

the relative hit ratio of different classes [8]. A self-tuning
regulator using the NLMS algorithm [2] and pole placement,
similar to the one presented in section V, was used. They show
that adaptive control results in better control than a feedback
loop with no adaptation. This work was extended with a
stochastic adaptive control algorithm for handling parameter
uncertainty and disturbances in the system [9]. However,
as the authors argue, the statistical characterization of such
disturbances are difficult to obtain. This work is an extension
to our previous work [10], where we addressed differentiated
QoS management of real-time databases using P controllers.
In this paper we consider general real-time systems rather than
real-time databases. We motivate through experiments why
there is a need in adaptive control and discuss extensions with
adaptive control.

VII. CONCLUSION

In this paper we have considered real-time systems where
tasks have importance and QoS requirements. Important tasks
must be admitted and executed and less important tasks must
be rejected during overloads. The QoS, expressed in terms
of deadline miss ratio of admitted tasks, must comply with
a given requirement. We show that the presented approach
satisfies these requirements during steady state when the work-
load is constant. However, the results are less satisfactory for
cases when the workload changes abruptly, which represents
a worst-case condition in real-time systems. We showed why
this is the case and proposed solutions using adaptive control.
We are currently in the process of implementing the proposed
approach. Initial results are promising and we expect our
complete approach to fully satisfy a given system specification.

REFERENCES

[1] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
Control of Computing Systems. Wiley-IEEE Press, 2004.

[2] K. J. Åström and B. Wittenmark, Adaptive Control, 2nd ed. Addison-
Wesley, 1995.

[3] G. C. Buttazzo, Hard Real-Time Computing Systems. Kluwer Academic
Publishers, 1997.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability : A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[5] M. Amirijoo, J. Hansson, S. Gunnarsson, and S. H. Son, “Enhancing
feedback control scheduling performance by on-line quantification and
suppression of measurement disturbance,” in Proceedings of the IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2005.

[6] L. Ljung and S. Gunnarsson, “Adaptation and tracking in system
identification - a survey,” Automatica, vol. 26, no. 1, pp. 7–21, 1990.

[7] T. F. Abdelzaher, “An automated profiling subsystem for QoS-aware
services,” in Proceedings of the Real-Time Technology and Applications
Symposium (RTAS), 2000.

[8] Y. Lu, T. F. Abdelzaher, C. Lu, and G. Tao, “An adaptive control
framework for QoS guarantees and its application to differentiated
caching services,” in Proceedings of the International Workshop on
Quality of Service (IWQoS), 2002.

[9] Y. Lu, T. Abdelzaher, and G. Tao, “Direct adaptive control of a web
cache system,” in Proceedings of the American Control Conference,
2003.

[10] M. Amirijoo, J. Hansson, S. H. Son, and S. Gunnarsson, “Generalized
performance management of multi class real-time imprecise data ser-
vices,” in Proceedings of the IEEE International Real-Time Systems
Symposium (RTSS), 2005.


