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ABSTRACT
This paper addresses design exploration for protocols that
are employed in systems with availability-consistency trade-
offs. Distributed data is modelled as states of objects repli-
cated across a network, and whose updates require satis-
faction of integrity constraints over multiple objects. Upon
detection of a partition, such a network will continue to
provide delivery of services in parallel partitions; but only
for updates with non-critical integrity constraints. Once the
degraded mode ends, the parallel network partitions are rec-
onciled to arrive at one partition.

Using a formal treatment of the reconciliation process,
three algorithms are proposed and studied in terms of their
influence on service outage duration. The longer the rec-
onciliation time, the lower is system availability; since the
interval in which no services are provided is longer. How-
ever, the reconciliation time in turn is affected by the time to
construct the post-partition system state. The shorter the
construction time the higher is the number of updates that
took place in the degraded mode but that will not be taken
up in the reconciled partition. This will lead to a longer
interval for rejecting/redoing these operations and thereby
increase reconciliation time.

Keywords
reconciliation protocol, availability, partition, consistency,
trade-off

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

1. INTRODUCTION
Distributed provision of services is a natural consequence

of global business operations and at the heart of modern
complex command and control decision systems. Central
to distributed services in a data-centric application is how
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to maintain data consistency, here modelled as consistency
among the states of object replicas. As operations are per-
formed at multiple nodes in a replicated system, a propaga-
tion mechanism is employed to update the other nodes and
to maintain consistency among replicas. There is clearly an
availability-consistency trade-off. The performance of the
system during normal operation, as well as during failures,
is affected by the replication and reconciliation protocols.

An excellent recent survey on optimistic replication re-
flects the need for determining the requirements of an ap-
plication and selection of design parameters using multiple
criteria [14]. The extreme ends of the spectrum are the pro-
vision of fastest possible services at occasional costs of con-
sistency, and the upholding of full consistency at the cost
of availability (and thereby performance). There are several
points in between based on focusing on other criteria. While
covering a massive body of work on the issues related to this
trade-off, the survey does not emphasise failure models, in
particular partitions.

This paper concentrates on applications where data con-
sistency is strived for, and the standard data integrity con-
straints on distributed data are used when performing op-
erations on objects with replicas on multiple nodes. The
novelty of our approach is a formal treatment of the rec-
onciliation policy for achieving integrity consistency after
network partitions. Several instances of such applications
are studied in the European DeDiSys project [18], among
them are the Distributed Telecommunication Management
System (DTMS) and the Advanced Control System (ACS).

Consider a network that suffers from partition failures
from time to time. During normal operation there is one
primary for every object as well as a number of replicas.
Replicas of the object are kept for distributed access and
better performance. This paper assumes a passive replica-
tion model and assumes that a replication protocol takes
care of the replica updates during normal operation. Up-
dates can typically be conditional on satisfaction of integrity
constraints that can encompass other objects (potentially on
other nodes). Once the system has detected a partition, it
starts to operate in a degraded mode (see Figure 1). We
assume that the network can partition several times and
concurrently but that no faults occur during reconciliation.

We further assume the existence of a detection mechanism
(e.g. membership service in the middleware) that supports
the transition to the degraded mode. During this phase
there will be one primary copy of every object per parti-
tion. For operations that need to satisfy non-critical in-
tegrity constraints, the services may proceed to be delivered
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Figure 1: System modes

in multiple partitions, even though distributed updates can
not be propagated to all relevant nodes. For operations that
depend on critical integrity constraints, the updates will be
blocked waiting for the partition to be repaired.

The final system state that is the result of the reconcilia-
tion can be achieved either by state transfer or by operation
transfer. That is, the changes can either be propagated to
the rest of the system by transferring the resulting state or
the operations that led to the new state. The state trans-
fer approach is attractive due to the fact that it allows for
fast recovery. Write-write conflicts can be dealt with in such
systems using time-stamps or version vectors [3]. Integrity
constraints are hard to enforce in a state transfer system.
If a system state is found to be inconsistent after merging
a number of object states it might be hard to get the sys-
tem back to a consistent state. Operation transfer systems,
on the other hand, are more flexible in this respect at the
cost of being more time consuming. This is the approach we
adopt in two of our algorithms.

This paper focuses on the transition from degraded mode
to the normal mode, i.e. the reconciliation of object states
that have been subject to updates within multiple parti-
tions. It demonstrates the choices that affect the design of a
reconciliation algorithm and the influence of the design deci-
sions on availability and performance of the system. In this
model, the system does not accept new updates during the
reconciliation process. Hence, it is unavailable during that
period. We study the trade-off between saving time on con-
structing a post-partition state and the time needed to be
spent on undoing the operations whose effect is not reflected
in the resulting state. The trade-off is affected by param-
eters such as the time needed to fully deal with a rejected
operation and the time the system has been in degraded
mode (time to repair).

The contribution of this paper is a formal description of
three algorithms for reconciliation, metrics for evaluating
reconciliation algorithms and an experimental study of the
trade-off between time needed for an elaborate reconciliation
and the time spent on rejecting operations.

2. RELATED WORK
This section will give an overview of related works, in

particular, optimistic replication. We will discuss how the
problem of reconciliation after network partition has been
dealt with in the literature. For more references on related
topics there is, apart from the already mentioned survey by
Saito and Shapiro [14], an earlier survey discussing consis-
tency in partitioned networks by Davidson et al. [5].

Gray et al. [6] address the problem of update every-
where and their reconciliation approach is based on oper-
ation transfer. The authors demonstrate that the number
of conflicts increases rapidly when the number of operations
increases. They propose a solution based on a two-tier ar-

chitecture and tentative operations. However, they do not
target full network partitions but individual nodes that join
and leave the system (which is a special case of partition).
Bayou [17] is a distributed storage system that is adapted
for mobile environments. It allows updates to occur in a
partitioned system. Reconciliation is operation based and
conflict detection is done syntactically. However, the system
does not supply automatic reconciliation in case of conflicts
but relies on the application to do this. This is a common
strategy for operation transfer systems. Conflict detection
is more straightforward than conflict resolution and thus the
application is required to sort out conflicts. Our approach is
fully automatic and does not require application interaction
during the reconciliation process. Most works on reconcili-
ation algorithms after network partition focus on achieving
a schedule that satisfies order constraints. Lippe et al. [9]
try to order operation logs to avoid conflicts of the Before
relation. However, their algorithm does not scale well as
the number of operations increase. The IceCube system [7]
also tries to order operations to achieve a consistent final
state. Their approach requires the construction of many op-
eration logs, which is a computationally intensive process.
They deal with integrity constraints only in the sense that
operations that violate an integrity constraint are aborted.
However, no effort is made to minimise integrity constraint
violations. Preguica et al. [11] extend the IceCube approach
by differentiating between different types of constraints and
improve the algorithms by dividing the work in subproblems
that can be solved separately since they operate on disjoint
data. However, they do not fully address the problem of
integrity constraints that involve several objects.

Phatak et al. [10] propose an algorithm that provides rec-
onciliation by either using multiversioning to achieve snap-
shot isolation [2] or using a reconciliation function given
by the client. The system deals well with possible side ef-
fects since reconciliation is always performed. An interesting
technique that has been applied in collaborative systems is
that of operational transformation [15]. The idea is to keep
the intent of each operation rather than the actual data op-
erations. Thus, the order in which operations are applied
can be changed even though the operations are not origi-
nally commutative. Unfortunately, the required amount of
knowledge about the operation semantics reduces the appli-
cability of this approach.

Several replicated file systems exist that deal with recon-
ciliation in some way [13, 8]. Balasubramaniam and Pierce
[1] specify a set of formal requirements on a file synchroniser.
These are used to construct a simple state based synchro-
nisation algorithm. Ramsey and Csirmaz [12] present an
algebra for operations on file systems. Reconciliation can
then be performed on operation level and the possible re-
orderings of operations can be calculated.

Performance studies for fully consistent systems tend to
focus on recovery crash failures [16]. To our knowledge this
is the first performance study of the consistency/availability
trade-off for reconciliation after network partition with sys-
tem wide integrity constraints.

3. PRELIMINARIES
This section introduces the concepts needed to describe

the reconciliation algorithms and the their evaluation. We
will define the necessary terms such as object, partition and
replica as well as defining consistency criteria for partitions.



Moreover, we will introduce utility as a metric to be used in
Sections 4 and 5.

3.1 Objects
For the purpose of formalisation we associate data with

objects. Implementation-wise, data can be maintained in
databases and accessed via database managers.

Definition 1. An object o is a triple o = (S, op, T ) where
S is the set of possible states, op is the set of operations that
can be applied to the object state and T ⊆ S × op × S is a
transition relation on states and operations.

Transitions from a state s to a state s′ will be denoted by
s

α
; s′ where α ∈ op.

Definition 2. An integrity constraint c is a predicate
over multiple object states. c ⊆ S1 × S2 × . . .× Sn where n
is the number of objects in the system.

Intuitively, object operations should only be performed if
they do not violate integrity constraints. The results pre-
sented in this paper are not affected by whether integrity
constraints are checked before or after operations.

A distributed system with replication has multiple replicas
for every object located on different nodes in the network.
As long as no failures occur, the existence of replicas has no
effect on the functional behaviour of the system. Therefore,
the state of the system in the normal mode can be modelled
as a set of replicas, one for each object.

Definition 3. A replica r for object o = (S, op, T ) is a
triple r = (L, s0, sm) where the log L = 〈α1 . . . αm〉 is a
sequence of applied operations αi ∈ op. The initial state is

s0 ∈ S and sm ∈ S is a state such that s0 α1
; . . .

αm
; sm.

3.2 Partition
We consider partitions that have been operating indepen-

dently and we assume the nodes in each partition to agree on
one primary replica for each object. Moreover, we assume
that all objects are replicated across all nodes. For the pur-
pose of reconciliation the important aspect of a partition is
not how the actual nodes in the network are connected but
the replicas whose states have been updated separately and
need to be reconciled. Thus, the state of each partition can
be modelled as a set of replicas where each object is uniquely
represented.

Definition 4. A partition p is a set of replicas r such
that if ri, rj ∈ p are both replicas for object o then ri = rj.

The state of a partition p = {(L1, s
0
1, s1), . . . , (Ln, s0

n, sn)}
consists of 〈s1, . . . , sn〉. Transitions over object states can
now be naturally extended to transitions over partition states.

Definition 5. sj
α
; sj+1 is a partition transition if and

only if there is an object oi such that si
α
; s′i is a transition

for oi, sj = 〈s1, . . . , si, . . . , sn〉 and sj+1 = 〈s1, . . . , s
′
i, . . . , sn〉.

3.3 Order
Operations can have dependencies on other operations. If

the operations are executed in a transactional context most
of these dependencies are made explicit. We will use a before
relation as described by Preguica et al. [11].

Definition 6. Two operations can be related as α → β
meaning that operation α must be before the operation β.

Note that this relation creates an ordering of operations.
However, the existence of α in an operation log does not
require that β is present and vice versa. Our algorithms can
be extended to other ordering relations such as causality.
It is also possible to extend with the “must have” relation
(� of [11]) ,which would allow more general dependencies.
However, for the trade-offs that we study we consider the
before ordering relation adequate.

Note also that the order relationship induces an ordering
on states along the time line whereas the consistency con-
straints relate the states of various objects at a given “time
point” (a cut of the distributed system).

3.4 Consistency
Our reconciliation algorithms will take a set of partitions

and produce a new partition. As there are integrity con-
straints on the system state and order dependencies on op-
erations, a reconciliation algorithm must make sure that the
resulting partition is correct with respect to both of these
requirements. This section defines consistency properties for
partitions.

Definition 7. A partition state s = 〈s1, . . . , sn〉 for par-
tition P = {(L1, s

0
1, s1), . . . , (Ln, s0

n, sn)} is constraint con-
sistent iff for all integrity constraints c it holds that s ∈ c.

Next we define a consistency criterion for partitions that
also takes into account the order requirements on operations
in logs. Intuitively we require that there is some way to con-
struct the current partition state from the initial state using
all the operations in the logs. Moreover all the intermedi-
ate states should be constraint consistent and the operation
ordering must follow the ordering restrictions.

Definition 8. Let P = {(L1, s
0
1, s1), . . . , (Ln, s0

n, sn)} be
a partition, and let sk be the partition state. The initial
partition state is s0 = 〈s0

1, . . . s
0
n〉. We say that the partition

P is consistent if there exists an operation sequence L =
〈α1, . . . , αk〉 such that:

1. α ∈ Li ⇒ α ∈ L

2. s0
α1
; . . .

αk
; sk

3. Every sj ∈ {s0, . . . , sk} is constraint consistent

4. αi → αj ⇒ i < j

We will use the above correctness criterion in evaluation
of our reconciliation algorithms.

3.5 Utility
Note that a partition with empty logs can still be a con-

sistent partition. A goal of the reconciliation algorithms will
be to create a new partition, and within it include as many
operations as possible already performed within the exist-
ing partitions (during the time that the system operated in
degraded mode). However, this might not be possible due
to strict consistency requirements. Since some of the oper-
ations will have to be dropped it is useful to have a notion
of usefulness for various operations. For now we will simply
define a notion of utility and assume that it is dictated by
the application. Later we will discuss how utility can be tied
to execution times and what other utility functions could be
used.



Definition 9. Let opi be the operations for object oi. A
utility function U :

Sn
i=1 opi → R is a mapping from the

operations to a real number.

The definition can be extended to apply to a partition by
letting the utility of a partition be the sum of the utilities
of all the executed operations appearing in the logs of the
partition.

4. RECONCILIATION ALGORITHMS
This section presents three reconciliation algorithms that

deal with multi-object constraints. The first algorithm is
based on state transfer whereas the other two use opera-
tion transfer. The operation based algorithms rely on the
assumption that there is a desired partial ordering of op-
erations. The partial order is based on the before relation
defined in Section 3.3. We make this assumption to be able
to concentrate on the problem of constraint consistency. If
the “before” relation of the operations is such that there are
cycles, then some operations must first be removed so that a
partial order can be created. How such a cyclic dependency
graph can be made acyclic was first investigated by David-
son [4]. Moreover, we assume that all the partitions that
the algorithms take as input have a common initial state.
So s0i = s0j where i and j denotes different partitions.

The reconciliation starts when the network is no longer
physically partitioned. This information is assumed to be
available through a group membership service. The recon-
ciliation is performed at one node. Therefore in the first
phase replicas must transfer the partition logs to this coor-
dinator node. Once the reconciliation algorithm has been
performed at this node the post partition state is replicated
back to all nodes.

4.1 Choose states
The reconciliation process aims at creating a resulting par-

tition state from a number of partition states. If consistency
is maintained in each partition during the degraded mode
then each partition state is correct prior to reconciliation.
However, as this paper does not aim to model the replica-
tion protocols during normal and degraded mode, we start
by assuming that partition states are consistent.

One approach would be to select any of the partitions’
states as the final state of the system. Another approach
would be to construct the repaired partition state by com-
bining the object states from several partitions. However,
such a constructed state cannot be guaranteed to be con-
sistent. Therefore, that approach will not be investigated
here. In Algorithm 1 a partition choosing algorithm is de-
scribed. What partition to choose as the resulting partition
can depend on the application, but since this presentation
is focused on maximising the utility and minimising recon-
ciliation time we let the algorithm choose using the function
GetPartWithMaxUtility. This function selects from a set
of partitions the partition with the highest utility.

This approach generates a consistent partition. In a way
this approach is very similar to having only one partition
(e.g. the majority) operating in the partitioned phase. Al-
though the system proceeds to service in different partitions
in degraded mode, there are requests that the clients believe
to be accepted and will later be undone.

4.2 Merging operation sequences

Algorithm 1 CHOOSE1

Input: p1, . . . , pm /* m partitions */

Output: 〈P, Reject〉 /* P : A new partition
Reject: rejected operations */

P = GetPartWithMaxUtility(p1, . . . , pm)
for each p in {p1, . . . , pm}
do if p 6= P

then op← GetAllOps(p)
for each α in op
do Reject← Reject ∪ {α}

return 〈P, Reject〉

Instead of just choosing one state, merging can be done
on an operation level. That is, to start from the initial state
and re-execute the operations from the different partitions
so that as many operations as possible are accepted. This
means aiming for the highest possible utility. One way to do
this is by simply merging the sequences of operations that
have been stored in the replicas at each partition and ap-
ply them in order. The algorithm MERGE implements this
idea and uses the order specified by the predefined operation
ordering.

Before describing the algorithm we present a function
called AddSuccs that takes a partially ordered set and an
element α and adds to the set the sole successors of α (suc-
cessors that are not successors of another element in the set).
Moreover we introduce the function Apply, which is defined
as follows Apply(α, p) = p \ {r} ∪ r′ where r = (L, s0, sm)
is a replica for object o = (S, op, T ) and α ∈ op. r′ = (L +

〈α〉, s0, sm+1) is also a replica for o and (sm α
; sm+1) ∈ T .

Algorithm 2 starts by creating a set of candidate elements
from which the next operation to execute is chosen. The first
candidate contains the elements that have no predecessor in
the set of operations. When an operation is executed it
is removed from the candidate set and replaced by its sole
successors. If the result is consistent then the new resulting
partition is updated. Otherwise the operation is put in the
set of rejected operations. This procedure is repeated until
all the elements have been considered.

Algorithm 2 MERGE

Input: p1, . . . , pm /* m partitions */
→ /*a partial ordering relation for

all the operations in the domain */

Output: 〈P, Reject〉 /* P : A new partition
Reject: rejected operations */

P = {(〈〉, s0
1, s

0
1), . . . , (〈〉, s0

n, s0
n)}

op←
S

p∈{p1,...,pm} GetAllOps(p)

SortedOp← Sort(op,→)
opcand ← GetLeastElements(SortedOp)
while opcand 6= ∅
do α← ChooseArbitraryElement(opcand)

opcand ← AddSuccs(opcand, {α}) \ {α}
if Apply(α, P ) is Constraint Consistent

then P ← Apply(α, P )
else Reject← Reject ∪ {α}

return 〈P, Reject〉



Note that this algorithm selects the elements nondeter-
ministically. Hence, there are potentially several different
results that can be obtained from using this algorithm on
the same partition set.

4.3 Greatest Expected Utility (GEU)
The previous algorithm does not try to order operations

to maximise the utility because it has no way of comparing
operation sequences and decide on one operation ordering
in preference to another. This section presents an algorithm
that tries to maximise the expected utility. To explain this
concept we will first introduce probability of violation.

4.3.1 Probability of Violation
A reconciliation process must make decisions about the

order that operations are to be performed at each replica.
Recall that operation ordering requirements and integrity
constraints are orthogonal. Even if the execution of an op-
eration is acceptable with regard to the operation ordering
(→) it can put the partition in an inconsistent state after
execution. Moreover, it could be the case that applying a
particular operation from another partition may hinder the
execution of operations that have taken place within this
partition. Trying out the operations to see if an inconsis-
tency is caused can turn out to be very time consuming. So
the ideal situation would be to decide whether a given oper-
ation should be executed or not without actually executing
it. Suppose that for each operation we could determine the
probability that we would get an inconsistency if we were to
apply it. Then this probability of violation could be used to
selectively build execution sequences for the resulting parti-
tion.

One may wonder how such a parameter would be ob-
tained. In a real application we must be practical and con-
sider if we can calculate this probability from past history or
if it is possible to measure. We will explore an approach that
is based on system profiling. When the system is functioning
in normal mode the consistency violations are immediately
detected after applying an operation. By keeping track of
how often a particular operation causes an inconsistency we
get a rough measure of the probability of violation for that
particular operation.

4.3.2 Expected Utility
There are now two ways of measuring the appropriateness

of executing a given operation. The utility gives information
on how much there is to gain from executing the operation.
The probability of violation, on the other hand, tells us what
are the chances of getting a result that cannot be used.

The expected utility is a measure of what we can expect to
achieve given the utility and the violation probability. We
quantify the gain of a successful application of the operation
α with its utility U(α). The expected utility of operation α
is EU(α) = (1− Pviol(α)) ·U(α)− Pviol(α) ·U(α) ·C where
Pviol(α) is the probability of violation for operation α. The
scaling factor C reflects the fact that the cost of a violation
can be more expensive than just the loss of the utility of the
operation. Increasing C increases the importance of Pviol.
In all the experiments shown later we equate C with 10.

The success of the algorithm will depend on how well the
the expected utility can be estimated. The difficult part of
this estimate is to estimate probability of violation. The
U(α) part, that is the utility of an operation, can to begin

with be uniform for all actions. But profiling will punish
those operations whose constraints were often violated in
the lifetime of the system.

4.3.3 The Algorithm
In Algorithm 3 the expected utility is used to choose op-

eration orderings. The algorithm starts by collecting the
operations and chooses a set of candidates in the same way
as MERGE. But instead of choosing arbitrarily among the
candidates, the operation with the highest expected utility
is chosen.

If an operation is successfully executed (leads to a consis-
tent state) a new set of candidates is created. If, on the other
hand, the execution of an operation leads to an inconsistent
state then the state is reverted to the previous state and the
operation is put in the set of tried operations. The num-
ber of times an operation can be unsuccessfully executed
due to inconsistencies is bounded by the input parameter
TryBound. When the number of tries exceeds this bound
the operation is abandoned and put in the set of rejected
operations.

If the set of tried elements is equal to the set of candidates
(meaning that none of the operations could be applied with-
out causing an inconsistency) then the operation with the
lowest expected utility is replaced by its successors. This en-
sures that the algorithm terminates and all operations are
tried.

Algorithm 3 GEU

Input: p1, . . . , pm /* m partitions */
→ /*a partial ordering relation for

all the operations in the domain */
TryBound /* Maximum number of times an

operation is tried */

Output: 〈P, Reject〉 /* P : A new partition
Reject: rejected operations */

P = {(〈〉, s0
1, s

0
1), . . . , (〈〉, s0

n, s0
n)}

op←
S

p∈{p1,...,pm} GetAllOps(p)

SortedOp← Sort(op,→)
opcand ← GetLeastElements(SortedOp)
Tried← ∅/* Set of tried elements */
∀α ∈ op : TryCount(α)← 0
while opcand 6= ∅
do α← ChooseHighestEU(opcand \ Tried)

if Apply(α, P ) is Constraint Consistent
then P ← Apply(α, P )

opcand ← AddSuccs(opcand, α) \ {α}
Tried← ∅

else TryCount(α)← TryCount(α) + 1
if TryCount(α) > TryBound

then opcand ← AddSuccs(opcand, α) \ α
Reject← Reject ∪ {α}

else Tried← Tried ∪ {α}
/* If all operations in opcand have been tested, */
if Tried = opcand 6= ∅

then /* remove the element with lowest EU */
α← ChooseLowestEU(opcand)
opcand ← AddSuccs(opcand, α) \ {α}
Tried← Tried \ {α}
Reject← Reject ∪ α

return 〈P, Reject〉



5. EVALUATION
The algorithms have been evaluated both by a theoretical

study and through experimental studies.

5.1 Correctness
Using the definitions of consistency in Section 3 we have

shown that Algorithms 2 and 3 are correct, in the sense of
producing consistent states.

Theorem 1. MERGE and GEU lead to consistent parti-
tions.

The proof is omitted due to space limitations.

5.2 Experimental Evaluation
This section contains an experimental evaluation of the

three algorithms. First we will explain what metrics we
have used and how we expect the algorithms to behave. We
have written a test bed application for evaluation purposes,
which will be described shortly. An explanation of how the
simulations were done is finally followed by the simulation
results.

5.2.1 Performance metrics
We have introduced utility as a metric to compare the use-

fulness for each operation and we can therefore talk about
the utility of a reconciliation function as the accumulated
utility from the applied operations minus the utility of the
rejected operations. The utility of an operation can be de-
pendent on a number of factors, the lost benefit if it is not
applied, or the economic gain for a business that gets paid
by its customers for delivered service. Also, the time taken
to execute an operation is important if we are considering
undoing/redoing the operation; thus, the higher the execu-
tion time the lower utility. However, we will in this paper let
the utility be a random number, which is assigned to each
operation.

The reason that there are several divergent partitions to
reconcile is that they have been accepting updates as a
way to increase availability of the system. As the system
does not accept new updates during the reconciliation pro-
cess, all the time spent performing reconciliation will re-
duce the availability. The time that the system is par-
tially unavailable is the sum of the time to repair from net-
work partition plus the time taken to reconcile the system1,
TUnavailable = TRepair + TReconcile. Note that the recon-
ciliation time TReconcile can also be divided in two parts,
TConstruct, which is the time to construct a new partition
state and TReject, which is the time taken to perform all
the necessary actions for the operations that have been re-
jected. This rejection mechanism potentially involves send-
ing a notification to the client, which will then try to redo
the operation. So TReconcile = TConstruct + TReject. If no
notification of the clients are necessary or rejecting an oper-
ation for some other reason takes little time to perform then
there is little use in spending time constructing an elaborate
partition state. If, on the other hand, the undo operation is
expensive in time then minimising TReject is the main goal.

With the experimental evaluation we aim to demonstrate
that for short time to repair and a short reject time for op-
erations the CHOOSE1 algorithm is good enough. Since
1For some reconciliation algorithms it may be possible to
accept new operations during reconciliation but this com-
plicates maintaining expectations of consistency at clients.

the system does not stay long in degraded mode there are
not many operations lining up and therefore the loss of util-
ity is outweighed by the gain of a short construction time
TConstruct. However, we expect the MERGE and GEU algo-
rithms to achieve much better utility for longer repair times
and thus also shorter reconciliation times. Moreover, we will
demonstrate that the key to choosing between MERGE and
GEU is the time needed to reject operations. If undoing an
operation is time consuming then the GEU algorithm should
perform better than MERGE as it aims at minimising the
number of rejected operations.

5.2.2 Test Bed Application
A demo application has been developed to serve as a test

bed for trade-off studies. It is composed of a set of real num-
ber objects. Possible operations are the addition, multipli-
cation and division. An operation is applied to the current
value with a random constant. The constant is an integer
uniformly distributed between 0 < |m| < 11. This creates a
total of 60 distinct operations. There are also integrity con-
straints in the system expressed as:

P
ni + c1 <

P
nj + c2

where ni and nj are object values and c1, c2 are constants.
This allows for a wide variety of constraints to be expressed.
Although the application is very simple it is enough to give
an indication of how the algorithms perform. Moreover the
application is interesting in the sense that although the cur-
rent state is known it is hard to predict how the execution of
a certain operation will affect the consistency two or three
operations in the future.

5.2.3 Experimental setup
The application has been implemented in Python together

with the surrounding framework needed to perform the sim-
ulations. Eight objects were initialised with random num-
bers, uniformly distributed between -100 and 100. The re-
sults in this paper are based on five integrity constraints
created between two randomly chosen objects so that the
initial partition state was constraint consistent. 2

Each application instance was profiled during a phase
where 10000 operations were scheduled and statistics could
be gathered about whether the operations succeeded or not.
This data was then used to calculate Pviol. The system
was then split up into three partitions in which operations
were scheduled for execution with a load of 10 operations
per second. Each object received the same load of requests.
For each measurement point 100 samples were obtained and
averaged.

Each operation was assigned a utility with a normal dis-
tribution N(1.0, 0.1). The execution times of the algorithms
were measured by assigning execution times for different
steps of the algorithm, more specifically a step that does
not require disk access takes 100ns, disk operations take
1µs and the task of rejecting an operation takes 1ms. Con-
straint checking is a step that is assumed not to require disk
access. Rejecting an element is assumed to require notify-
ing clients over the network and is therefore far more time
consuming than other types of operations.

5.2.4 Results
In Figure 2 the utility of the reconciliation process is plot-

ted against the time to repair (that is, the time spent in

2Simulations have also been performed with more objects
and constraints with similar results.



degraded mode) which in turn decides the number of oper-
ations that are queued up during the degraded mode.
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Figure 2: Utility vs. Time to Repair [s]

It is clear that just choosing the state from one partition
will result in a low utility. The operations of all the other
partitions will be undone and this will result in a negative
utility given that the partitions are approximately of the
same size. If the utility of one partition would heavily out-
weigh the utility of the other partitions (or there would be
only two partitions) then the CHOOSE1 algorithm performs
significantly better. However, there would have to be a very
large imbalance for it to outperform the other algorithms.
Further experiments indicate that the gap remains even if
the time to reject for an operation is reduced by a factor of
10. As the MERGE algorithm is nondeterministic we have
also studied how it behaves over 100 runs with the same
input parameters. For 31s as time to repair the resulting
mean utility is 5881.1 and the standard deviation 31.5.

The upper curve shows the total utility which is the sumP
α∈op U(α) where op is the set of all operations appearing

in the partition logs. The optimal utility is less than or equal
to this sum. For the optimal utility to be equal to the total
utility it must be possible to execute the operations in such
an order that inconsistencies do not occur. Since operations
are chosen randomly this seems very unlikely. The GEU
algorithm performs slightly better than the MERGE and
the difference increases somewhat as the time to repair grows
(meaning more operations to reconcile).

In Figure 3 the reconciliation times of the algorithms (in-
cluding the time needed to deal with the rejected operations)
are compared. The graphs illustrate that the three algo-
rithms execute in linear time over the repair time (the longer
the duration of partition the higher the number of performed
operations). Essentially the results follow the same pat-
tern as before. The GEU algorithm performs slightly better
that the MERGE and both are significantly better than the
CHOOSE1 algorithm3. As the rejection of operations is the
most time consuming task this is not surprising. However,
since the MERGE and GEU show very similar results we
will study in more detail how the cost of rejection affects
the performance comparison between the two.

In Figure 4 the reconciliation times of MERGE and GEU

3The CHOOSE1 algorithm could benefit from parallelising
the task of undoing operations.
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Figure 3: Reconciliation Time [s] vs. Time to Re-
pair[s]

are plotted against the rejection time for one operation.
As the MERGE algorithm has a shorter construction time
TConstruct than GEU it will result in a shorter reconciliation
time when it is inexpensive to undo operations. When the
time to reject an operation increases the effect of the longer
construction time for GEU diminishes and the shorter total
rejection time TReject results in a total reconciliation time
that is shorter.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  5e-05  0.0001  0.00015  0.0002

R
ec

on
ci

lia
tio

n 
T

im
e 

[s
]

Time to Reject One Operation [s]

geu
merge

Figure 4: Reconciliation Time [s] vs. Time to Reject
One Operation [s]

6. CONCLUSION
In this paper we have studied the reconciliation process

with a focus on integrity constraint conflicts and the deci-
sions that affect the design of reconciliation algorithms. To
compare different algorithms we have both defined a theoret-
ical correctness criterion and experimental metrics. Three
reconciliation algorithms have been introduced.

We have studied the correctness properties of the algo-
rithms as well as an experimental evaluation on the per-
formance of the algorithms. With this evaluation we have
demonstrated how the choice of reconciliation algorithm should
be affected by parameters such as how long the average time
is for the system to repair from network partitions and time



to reject an operation. CHOOSE1 should be considered in
systems where the cost of rejecting operations is low and
time to repair is short. This is because of the very short
time required to create the post-partition state. However,
when the time to repair a partition is long then MERGE
and GEU will give higher utility than the CHOOSE1 al-
gorithm. Which of the two algorithms performs best de-
pends on the time it takes to reject(undo) one operation.
MERGE requires more operations to be rejected but is bet-
ter at quickly constructing a consistent partition state than
the GEU algorithm.

More work needs to be done in considering the interaction
between replication protocols and reconciliation protocols.
Future work includes applying a selected reconciliation al-
gorithm in a scenario with a realistic application and study-
ing the implications of the choice of replication algorithm.
Moreover, other utility functions relating to the state of the
system are interesting to study as well as a more fine-grained
metric to estimate the probability of violation.

The study of scale-up properties of the algorithms has
not been relevant for the simple model in which constraint
checking is assumed to be constant. Recall that the number
of nodes and objects is not relevant as long as it does not
affect the complexity of the constraints. Hence, scale-up
studies would need to take into account the impact of size
on complexity of constraints. Another direction for future
work is the study of uneven load amongst objects and bursty
request patterns that characterise hot-spots.
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