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Abstract In recent years a new class of soft real-time applications operating in unpre-

dictable environments has emerged. Typical for these applications is that neither the

resource requirements nor the arrival rates of service requests are known or available a

priori. It has been shown that feedback control is very effective to support the specified

performance of dynamic systems that are both resource insufficient and exhibit un-

predictable workloads. To efficiently use feedback control scheduling it is necessary

to have a model that adequately describes the behavior of the system. In this paper we

experimentally evaluate the accuracy of four linear time-invariant models used in the

design of feedback controllers. We introduce a model (DYN) that captures additional

system dynamics, which a previously published model (STA) fails to include. The ac-

curacy of the models are evaluated by validating the models with regard to measured

data from the controlled system and through a set of experiments where we evaluate the

performance of a set of feedback control schedulers tuned using these models. From

our evaluations we conclude that second order models (e.g., DYN) are more accurate
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e-mail: svante@isy.liu.se

Springer



Real-Time Syst

than first order models (e.g. STA). Further we show that controllers tuned using second

order models perform better than controllers tuned using first order models.

Keywords Feedback control scheduling . Modeling . Model validation . System

identification

1 Introduction

In recent years a new class of soft real-time systems has emerged, e.g., web ap-

plications, e-commerce, agile manufacturing, and data intensive application. These

applications run on resource-constrained platforms and typically operate in open and

unpredictable environments, in which arrival patterns and the resource requirements

of tasks are in general unknown. Feedback control scheduling has been introduced as a

promising foundation for performance control of complex real-time systems (Lu et al.,

2002a,c; Parekh et al., 2002; Cervin et al., 2002; Li and Nahrstedt, 1998; Amirijoo

et al., 2006). It has been shown that feedback control is highly effective to support the

specified performance of dynamic systems that are both resource insufficient and that

exhibit unpredictable workloads.

To efficiently use feedback control scheduling it is necessary to have a model that

adequately describes the behavior of the controlled system (Franklin et al., 1998;

Glad and Ljung, 2000). The performance of a controller is a function of the accuracy

of the model used and the design methodology and, hence, we need to use models

that accurately describe the dynamics of the controlled system. For example, consider

a service provider streaming video to a set of clients. The service provider sets the

reference quality of the streams to a certain level, and also gives requirements on

worst-case quality and how fast the quality should converge towards the reference

quality in the case of a transient overload or a disturbance in the system (e.g., a

server goes down). Now, using more accurate models when synthesizing controllers,

enables the service provider to provide streams with more reliable quality and

faster performance adaptation, as compared to using less accurate models. Hence,

the quality is regulated much more efficiently even in the case of transient system

overloads.

The information available to the designer for the purpose of modeling is typically

of two kinds. First, there is knowledge about the system being controlled based on

equations or laws of science describing the dynamics of the system. Using this ap-

proach, a system designer describes the system directly with mathematical equations

based on the knowledge of the system dynamics. However, in the case the mathe-

matical function of a system is unknown, or too complicated to derive, the use of

models tuned using system profiling and statistical methods have shown to provide

good results (Ljung, 1999). In these circumstances the designer turns to data taken

from experiments directly conducted to excite the controlled system and measure its

response (Ljung, 1999). Statistical methods are then used to tune the parameters of

the model.

The contributions of this paper include a comparative study of several models

used in designing feedback controllers for managing the performance of a real-time
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Fig. 1 Feedback loop structure

database (RTDB).1 We introduce a model, called DYN, which generalizes a previously

presented model (Lu et al., 2002a) by capturing additional system dynamics (hence

the name DYN referring to dynamics). We compare the precision of DYN with the

STA model, previously presented (Lu et al., 2002a), where some dynamic relations

are approximated by static relations (hence the name STA referring to statics). In

our evaluation we also include two models, auto regressive with extra signal (ARX)

and output error (OE) (Ljung, 1999), tuned using experimental data and statistical

methods. From our evaluations we have found that the dynamics of the controlled

system under study can be adequately described using second order models as given

by DYN, and that a first order model (e.g., STA) is not sufficient. It is found that

DYN is significantly more accurate than STA and as accurate as the models tuned

using experimental data and statistical methods. The tuning procedure of DYN is,

however, simpler to use than the models tuned using experimental data and statistical

methods as the tuning of these involve a considerable time-consuming and iterative

search for a good model. Also, the tuning procedure of the statistical modeling ap-

proaches is complex and requires an in-depth understanding of the principles behind

these techniques; a knowledge that is often lacking among practitioners in the area

of real-time systems or computer science in general. Our findings show that by using

more accurate models when tuning feedback controllers a significant improvement

in performance adaptation and performance reliability is achieved. This results in

faster QoS adaptation in the face of changes to required QoS or unexpected sys-

tem behavior, e.g., failures or unknown system properties. Also, more accurate mod-

els result in increased QoS reliability as the actual QoS stays closer to the required

QoS.

The remainder of this paper is organized as follows. The problem formulation is

given in Section 2. The controlled system is defined and explained in Section 3. In

Section 4 we present models describing the behavior of the controlled system, and in

Section 5, we evaluate the quality of the presented models. In Section 6 we give an

overview on related work, followed by Section 7, where conclusions and future work

are discussed.

2 Problem formulation

We adopt the following notation of describing discrete variables in the time-domain.

A sampled variable a(k) refers to the value of the variable a at time kT , where T is the

sampling period and k is the sampling instant. For the rest of this paper, we sometimes

drop k where the notion of time is not of primary interest. A typical structure of a

feedback control system is given in Fig. 1. The controller changes the behavior of the

1 For an overview of RTDBs refer to, e.g., Ramamritham et al. (2004).
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controlled system by adjusting the manipulated variable u(k). Input to the controller

is the difference between the reference yr (k), representing the desired behavior of the

controlled system, and the actual system behavior given by the controlled variable

y(k). The control problem is how to compute the manipulated variable u(k) such that

the difference between the desired behavior and the actual behavior is minimized, i.e.,

we want to minimize for instance (yr (k) − y(k))2.

Given a performance specification and a linear time-invariant model of the con-

trolled system, one can design a controller based on existing mathematical techniques,

such as root locus, frequency response, and linear quadratic methods (Franklin et al.,

1998; Glad and Ljung, 2000). Using these mathematical techniques is attractive as

they enable us to derive analytic guarantees on the transient-state and steady-state

behavior of the system. For some of the design techniques, such as root locus or

state-space design, it is necessary to use linear time-invariant models that describe the

relationship among the system variables in terms of mathematical expressions like

differential (for continuous systems) or difference (for discrete systems) equations.

Since computer systems are inherently discrete, below we only address models based

on linear time-invariant difference equations.

In this work we are considering linear time-invariant models that describe the

behavior of the class of real-time systems where the controlled variables, represent-

ing the performance of the system, are manipulated by varying the admitted work-

load. The load of admitted tasks may be varied by, e.g., changing the speed of the

CPU, changing the quality level of tasks, or controlling admission. Given a model

in terms of the difference equation, a1 y(k) + a2 y(k − 1) + · · · + am+1 y(k − m) =
b1u(k) + b2u(k − 1) + · · · + bn+1u(k − n), we say that the order of the model is the

maximum of n and m. We aim at addressing the following problems in this paper.

First we want to establish whether more accurate models have a significant impact

on the performance of feedback control scheduling in real-time systems, with respect

to minimizing (yr (k) − y(k))2. Second, we want to determine the difference in ac-

curacy and the resulting control performance between first order and second order

models.

Now, if second order models provide a significant increase in control performance,

then it is preferred that a model based on the knowledge of the system is used rather

than using statistical methods. The rationale of this approach is that it is easier to

tune the model parameters as discussed in Section 1. Therefore the third goal of this

work is to derive a simple second order model, which is based on the knowledge of

the controlled system and that captures the dynamics of the system and is as general

and simple as possible to facilitate applicability to other types of real-time systems.

Hence, the model must be independent of particular actuation techniques, controlled

systems, and measurement mechanisms and must be easily tuned by following a set

of well-defined procedures.

3 The controlled system

As a case study we have chosen to apply STA and DYN to a RTDB system, since

this type of system is by nature complex, including several types of transactions and

shared resources resulting in transactions restarting and aborting. This presents a great

challenge for a model to capture the behavior of a system. We start by defining the
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controlled system and we refer to Table 5 for an overview of the variables used in this

paper.

We consider a RTDB as the controlled system. The data and transaction models

of the RTDB are presented below followed by an overview of the assumed feedback

control scheduling architecture. Further, we identify a set of control-related variables,

i.e., performance references, manipulated variables, and controlled variables.

3.1 Data and transaction model

We consider a real-time database, where there is one CPU as the main processing

element. Transactions are classified either as update transactions or user transactions.

Update transactions arrive periodically and may only write to data objects representing

sensor values, while user transactions arrive aperiodically and may read or write to

any data objects.

We apply imprecise computation (Liu et al., 1991) on user transactions, hence, we

allow user transactions to deliver imprecise results in exchange for CPU resources.

User transactions (Ti ) are composed of one mandatory subtransaction mi and |Oi | ≥ 1

optional subtransactions oi, j , where oi, j is the j th optional subtransaction of Ti . For

the remainder of the paper, we let ti denote a subtransaction of Ti . A mandatory

subtransaction is completed when it completes in a traditional sense. The mandatory

subtransaction gives an acceptable result and should be computed to completion be-

fore the transaction deadline. The optional subtransactions may be processed if there

is enough time or resources available. While it is assumed that all subtransactions

of a transaction Ti arrive at the same time, the first optional subtransaction oi,1 be-

comes ready for execution when the mandatory subtransaction, mi , is completed. In

general, an optional subtransaction, oi, j , becomes ready for execution when oi, j−1

(where 2 ≤ j ≤ |Oi |) completes. We set the deadline of every subtransaction ti to the

deadline of the transaction Ti . A subtransaction is terminated if it has completed or

has missed its deadline. A transaction Ti is terminated when oi,|Oi | completes or one

of its subtransactions misses its deadline. In the latter case, all remaining transactions

of Ti are terminated as well. See Table 1 for a complete transaction model (see Table 5

for explanation of attributes). We use the following notation where attribute ai refers

to transaction Ti , and ai [ti ] is associated with subtransaction ti of Ti . Upon arrival,

a transaction presents the estimated average load lE,i and the relative deadline di to

Table 1 The assumed

transaction model Attribute Update transactions User transactions

xE,i – xE,i = ∑
∀ti

xE,i [ti ]
xA,i – xA,i = ∑

∀ti
xA,i [ti ]

ei NA ei (|COSi |) = (1 − |COSi |
|Oi | )ni

pi – NA

iE,i NA iE,i [ti ] = iE,i

i A,i NA i A,i [ti ] = i A,i

di di = pi di [ti ] = di = i A,i

lE,i lE,i = xE,i /pi lE,i [ti ] = xE,i [ti ]/ iE,i

lE,i = xE,i / iE,i

lA,i lA,i = xA,i /pi lA,i [ti ] = xA,i [ti ]/ i A,i

lA,i = xA,i / i A,i
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the admission controller. The true load of the transaction is not known in advance

due to variations in execution time, e.g., due to concurrency control causing restart of

transactions.

For the remainder of this paper, we refer to transaction impreciseness as transaction

error, where the transaction error of a user transaction Ti is denoted by ei . A decrease

of allocated resources for Ti results in an increase in ei . Similarly, an increase of

allocated resources for Ti results in a decrease in ei . Transaction error is modeled as a

function of completed optional subtransactions. For a transaction Ti , we use an error

function (Chung and Liu, 1988) to approximate its corresponding transaction error

given by, ei (|COSi |) = (1 − |cosi |
|Oi | )ni , where ni is the order of the error function and

|COSi | denotes the number of completed optional subtransactions of Ti . By choosing

ni we can model and support multiple classes of transactions showing different error

characteristics. The choice of ni depends on the application, e.g., it has been shown

that anytime algorithms used in AI exhibit error characteristics where ni is greater

than one (Zilberstein and Russell, 1996).

3.2 Feedback control scheduling architecture

The general outline of the feedback control scheduling architecture is given in Fig. 2.

Input to the controlled system, i.e., the RTDB is the set of arriving transactions and the

change to the admitted estimated workload δlER(k). Output from the real-time database

(RTDB) is the set of terminated transactions and the controlled variable, namely the

actual average transaction error,

e(k) =
∑

Ti ∈Terminated(k) ei

|Terminated(k)| (1)

where Terminated(k) is the set of admitted transactions terminated in the time interval

[(k − 1)T, kT ]. Hence, rejected transactions do not contribute to e(k). The goal of

the Error Controller is to minimize the difference between the controlled variable and

the reference, i.e., minimizing (er (k) − e(k))2. This is done by changing the admitted

workload through δlER(k); increasing the admitted load results in an increase in e(k)

as each transaction receives less CPU resource, whereas decreasing the admitted load

results in a decrease in e(k).

Fig. 2 Feedback control scheduling architecture

Springer



Real-Time Syst

Update transactions and admitted user transactions are placed in the ready queue.

The basic scheduler (BS) schedules the transactions in the ready queue. Update

transactions have higher priorities than user transactions and, thus, the update transac-

tions are scheduled before the user transactions. We consider two different scheduling

algorithms as BSs: (i) Earliest Deadline First (EDF), where transactions are processed

in the order determined by increasing absolute deadlines, and (ii) Highest Error First

(HEF) (Amirijoo et al., 2003), where transactions are processed in the order determined

by decreasing transaction error, which is dynamic and changes during the execution of

the transactions. More specifically, the priority of a transaction decreases as its trans-

action error decreases. Thus, the priority of the transaction is dynamic and may change

throughout the execution of the transactions. We include HEF in our comparison for

the following reasons. First, in our earlier work we have shown that HEF has signif-

icantly better performance than EDF when minimizing the deviation in transaction

error of terminated transactions (Amirijoo et al., 2003). Second, the characteristics of

HEF are distinct to EDF, e.g., HEF is driven by transaction error which influences the

way it inserts tasks and manages the ready queue. These characteristics, together with

the characteristics of EDF, represent a bigger challenge for the model to capture the

dynamics of the real-time system.

At each sampling instant k, the average of the transaction error of terminated trans-

actions e(k) is formed by the monitor. The performance error is computed by taking

the difference between the performance reference er (k) and e(k). Based on the per-

formance error the controller computes a change δlER(k) to the estimated requested

workload of user transactions lER(k), such that e(k) equals er (k). We refer to δlER(k)

as the manipulated variable. Based on δlER(k), the admission controller enforces the

workload adjustment of user transactions. We consider the following admission model.

Upon arrival to the system, an instance of a transaction is inserted in an arrival queue,

which is sorted according to the arrival time. Transaction instances are removed from

the front of the arrival queue and admitted if and only if the sum of the transac-

tion instance workload and the workload of admitted tasks is less than the estimated

requested workload of admitted tasks. Here, an increase in δlER(k) results in more ad-

mitted user transactions and, hence, less CPU resources per user transaction, resulting

in an increase in e(k).

Note that although the length of the queue increases as the workload applied to

RTDB increases, the queue length will not grow indefinitely. An increase in the queue

length results in an increase in the response time of the transactions, causing the

number of transactions missing their deadlines to increase as well. Stale transactions

are aborted and removed from the queue and, therefore, an increase in the queue

length results in more transactions to be aborted and removed from the queue. In the

worst case, when all admitted transactions miss their deadlines, the rate of aborted and

removed transactions is equal to the admission rate. As such, the length of the queue

is bounded.

4 Modeling the controlled system

As described in Section 2, the thrust of this paper is on the experimental findings,

namely we want to establish the differences in model accuracy and control performance
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when using first order models and second order models. However, to fully understand

the effects of the models on control performance, a complete description of STA

and DYN with their structure and model parameters is essential. It is necessary to

understand the discussions in Section 5, where the tuning procedure and validation of

the models are given. In this section, a description of these two models are given.

Let A(z) denote the Z -transform (Oppenheim and Willsky, 1996) of the time-

domain variable a(k). The goal of the modeling is to derive a transfer function (Franklin

et al., 1998) describing the relation between the manipulated variable �LER(z), and

the controlled variables E(z) and U (z). This is done by dividing the controlled system

into subsystems and deriving the relationships describing the dynamics between the

variables in the subsystems. Finally, the equations and relationships are put together

forming the final transfer function.

The parameters of the models depend on a variety of factors, e.g., basic scheduler,

temporal characteristics of the transaction set (e.g., relative deadlines), and admission

controller. There are two approaches for deriving the parameters of the models. In

the first approach the properties of the controlled system, e.g., transaction set and

admission controller, are used to compute the model parameters. Here the relationships

between the properties of the controlled system, e.g., a particular basic scheduler, and

the model parameter must be derived. However, this approach yields on an overly

complicated computing machinery, which cannot be practically used and adopted

for different applications. We have therefore pursued a mixed approach of modeling

from first principles and identification, where the model structure is derived using the

knowledge of the system and the parameters of the model are tuned using experiments.

This approach, which also was pursued by Lu et al. (2002a), greatly simplifies the

modeling and tuning procedure. Below the models STA and DYN are presented along

with the description of procedures for how to tune their parameters.

4.1 Model 1: STA

A block diagram showing the structure of STA (Lu et al., 2002a) is given in Fig. 3.

Starting from the control input, the estimated requested workload of admitted user

transactions lER(k + 1) in the next sampling period is changed through the manipulated

variable δlER(k), given by

lER(k + 1) = lER(k) + δlER(k). (2)

Fig. 3 Structure of STA
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Hence, lER is the integration of the control input δlER. Now, the estimated admit-

ted workload of user transactions lE (k) may differ from lER(k), since the maximum

workload that can be made available in the system may not be sufficient to satisfy

lER(k), or the admitted workload is decreased due to deadline misses and, conse-

quently, early termination of transactions. In this model, however, we approximate the

estimated load of admitted transactions by lER(k), i.e., lE (k) = lER(k). In Section 4.2

we return to the discussion regarding the difference between lE (k) and lER(k).

The actual workload of admitted user transactions, denoted lA(k), may differ from

lE (k) due to incomplete knowledge about the controlled system, e.g. unknown execu-

tion times of the transactions and data conflicts. Therefore we get

gA = lA(k)

lE (k)
, (3)

where the workload ratio gA represents the workload variation in terms of actual total

requested workload. For example, gA equals two means that the actual workload is

twice the estimated workload. It is obvious that gA cannot be computed or derived

from system profiling. However, gA is included in the model for stability analysis of

the closed-loop system.

We say that an output signal y(k) is saturated when, in the steady-state, y(k) remains

unchanged even though the input signal u(k) is altered. The relationship between the

actual workload lA(k) and the utilization u(k) is non-linear due to saturation. When

lA(k) is less or equal to 100%, i.e. the CPU is underutilized, then u(k) is not saturated

and equals lA(k). However, when u(k) is saturated, i.e., lA(k) is greater than 100%,

then u(k) remains at 100%, despite changes to lA(k), i.e.,

u(k) =
{

lA(k), lA(k) ≤ 100%

100%, lA(k) > 100%.
(4)

Continuing with e(k), the relationship between the actual workload lA(k) and e(k) is

non-linear due to saturation. Let lT h(k) be the workload threshold of user transactions

in the kth period for which admitted user transactions are precisely schedulable, i.e.,

transaction errors are zero. e(k) is saturated when lA(k) < lT h(k), and remains zero

despite changes to δlER(k), i.e.,

e(k) = 0, lA(k) < lT h(k).

When not saturated, e(k) increases non-linearly with lA(k). Since feedback control re-

lies on linear systems, we linearize the relationship between lA(k) and e(k) by deriving

the derivative between lA(k) and e(k) at the vicinity of the performance reference er ,

i.e.,

gE = de(k)

dlA(k)
, e(k) = er . (5)

From (2) we see that the subsystem describing lER(k) in terms of δlER(k) is

dynamic, as lER(k) depends on lER(k − 1) and δlER(k − 1) and, hence, there is a
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non-instantaneous relation between these variables. However, the subsystems from

lER(k) to u(k) and e(k) are static, as e(k) and u(k) depend on lER(k) and, hence, there

are direct and instantaneous relations between these variables. Hence, we assume that

changes to lER(k) result in immediate changes to u(k) and e(k). For this reason, we call

this model STA, referring to the static relations between lER(k), u(k), and e(k). Now,

from (2)–(5), we obtain the following.

Under the condition lA(k) ≤ 100%, there exists a transfer function,

GSTAU(z) = gA

z − 1
(6)

from the control input δlER(k) to u(k), where lER(k) and u(k) are statically related.

Under the condition lT h ≤ lA(k), there exists a transfer function,

GSTAE(z) = gAgE

z − 1
(7)

from the control input δlER(k) to e(k), where lER(k) and e(k) are statically related.

Note that GSTAU and GSTAE must be linearized at different workloads if and only

if their saturation zones are overlapping, which occurs if lT h > 100%. Contrary, if

lT h ≤ 100%, then for loads between lT h and 100% both controlled variables u(k) and

e(k) are unsaturated. This means that GSTAU and GSTAE may be linearized at the same

workload if lT h ≤ 100% (as is shown in Fig. 6).

4.2 Model 2: DYN

We extend the model STA to include additional system dynamics, as shown in Fig. 4.

We start by describing the requested load factor, followed by sources of dynamics and

we finally present the model that captures the dynamics.

4.2.1 The requested load factor

Now, starting from the model input δlER(k), we compute lER(k) according to (2). Given

a certain lER(k), the estimated workload of admitted user transactions,

lE (k) =
{

gLlER(k), lER(k) ≤ l̄E (k)

gLl̄E (k), lER(k) > l̄E (k)
(8)

Fig. 4 Structure of DYN
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is the product of the requested load factor gL and the minimum of the estimated

requested load and the maximum estimated load l̄E (k) that can be made available in

the system. The upper limit of the admitted load, given by l̄E (k), makes the relationship

between lER(k) and lE (k) non-linear due to saturation. lE (k) becomes saturated when

lER > l̄E (k). When not saturated, lE (k) increases linearly with lER(k). For example, we

know that for real-time systems operating in highly unpredictable environments the

arrival pattern of the tasks is hard or even impossible to predict. If admission control

is used to enforce load adjustments, then l̄E (k) is determined by the estimated external

available workload, i.e., workload submitted to the system. Given a certain lER(k),

the estimated admitted load lE (k) may not equal lER(k) since the available external

workload may not be sufficient to fill up the system to the level given by lER(k). To

capture the difference between lE (k) and lER(k), we derive the ratio between lER(k)

and lE (k) at the vicinity of lE (k) corresponding to er , and we obtain the requested load

factor gL .

4.2.2 Sources of dynamics in real-time systems

Now, under the condition lER(k) < l̄E (k), it can be observed that given a certain increase

in the estimated requested workload lER(k), it may take some time before the estimated

load lE (k) reaches gLlER(k). The time it takes for lE (k) to reach gLlER(k) depends on

how the estimated admitted load is regulated. For example, when admission control

is used to enforce load adjustments, the amount of workload submitted to the system

l̄E (k) determines how fast lE (k) converges toward gLlER(k). The greater l̄E (k) is, the

faster we can fill up the workload, reaching gLlER(k) earlier. Similarly, a decrease

in lER(k) does not result in an immediate decrease in lE (k), since currently running

transactions have to terminate.

Furthermore, we argue that the relation between lA(k) and e(k) is non-static. Given

a certain lA(k), the time it takes for e(k) to reach gElA(k), see (5), depends on the actual

basic scheduler used. For example, under EDF scheduling (Liu and Layland, 1973),

newly admitted transactions are more likely to be placed further down in the ready

queue, since they are less likely to have earlier deadlines than transactions admitted

earlier. This means that an actual change to e(k) is not noticed until the newly admitted

transactions are executing, which may take a while until the older ones have terminated.

4.2.3 Modeling the dynamics

Before describing DYN, we recall from Section 2 that the second order model that we

construct has to be simple and general enough to be applicable to a wide spectrum

of applications. The simplicity of the model facilitates easy and practical tuning of

the model parameters. The dynamic relationship between lER and e is a product of the

load adjustment mechanism and the basic scheduler. To form a model that is general

enough, we introduce a simple difference equation that relates lER and e such that

it takes some time for e to reach its steady-state once lER has changed. We show in

Section 5.4.1 that the difference equation shows similar response time behavior as the

true controlled variable. Under the assumption lER(k) ≤ l̄E (k), let

eS(k) = gL gAgElER(k)
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denote the final value of e in the steady-state given a certain lER, i.e., eS is the value

e converges to. The speed by which a controlled variable reaches its final values is

determined by the time constant of the system and it depends on the load adjustment

mechanism and the basic scheduler used. Let TE denote the time constant of the

subsystem with the input eS(k) and the output e(k). The difference equation,

e(k + 1) = T (eS(k + 1) − e(k))

TE
+ e(k) (9)

relates the input eS(k) and the output e(k) such that it takes a number of samples for e to

reach eS . Initially, when the difference between eS(k) and e(k) is large, e(k) converges

rapidly towards eS(k). However, the convergence speed decreases as the difference

between eS(k) and e(k) decreases. The convergence speed is determined by TE , i.e.,

an increase in TE results in a slower convergence. The Z -transform of (9) gives the

transfer function,

GED(z) = E(z)

ES(z)
= T T −1

E z

z − 1 + T T −1
E

(10)

that models the dynamic relationship between the input lER and the output e, i.e., it

captures the effects of the workload adjustment mechanism and the basic scheduler.

Let,

δ(k) =
{

1, k = 0

0, k �= 0

denote the unit impulse function and define the unit step function as,

u(k) =
{

1, k ≥ 0

0, k < 0

A unit step function applied on (10) gives the time domain solution,

e(k) =
[

T

TE
δ(k) +

(
1 −

(
1 − T

TE

)k)
u(k − 1)

]
.

Here we can see that the greater TE is, the more time it takes for e to reach its final

value, i.e., the slower e reacts to changes in lER as eS and lER are statically related.

Let us now apply a unit step on lER, i.e. lER(k) = u(k), and examine the step response

of the controlled system from lER to e. Let TE M be the point in time at which e(k)

equals (1 − e−1)eS , i.e., approximately 63% of the final value of e(k). At time TE M

we have that

e

(
TE M

T

)
= (1 − e−1)eS

= eS

[
T

TE
δ

(
TE M

T

)
+

(
1 −

(
1 − T

TE

) TE M
T

)
u

(
TE M

T
− 1

)]
. (11)

When designing controllers, the sampling period is set to be less than the time constant

of the system, i.e., the control loop operates at a faster rate than the controlled system
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(Franklin et al., 1998). This corresponds to T < TE M , which is equivalent to TE M
T − 1 >

0. Hence the impulse function in (11) is zero and the step function is one. This gives

the simplified equation,

(1 − e−1)eS = eS

[
1 −

(
1 − T

TE

) TE M
T

]
and solving for TE gives

TE = T

1 − e− T
T +TE M

. (12)

Hence, we compute TE according to (12) where, given a step on lER, TE M is the point

in time at which e(k) equals approximately 63% of the final value of e(k).

Earlier we concluded that we have a dynamic relation between lER and lA. According

to (4), u is equal to lA when u is not saturated and, hence we have a dynamic relation

between lER and u. We show this in Section 5.4.1 where we measure the response

of lA given changes to lER. We use a transfer function GUD(z), similar to GED(z), to

represent the dynamics of u. Here, by choosing the time constant TU of GUD(z) we can

capture the time domain relationship between lER and u. We now give the following

results, based on (8)–(10).

Under the conditions lER(k) ≤ l̄E (k) and lA(k) ≤ 100%, there exists a transfer func-

tion,

G DY NU (z) = gL gAT T −1
U z

(z − 1)
(
z − 1 + T T −1

U

) (13)

from the control input δlER(k) to u(k), where lER(k) and u(k) are dynamically related.

Under the conditions lER(k) ≤ l̄E (k) and lT h < lA(k), there exists a transfer function,

GDYNE(z) = gL gAgE T T −1
E z

(z − 1)
(
z − 1 + T T −1

E

) (14)

from the control input δlER(k) to e(k), where lER(k) and e(k) are dynamically related.

We have extended the model STA, resulting in the new model DYN, which captures

additional dynamics of the controlled system by giving more accurate time domain

relations between the control input δlER(k) and the outputs u(k) and e(k).

5 Model validation and control performance

The main objective of the model evaluation is to compare the accuracy of the models

in terms of the degree of dynamics that they capture and to determine the performance

of controllers tuned using the models. Also we want to establish whether a significant

improvement in performance control is achieved when using second order models

instead of first order models. In particular, we want to determine the accuracy by which

DYN describes the dynamics of the average transaction error e(k) with regard to the
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control input δlER(k). Furthermore, we want to establish whether a controller tuned

using DYN provides better performance reliability and performance adaptation than

a controller tuned using STA. We use an RTDB simulator to evaluate the performance

of the controllers. The simulator can be configured to simulate different workload

characteristics, thus, one can capture the behavior of a wide range of applications.

5.1 Simulator setup

The simulated workload consists of update and user transactions, which access data

and perform virtual arithmetic/logical operations on the data. The workload of update

transactions is approximately 50%, whereas the applied load of user transactions on

the database, i.e., l̄E (k), is set to 100%. We assume that there are no execution time

estimation errors. As the basic scheduler we use EDF. The workload model of the

update and user transactions are described as follows.

Data and update transactions. The DB holds 1000 temporal data objects where each

data object is updated by a stream (streami , 1 ≤ i ≤ 1000). Updates arrive period-

ically with the periods uniformly distributed in the range (100 ms, 50 s), i.e., U :

(100 ms, 50 s), and with the estimated execution time xe,i given by U : (1 ms, 8 ms).

Upon a periodic generation of an update, streami gives the update an actual execution

time given by the normal distribution N : (xe,i ,
√

xe,i ).

User transactions. Each sourcei generates a transaction Ti , consisting of one manda-

tory subtransaction, mi , and |Oi | (1 ≤ |Oi | ≤ 10) optional subtransaction(s), oi, j

(1 ≤ j ≤ |Oi |). |Oi | is uniformly distributed between 1 and 10. The estimated ex-

ecution time of a subtransaction ti , denoted xe,i [ti ], is given by U : (5 ms, 15 ms).

Upon generation of a transaction, sourcei associates an actual execution time to each

subtransaction ti , which is given by N : (xe,i [ti ],
√

xe,i [ti ]). The deadline is set to

ati + xe,i × slack f actor , where ati denotes the arrival time of Ti . The slack factor is

uniformly distributed according to U : (20, 40). The inter-arrival time is exponentially

distributed with the mean inter-arrival time set to xe,i × slack f actor .

5.2 QoS specification

We use the following time domain performance metrics to specify controller perfor-

mance: (i) reference er , giving the desired level of the controlled variable e(k), (ii) over-

shoot, denoted Mp, is the worst-case system performance in the transient system state

(see Fig. 5) and it is given in percentage, and (iii) settling time, denoted Ts , is the time

for the transient overshoot to decay and reach the steady state performance and, hence,

it is a measure of system adaptability. The following QoS specification is assumed:

er = 20%, Ts ≤ 40 s, and Mp ≤ 30%. This gives that e ≤ er × (Mp + 100) = 26%.

Further we require that the steady-state error Ess , namely the difference between the

reference and the controlled variable to be zero as k goes to infinity, i.e.,

Ess = er − lim
k→∞

e(k) = 0.

The latter implies that the controlled variable must converge toward the reference.
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Fig. 5 Definition of settling time (Ts ) and overshoot (Mp)

5.3 Sampling period selection

We have chosen the sampling period according to the following. As a rule of thumb the

sampling period should be chosen to be about ten times the bandwidth of the controlled

system (Ljung and Glad, 1994). This corresponds to a sampling period, where it takes

about 5 to 8 samples for the controlled variable to increase to steady state given a step

on the reference (Ljung and Glad, 1994). In other words the sampling period must be

chosen such that 5 to 8 samples fit on the flank of the step response of the controlled

variable. As we will see in Section 5.4.1, this corresponds to a sampling period of one

second, i.e. T = 1s. Further, we have employed the method presented by Amirijoo

et al. (2005), where the sampling period is chosen such that a given QoS specification

is satisfied with respect to the settling time and the overshoot. The chosen sampling

period effects the settling time depending on the model and the controller. For example

the settling time increases as the sampling period increases when using STA and a P

controller. Selecting a sampling period of one second (i.e., T = 1 s) satisfies the given

QoS requirement (see Section 5.2) for all controllers as is shown in Section 5.6.3.

For comprehensiveness, we have also evaluated the performance of the controllers

using sampling periods 0.5 s and 2.0 s. Due to space limitations we present the model

tuning and validation (Sections 5.4 and 5.5) assuming a sampling period of 1.0 s.

We revisit other sampling periods in Section 5.6.4, where the performance of the

controllers are evaluated.

5.4 Model tuning

5.4.1 STA and DYN

The models STA and DYN are tuned by profiling the simulated real-time database,

where lER is varied from 0 to 120% with 10% increase. We have monitored lE and e,

and the result is shown in Fig. 6. Assuming that execution time estimates are accurate,

i.e., gA = 1, we obtain lA = lE .

STA. At e(k) equal to er = 20%, the derivative gE is estimated to be 0.84 by using (5)

and Fig. 6. Hence, the tuned model is GSTAE = 0.84
z−1

.

DYN. As for STA, we derive gE to be 0.84 at e(k) equal to er = 20%. From Fig. 6, we

see that e equal to 20%, corresponds to lER ≈ 68% and lE ≈ 58% and by applying
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Fig. 7 Response time analysis

(8), we estimate gL to be 0.85. From Fig. 6, we note that e starts increasing at

lER ≈ 40%, which corresponds to lE ≈ 35% and, hence, the workload threshold

lT h ≈ 35%. Since for DYN we assume that lA > lT h , we apply a step from 40%

to 100% on lER and we measure the time it takes for e to reach 63% of its final

value, as illustrated in Fig. 7(a). The steady-state value of a variable is denoted

with ss. Since the response time is discrete we interpolate between the samples

to obtain a continuous response time. Thereby, we measure TE M to be 2.38 s and,

hence, TE ≈ 3.91 s according to (12). Putting everything together, the tuned model

is GDYNE = 0.1829z
(z−1)(z−0.7439)

. The simulated step response of the transfer function from

lER to e is shown in Fig. 7(b). Note, in Fig. 7(a), the step is applied at time 1 s, where

in Fig. 7(b) the step is applied at time 0 s.

5.4.2 ARX and OE

Regarding the statistical models ARX and OE (Ljung, 1999), we have profiled the

system given by the input lER(k) and the output e(k), since the subsystem from δlER(k)

to lER(k), i.e., the integration given by (2), is known. When the ARX and OE models
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are tuned, we add 1
z−1

to the derived models to form the complete model from δlER

to e.

The fist step in building a model based on experimental data is to choose a suitable

input signal. The input signal should excite the system such that the dynamics of

the system is captured. It is therefore required that the input signal contains many

frequencies. A good choice is a binary signal that shifts randomly between two levels,

since such signal contains all frequencies. The two levels are chosen so that they

correspond to maximum allowed variation, in order to capture as much of the system

behavior as possible. The probability of the input signal to shift between levels is set

such that it contains pulses that are constant over such long period that the output

response more or less settles, but also some short ones that excite interesting fast

modes in the system. Further, the input and measured output signals are preprocessed

by removing the mean value of each signal before applying system identification

algorithms.

According to the discussion above, we apply a binary signal that shifts randomly

between two levels around the operation point er . Due to non-linearity of real-time

systems we let lER(k) to vary within an area around the operation point where the

system is approximately linear, see Fig. 6. The operation point is er = 20% and the

system is approximately linear for e between 1.4% and 39.5%, which corresponds to

lER between 40% and 100%. Hence, we let lER vary between 40% and 100% and we

set the probability of the input signal to shift between the levels to 0.5. We measure

e(k) during 600 s and divide the collected data into two parts, one used for estimating

model parameters and one used for validation. This technique is referred to as cross

validation, i.e., we validate the models based on new data sequence that are different

from the ones used in model estimation. For the sake of identification, we remove 70%

from lER and 20% (er ) from e. The models are then tuned considering fit and residual

analysis, i.e., we modified the parameters na , nb, and n f (Ljung, 1999) such that a

great fit, as well as a low correlation between input and output residuals are obtained.

Now that we have tuned models from lER to e, we add 1
z−1

to the tuned models to form

the complete model from δlER to e.

ARX. For the ARX model structure, a transfer function from δlER to e is tuned to

GARXE = 0.1619z
(z−1)(z−0.7638)

.

OE. For the OE model structure, a transfer function from δlER to e is tuned to GOEE =
0.2139z

(z−1)(z−0.7268)
.

5.5 Model validation

Once a model has been designed and its parameters computed, the crucial question is

whether it is good enough for the intended purpose. Testing if a given model is good

enough is known as model validation. This is carried out by checking whether the

model agrees sufficiently well with observed data from the modeled system. Since the

subsystem from δlER(k) to lER(k) is known, we validate the models considering the

subsystem from lER(k) to e(k).

Fit and residual analysis are two well-known useful techniques for model validation,

and below we give a brief overview of them. Let ê(k) be the output predicted by the

model. The percentage of the output variation explained by the model is given by the
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metric fit (Ljung, 1999), and it is defined as

R2 = 100 ×
(

1 −
1
N

∑N
k=1(e(k) − ê(k))2

1
N

∑N
k=1 e2(k)

)
(%).

Hence, we normalize the squared sum of the prediction errors εp(k) = e(k) − ê(k),

giving us a measure of the ability of the model to reproduce output data in terms of

prediction. An increase in R2 implies a decrease in prediction errors and, hence, the

model produces outputs closer to measured data.

By validating models with residual analysis (Ljung, 1999), i.e., forming the corre-

lation function describing the correlation between the input lER(k) and model output

residuals, i.e. εp(k) = e(k) − ê(k), we are able to measure how much of the dynamics

of the controlled system is captured by the model. Ideally, the residuals should be

independent on the input, i.e., the correlation between residuals and input should be

zero. If this is not the case, then there are more system dynamics to describe than the

model has picked up. More specifically, we form the correlation function,

R̂εplER (τ ) = 1

N

N∑
k=1

εp(k + τ )lER(k)

where N is the number of samples, and test whether R̂εplER (τ ) is close to zero, i.e., we

check if εp and lER are uncorrelated. Usually, R̂εplER is graphically displayed along with

99% confidence intervals. The rule is that if the correlation function goes significantly

outside these confidence intervals for any τ , then εp(k + τ ) and lER(k) probably are

dependent for this value of τ and, hence, we do not accept the corresponding model

as a good description of the system.

Now, let us validate the models with respect to fit and residual analysis. Given a

system G from δlER(k) to e(k), we denote its subsystem from lER(k) to e(k) with G ′,
e.g, the subsystem of GSTAE is denoted with G ′

STAE = gAgE . We validate the models

considering a binary signal lER(k) as input, ranging from 40 to 100%. The result is

presented in Fig. 8 (for clarity of presentation we consider a subset of the data). As

we can see G ′
STAE provides poor prediction of the output, whereas G ′

DYNE produces a

prediction much closer to the measured output. Analyzing input-output relations, the

fit for each model is computed and gives the following: G ′
STAE: −104.11%; G ′

DYNE:

21.41%; G ′
ARXE: 20.28%; G ′

OEE: 21.60%. We observe that G ′
STAE, compared to the
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Fig. 8 The measured output and

the output predicted by G ′
ST A

and G ′
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Fig. 9 Residual analysis of G ′
STAE , G ′

DYNE , and G ′
OEE

other models, describes the controlled system unsatisfactorily poorly. G ′
DYNE, G ′

ARXE,

G ′
OEE on the other hand give a good description of the system dynamics.

Figure 9 shows the correlation function R̂εplER (τ ) for the models along with the 99%

confidence intervals. The correlation function of G ′
STAE goes significantly outside its

confidence intervals. On the other hand, the correlation functions of G ′
ARXE, G ′

OEE, and

G ′
DYNE do not go significantly outside their confidence intervals. Here, we conclude

that G ′
DYNE, G ′

ARXE, and G ′
OEE describe to a great extent the dynamics of the system.

From the model validation procedure we conclude that G ′
DYNE, G ′

ARXE, and G ′
OEE

produce satisfactory predictions of the controlled signal, and they capture the dynamics

of the controlled system to a greater extent compared to G ′
STAE.

5.6 Control performance

We now evaluate the performance of a set of controllers tuned using the models, GSTAE,

GDYNE, GARXE, and GOEE. We start by defining the performance metrics, continuing

with the tuning procedure of the controllers, and finally we present the results obtained

from the experiments.

5.6.1 Performance metrics

We distinguish the performance of controllers by how well they force the output e(k)

to follow or track a reference er (k), despite presence of disturbances in the controlled

system. It is therefore interesting to measure the difference between er (k) and e(k)

over a period of time. For this reason, in our simulations we evaluate the controllers

with respect to,

Ja = 1

N

N∑
k=1

|er (k) − e(k)|, Js = 1

N

N∑
k=1

(er (k) − e(k))2 (15)

where N is the number of samples taken. By Js and Ja we can establish how well the

controllers are able to keep e(k) near er (k), and also how well they react to changes in

er (k). The lower Js and Ja are, the better a controller is able to keep e(k) near er (k),

and also the faster e(k) converges towards er (k).

5.6.2 System stability

Stability refers to whether the input to the closed loop system (see Fig. 1), Gc(z) =
C(z)G(z)

1+C(z)G(z)
, with the input yr and the output y, where C(z) is the controller and G(z) is the

Springer



Real-Time Syst

0

20

40

60

M
a

g
n

it
u

d
e

 (
d

B
)

10 10 10
0

10
1

P
h

a
s
e

 (
d

e
g

)

G
STAE

G
DYNE

G
ARXE

G
OEE

Bode Diagram

Frequency  (rad/sec)

Fig. 10 Bode diagram for

GSTAE , GDYNE , GARXE , and

GOEE

controlled system, causes a bounded output. In this work, we consider stability in terms

of the Bounded-Input-Bounded-Output (BIBO) relation (Franklin et al., 1998).2 This

means that if the input is bounded, then the output is bounded as well. By plotting the

frequency response of G(z), usually depicted as a Bode diagram (Franklin et al., 1998),

the stability of the closed-loop system can be determined. A quantity that measures the

stability margins of the system is gain margin (GM), which represents the condition

under which the system is stable, and it is obtained by studying the magnitude and the

phase plots of the Bode diagram of G(z). GM gives the factor by which the magnitude

of the controlled system G(z) is less than one (i.e. zero dB) when the phase is −180◦.

Assuming that a P controller is used, where u(k) = K p(yr (k) − y(k)), then GM gives

the upper bound of K p for which the system is stable. Hence, setting K p to a greater

value than GM results in an unstable system. Figure 10 shows the Bode diagram of

GSTAE, GDYNE, GARXE, and GOEE, where the upper plot shows the magnitude of the

transfer functions, and the lower plot shows the phase of the transfer functions.

We observe that when the phase for GSTAE is −180◦, the magnitude is −7.54 dB

(corresponding to 0.42) and, hence, GM is 1
0.42

= 2.38. GM for the other models are

computed similarly and are approximately 19.07 (GDYNE), 21.79 (GARXE), and 16.15

(GDYNE). We use GM of each model for testing the stability of the closed loop system

when tuning the controllers.

5.6.3 Controller tuning

Having a QoS specification and a tuned model of the system, the next step is to tune the

controllers based on the closed loop of the system. We use a proportional controller (P

controller), where δlER(k) is computed as δlER(k) = K p(er (k) − e(k)), where K p is the

proportional gain. Depending on the dynamics of the controlled system, a P controller

may produce non-zero steady-state error (Franklin et al., 1998), i.e., the difference

between the controlled variable and its reference may be non-zero at steady-state. The

steady-state error can be eliminated by adding a term proportional to the integral of the

2 When the word stable is used without further qualification in this text, BIBO stability is considered.
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Table 2 K p and time domain performance

Model used K p Mp Ts GM of the model used

GSTAE ≈1.1905 0 1 s ≈2.38

GDYNE ≈0.3495 ≈14% ≈21 s ≈19.07

GARXE ≈0.3558 ≈14% ≈20 s ≈21.79

GOEE ≈0.3491 ≈14% ≈20 s ≈16.15

error, forming a proportional and integral controller (PI controller). However, we note

that a P controller is sufficient since the controlled system has an integral part 1
z−1

and,

thus, an integral part for the controller is not needed to remove the steady-state error.

Therefore we use P controllers for all models and we tune K p of the P controllers

using root locus method in Matlab (1996), such that the QoS specification given in

Section 5.2 is satisfied, i.e., the settling time is less than 40 s and at the same time

the overshoot is less than 30%. The result is presented in Table 2. In Section 5.6.2

we derived the gain margins of each model that gives an upper bound of K p that

guarantees stability. The computed K p of all controllers satisfy the gain margins and,

hence, all closed-loop systems are stable. As shown in Table 2, the overshoot and the

settling time for the controller tuned using GSTAE is zero and one, respectively. This

is not surprising as given a model that statically relates lER and e, we can directly

compute δlER and, hence, reach er within a sampling period without any overshoot.

For simplicity we refer to the controller tuned with GSTAE as the STA controller (DYN,

ARX, and OE controllers are defined similarly).

5.6.4 Evaluation of controller performance

In our experiments, one simulation run lasts for 10 minutes of simulated time. For all

the performance data, we have taken the average of 10 simulation runs and derived

95% confidence intervals.

Experiment 1. To see how well the controllers react to changes to er , we set er to

20% at time 0, to 30% at time 200, and to 20% at time 400. The performance of the

controllers is given in Table 3. As a consequence of the model, the control signal of the

STA controller varies between −18.9 to 23.8%, whereas the control signal of the DYN

controller varies between −4.95 to 7%. In other words, the STA controller controls

the RTDB more aggressively, resulting in greater deviations between e(k) and er (k).

Since the STA controller computes δlER(k) according to a static relation between

lER(k) and e(k), the controller does not consider the dynamics of the controlled system.

Hence, it does not consider that given a certain δlER(k), it may take a few samples

Table 3 Js and Ja with 95%

confidence intervals. The

reference is varied

Model Js Ja

GSTAE 284.19 ± 24.65 14.11 ± 0.65

GDYNE 211.67 ± 14.51 12.02 ± 0.45

GARXE 209.98 ± 15.65 11.97 ± 0.48

GOEE 212.50 ± 13.76 12.06 ± 0.41

K p = 0.20 202.50 ± 12.97 11.78 ± 0.41
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until the corresponding e(k) is reached. Therefore, the STA controller persists with

changing the load until the desired er (k) is reached, at which point e(k) overshoots

due to aggressive control. This is handled more efficiently with the DYN controller,

as it is tuned according to a dynamic model and, hence, the controller is more gentle

when controlling the system. The performance of controllers tuned with GDYNE,

GARXE, and GOEE does not differ considerably. However they all manage to provide

a significantly lower Js and Ja as compared to the controller tuned with STA. This

means that the accuracy of the model used when designing a controller indeed affects

the performance of the controller. Using DYN, which is more accurate than STA,

results in a faster QoS adaptation in the face of changes to required QoS or unexpected

system behavior, as compared to using STA. Further, a more accurate model re-

sults in an increased QoS reliability as the actual QoS stays closer to the required QoS.

Experiment 2. We have performed an additional experiment where we vary K p from

0 to 2 by 0.1 step. The idea is to determine which K p gives the best controller perfor-

mance in terms of Js and Ja . From our experiments we have observed that K p = 0.20

gives the best performance with Js = 202.50 ± 12.97% and Ja = 11.78 ± 0.41%.

Considering Table 3, we see that the performance of the controller with K p = 0.20

does not differ considerably from the controllers tuned using GDYNE, GARXE, and GOEE.

Although, the value of 0.20 was not estimated from the controller tuning, we see this

as a substantial improvement considering the value of K p suggested when using GSTAE.

Experiment 3. We notice from the measured Js and Ja that e(k) oscillates heavily

around the reference. We know that there are various disturbances present in the

controlled system. Random variations in arrival patterns of user transactions and restart

or abort of transactions due to concurrency control lead to variations in user transaction

load. Also, the update transactions have higher priority than user transactions and a

change to the update transaction load also affects the user transactions. We pose

the question whether the oscillations in e(k) are caused by the controllers or the

disturbances in the system. To characterize and measure the oscillations caused by

the disturbances in the system, we run the system with open loop control, where no

feedback information is used to control e(k). When using feedback control, we can

to some extent afford inaccuracies in the model of the controlled system, since the

feedback information compensates for model inaccuracies. However, using open loop

requires exact knowledge of the controlled system and for this reason we have profiled

the system by varying the estimated admitted load lER to find the load that generates

an e close to er . Note, the derived lER only holds if er and the workload characteristics,

e.g. arrival patterns or execution time estimation error, do not vary. This assumption

does not hold for most open real-time systems as the workload characteristics or

desired QoS may vary, hence, the reason why feedback information is justified. For

this particular experiment we keep er and the workload characteristics constant. We

measure Js and Ja as deviations around er , and the result is given in Table 4 along

with the performance of the controllers where er (k) = 20%. As we observe, the STA

controller performs worse than open loop control. On the other hand, Js and Ja of the

DYN, ARX, and OE controllers are less to that of open loop control and, hence, we

conclude that the oscillations are not induced by the controllers. The oscillations are

rather caused by various disturbances present in the controlled system.
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Table 4 Js and Ja with 95%

confidence intervals. The

reference is constant

Model Js Ja

GSTAE 266.40 ± 23.34 13.78 ± 0.69

GDYNE 192.80 ± 13.79 11.53 ± 0.46

GARXE 192.30 ± 13.37 11.51 ± 0.45

GOEE 193.06 ± 13.62 11.54 ± 0.45

Non-controlled system 211.92 ± 37.62 12.09 ± 1.01
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Fig. 11 Js and Ja as a function of the sampling period T . The reference is varied

Experiment 4. In this experiment we study how Js and Ja are affected by the sampling

period T . We have for this reason designed controllers based on the sampling periods

0.5 s, 1.0 s, and 2.0 s. Note that GSTAE(z), see (7), does not depend on T , hence, we

have the same model when T varies. This results in that we get the same proportional

gain K P (controller parameter) for all T , i.e., K P = 1.1905 for T = 0.5 s, . . . , 2.0 s.

On the other hand, the model GDYNE(z), see (14), is a function of T . This results in

different proportional gains and we get that K P = 0.2962 for T = 0.5 s, K P = 0.3495

for T = 1.0 s, and K P = 0.4032 for T = 2.0 s. Figures 11(a) and (b) show Js and

Ja as a function of T . As we can see Js and Ja decrease as T increases, suggesting

that the difference in the controlled variables and their references decreases as the

sampling period increases. This is due to the decrease of the measurement disturbance

variance as the sampling period increases (Amirijoo et al., 2005). For all cases the

DYN controller provides better performance than the STA controller.

From the experiments outlined above, we conclude that using the first order model

STA, which is an overly simplified model, yields in an even worse performance than

open loop control. However adopting the simple and yet expressive second order model

DYN, which captures additional system dynamics, results in a substantial performance

enhancement compared to STA and open loop control, even in the presence of intense

disturbances.

5.7 Summary of results and discussions

In our model evaluation we have considered methods used in modeling, such as fit

and residual analysis, which are important tools for gaining confidence in a derived
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model. We have shown that the first order model studied in this paper, i.e., STA, is less

accurate than the presented second order models, i.e., DYN, ARX, and OE. Hence, the

studies suggest that first order models are not adequate for describing the dynamics of

the controlled system, and that second order models are more suitable for the purpose

of control design. The results from the fit and residual analysis show that DYN is as

accurate as the statistical models ARX and OE. As a final validation criterion we have

evaluated the performance of controllers tuned based on the presented models. Here,

we conclude that the controller tuned with DYN outperforms the controller tuned

with STA with respect to performance adaptation, i.e., the controller tuned with DYN

produces an e(k) significantly closer to the reference than the controller tuned using

STA. Moreover, the DYN controller performs as good as the ARX and OE controllers.

Although, there is a great body of knowledge within modeling of dynamic systems,

there are really no well-established procedures for how to tune models using statistical

methods as ARX and OE. Often, the model designer has to iteratively search for the

best model, which may be quite time-consuming. The result of our work can be directly

used to aid the model designer in finding a good model. By comparing the presented

models using model validation and experiments, we have found that the dynamics of

real-time systems can be adequately described using second order models as given by

DYN. This result can be directly used to choose an appropriate ARX structure and

hence, the model designer does not need to search for the best structure. The structure

of the transfer function G ′
DYNE corresponds to the structure of the ARX model with

na = 1 and nb = 1 (Ljung, 1999).

In this paper we applied DYN on a real-time database system. Our model can, how-

ever, easily be applied to other systems where for example the estimated requested load

lER is the input and other performance metrics such as deadline miss ratio is the output

of the controlled system. In the case when lER acts as input, we simply remove the inte-

gration given by 1
z−1

from G DY NU and GDYNE. If deadline miss ratio is used to measure

the performance of the system, then we replace e(k) with deadline miss ratio, since

e(k) and deadline miss ratio have similar characteristics, as discussed in Section 4.2.

In this work we have tuned and linearized GSTAE and GDYNE based on a QoS

specification and given external load and execution time estimation errors. In reality,

however, real-time systems are non-linear and external load may vary at run-time

and/or execution time estimations may change. In control theory, one addresses this

problem by (i) considering the average mode of operation, i.e., we tune models based

on average external load or average execution time estimation error and rely on the

inherent robustness of feedback control, or (ii) during run-time switch between linear

controllers, which are tuned off-line, depending on some operating conditions, e.g.

gain scheduling (Åström and Wittenmark, 1995; Franklin et al., 1998). This way we

can utilize the design methods for linear systems, still conforming to non-linearities

in the system. Other approaches include adaptive control (Åström and Wittenmark,

1995) where the behavior of the controlled system is monitored at run-time and

controllers adapted accordingly. This way the controllers can continuously adapt to

their environment and, hence, less emphasis is put on off-line modeling. However,

there are several shortcomings with adaptive control applied on computing systems.

First, adaptive control still cannot replace good models obtained off-line that are

needed to choose performance specifications, structure of the controller, and design

methods (Åström and Wittenmark, 1995). Second, since in adaptive control the
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behavior of the controllers are constantly changing, issues related to safety become

important, especially in safety-critical applications. Third, the memory storage and

computing power that are available have a significant influence on the type of adaptive

controller used. For example, in embedded systems with limited computing power, the

use of adaptive control may not be feasible. Finally, another key difficulty is accurate

system identification under closed-loop control. Remember that when tuning models

based on profiling and statistical methods, we have to make sure to excite the system

such that both the slow and the fast modes of the system are captured. This may not

be possible for a system at run-time as the performance of the system may be critical.

6 Related work

Lu et al. (2002a) introduced a feedback control scheduling framework, including two

models of real-time systems describing deadline miss ratio and utilization in terms

of changes to estimated utilization. Their model, however, statically relates estimated

utilization, deadline miss ratio, and utilization. In this paper, we have extended their

model to capture the dynamic relation between these variables. Lu et al. (2001a) used

system identification to model relative delays in web servers. They found that relative

delays exhibit second order dynamics and that a first order model was not sufficient.

In this paper we have argued that first order models are not accurate enough and we

have shown that a second order model is sufficiently accurate for feedback control

purposes. In contrast to Lu et al. (2001b) we use fit and residual analysis to determine

the accuracy of the models. Parekh et al. (2002) use feedback control scheduling to

control the length of a queue of remote procedure calls (RPCs) arriving at a server.

They have used system identification for tuning their models. They show that they

can achieve 97.6% fit on measured data, however, they do not validate their models

using residual analysis, which is an important technique for evaluating model quality

(Ljung, 1999). Li and Nahrstedt (1998) proposed a task model for QoS adaptations. In

their model, there are dependencies among the tasks, expressing consumer-producer

properties; tasks are characterized by input quality and output quality, and a model

expressing the output quality of a target task is derived. The goal is to design controllers

that force the target task to maintain the same output quality at a desired QoS reference.

Their model does not extend to the case when several target tasks are available. In our

model, we do not yet model precedence constrains among transactions, however, we

consider the individual quality of a set of transactions. Lu et al. (2002c) introduced an

architecture for differentiated caching services. The desired relation between the hit

ratios of different content classes is enforced using per-class feedback control loops.

The authors derive a model describing relative hit ratio in terms of adjusted cache

space. Abdelzaher (2000) and Lu et al. (2002b) report some results on adaptive control

applied on software systems. They show that using their approach the controllers are

able to adapt to changes to the controlled system. The authors identify several open

issues to be answered, such as how to choose model structures on-line, and also how

to excite the system such that as much of the system dynamics can be captured.

The authors suggest an automated identification of the model structure using a rule-

based approach that uses a branch-and-bound search to arrive at the optimal model

structure.
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Table 5 Table of variables

Attribute Description

di relative deadline of Ti

δlER change to the estimated requested workload of admitted

user transactions

ei transaction error of Ti

e average transaction error

eS steady-state value of e
gA workload ratio

G DY NU (z) model DYN relating δlER(k) and u(k)

GDYNE(z) model DYN relating δlER(k) and e(k)

gE relationship between lA and e
GED(z) subsystem with the input eS(k) and the output e(k)

gL requested load factor

GSTAE(z) model STA relating δlER(k) and e(k)

GSTAU(z) model STA relating δlER(k) and u(k)

i A,i average inter-arrival time of Ti

iE,i estimated inter-arrival time of Ti

Ja average performance error

Js average squared performance error

lA actual workload of admitted user transactions

lA,i average load of Ti

lE estimated workload of admitted user transactions

l̄E maximum estimated load that can be made available

lE,i estimated load of Ti

lER estimated requested workload of admitted user transactions

lT h precisely schedulable workload threshold of user transactions

Mp maximum overshoot in percentage

pi period of Ti

TE time constant of GED(z)

TE M the time it takes for e(k) to reach approximately 63% of the final value

Ts settling time

T sampling period

u utilization

xA,i average execution time of Ti

xE,i estimated (average) execution time of Ti

Several papers describe the application of imprecise computation on databases.

Davidson and Watters (1988) proposed a method for generating monotonically

improving answers in RTDBs and distributed RTDBs. A query processor, APPROX-

IMATE (Vrbsky and Liu, 1993), produces approximate answer if there is not enough

time available. The accuracy of the improved answer increases monotonically as the

computation time increases. The relational database system, called CASE-DB, can

produce approximate answers to queries within certain deadlines (Ozsoyoglu et al.,

1995). Neither of the approaches above have discussed performance and QoS man-

agement using feedback control. In previous work, we presented a set of algorithms

for managing QoS based on feedback control scheduling and imprecise computation

(Amirijoo et al., 2003, 2006), where QoS was defined in terms of transaction and

data preciseness. We tuned the controllers using the model STA proposed by Lu et al.

(2002a).
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7 Conclusions

To efficiently use feedback control scheduling it is necessary to have a model that

adequately describes the behavior of the system. In this paper we have experimentally

evaluated the accuracy of a previously published model STA (Lu et al., 2002a), a

model DYN presented in this paper, and two models tuned using statistical methods.

This comparison is performed by validating the models in terms of fit and residual

analysis. Using the results from model validation we have demonstrated that the second

order model DYN is significantly more accurate than the first order model STA when

describing, in terms of difference equations, the dynamics of a real-time system. From

our studies we show that DYN is as accurate as the second order models ARX and

OE tuned with experimental data and statistical methods. Further, we have carried out

a set of experiments where we evaluate the performance of a set of controllers tuned

using the presented models. We have shown that the controller tuned using the second

order models, e.g., DYN, performs significantly better than the controller tuned using

the first order model STA. The performance of the controller tuned using DYN is as

good as the controllers tuned using the models derived from statistical methods. The

model tuning procedure of DYN is, however, simpler to use than the tuning procedures

used in statistical methods as the latter require time-consuming and iterative search

for the best model.

For our future work, we will apply our proposed model to applications providing

real-time MPEG services, and also extend the model to support service differentiation.
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