
Formalising Reconciliation in Partitionable

Networks with Distributed Services

Mikael Asplund and Simin Nadjm-Tehrani

Department of Computer and Information Science,
Linköping University SE-581 83 Linköping, Sweden

{mikas,simin}@ida.liu.se

1 Introduction

Modern command and control systems are characterised by computing services
provided to several actors at different geographical locations. The actors operate
on a common state that is modularly updated at distributed nodes using local
data services and global integrity constraints for validity of data in the value and
time domains. Dependability in such networked applications is measured through
availability of the distributed services as well as the correctness of the state
updates that should satisfy integrity constraints at all times. Providing support
in middleware is seen as one way of achieving a high level of service availability
and well-defined performance guarantees. However, most recent works [1, 2]
that address fault-aware middleware cover crash faults and provision of timely
services, and assume network connectivity as a basic tenet.

In this paper we study the provision of services in distributed object sys-
tems, with network partitions as the primary fault model. The problem appears
in a variety of scenarios [3], including distributed flight control systems. The
scenarios combine provision of critical services with data-intensive operations.
Clients can approach any node in the system to update a given object, copies
of which are present across different nodes in the system. A correct update of
the object state is dependent on validity of integrity constraints, potentially in-
volving other distributed objects. Replicated objects provide efficient access at
distributed nodes (leading to lower service latency). Middleware is employed for
systematic upholding of common view on the object states and consistency in
write operations. However, problems arise if the network partitions. That is, if
there are broken/overloaded links such that some nodes become unreachable,
and the nodes in the network form disjoint partitions. Then, if services are de-
livered to clients approaching different partitions, the upholding of consistency
has to be considered explicitly. Moreover, there should be mechanisms to deal
with system mode changes, with service differentiation during degraded mode.

Current solutions to this problem typically uphold full consistency at the
cost of availability. When the network is partitioned, the services that require
integrity constraints over objects that are no longer reachable are suspended
until the network is physically unified. Alternatively, a majority partition is
assumed to continue delivering services based on the latest replica states. When



the network is reunified the minority partition(s) nodes rejoin; but during the
partition clients approaching the minority partition receive no service. The goal
of our work is to investigate middleware support that enables distributed services
to be provided at all partitions, at the expense of temporarily trading off some
consistency. To gain higher availability we need to act optimistically, and allow
one primary per partition to provisionally service clients that invoke operations
in that partition.

The contributions of the paper are twofold. First, we present a protocol that
after reunification of a network partition takes a number of partition states
and generates a new partition state that includes a unique state per object. In
parallel with creating this new state the protocol continues servicing incoming
requests. Since the state of the (reconciled) post-reunification objects are not
yet finalised, the protocol has to maintain virtual partitions until all operations
that have arrived after the partition fault and provisionally serviced are dealt
with.

Second, we show that the protocol results in a stable partition state, from
which onwards the need for virtual partitions is no longer necessary. The proof
states the assumptions under which the stable state is reached. Intuitively, the
system will leave the reconciliation mode when the rate of incoming requests
is lower than the rate of handling the provisionally accepted operations dur-
ing reconciliation. The resulting partition state is further shown to have desired
properties. A notion of correctness is introduced that builds on satisfaction of
integrity constraints as well as respecting an intended order of performed oper-
ations seen from clients’ point of view.

The structure of the paper is as follows. Section 2 i provides an informal
overview of the formalised protocols in the paper. Section 3 introduces the basic
formal notions that are used in the models. Section 4 describes the intuitive rea-
soning behind the choice of ordering that is imposed on the performed operations
in the system and relates the application (client) expectations to the support that
can reasonably be provided by automatic mechanisms in middleware. Section 5
presents the reconciliation protocol in terms of distributed algorithms running
at replicas and in a reconciliation manager. Section 6 is devoted to the proofs
of termination and correctness for the protocol. Related work are described in
Sect. 7, and Sect. 8 concludes the paper.

2 Overview

We begin by assuming that middleware services for replication of objects are
in place. This implies that the middleware has mechanisms for creating replica
objects, and protocols that propagate a write operation at a primary copy to all
the object replicas transparently. Moreover, the mechanisms for detecting link
failures and partition faults are present in the middleware. The latter is typically
implemented by maintaining a membership service that keeps an up to date view
of which replicas for an object are running and reachable. The middleware also



includes naming/location services, whereby the physical node can be identified
given a logical address.

In normal mode, the system services read operations in a distributed man-
ner; but for write operations there are protocols that check integrity constraints
before propagating the update to all copies of the object at remote nodes. Both
in normal and degraded mode, each partition is assumed to include a designated
primary replica for each object in the system.

The integrity constraints in the system are assumed to fall in two classes:
critical and non-critical. For operations with non-critical constraints different
primary servers continue to service client requests, and provisionally accept the
operations that satisfy integrity constraints. When the partition fault is repaired,
the state of the main partition is formed by reconciling the operations carried
out in the earlier disjoint partitions. The middleware supports this reconciliation
process and guarantees the consistency of the new partition state. The state is
formed by replaying some provisional operations that are accepted, and rejecting
some provisional operations that should be notified to clients as ”undone”. It is
obviously desirable to keep as many of the provisionally accepted operations as
possible.

The goal of the paper is to formally define mechanisms that support the
above continuous service in presence of (multiple) partitions, and satisfactorily
create a new partition upon recovery from the fault. For a system that has a con-
siderable portion of its integrity constraints classified as non-critical this should
intuitively increase availability despite partitions. Also, the average latency for
servicing clients should decrease as some client requests that would otherwise
be suspended or considerably delayed if the system were to halt upon partitions
are now serviced in a degraded mode.

Figure 1 presents the modes of a system in presence of partition faults. The
system is available in degraded mode except for operations for which the integrity
constraints are critical so that they cannot accept the risk of being inconsistent
during partitions (these are not performed at all in degraded mode). The system
is also partially available during reconciling mode; but there is a last short stage
within reconciliation (installing state) during which the system is unavailable.

Reconciling mode

Degraded mode

Normal mode

Installing state

Partially available

Unavailable

StopInstall

Partially availableFully available

ReunifyPartition

Fig. 1. System modes



In earlier work we have formalised the reconciliation process in a simple
model and experimentally studied three reconciliation algorithms in terms of
their influence on service outage duration [4]. A major assumption in that work
was that no service was provided during the whole reconciliation process. Sim-
ulations showed that the drawback of the ‘non-availability’ assumption can be
severe in some scenarios; namely the time taken to reconcile could be long enough
so that the non-availability of services during this interval would be almost as
bad as having no degraded service at all (thereby no gain in overall availability).

In this paper we investigate the implications of continued service delivery
during the reconciliation process. This implies that we need to formalise a more
refined protocol that keeps providing service to clients in parallel with reconcili-
ation (and potential replaying of some operations). The algorithms are modelled
in timed I/O automata, that naturally model multiple partition faults occurring
in a sequence (so called cascading effects). More specifically, the fault model
allows multiple partition faults in a sequence before a network is reunified, but
no partitions occur during reconciliation. We also exclude crash faults during
reconciliation in order to keep the models and proofs easier to convey. Crash
faults can be accommodated using existing checkpointing approaches [5] with
no known effects on main results of the paper. Furthermore, we investigate cor-
rectness and termination properties of this more refined reconciliation protocol.
The proofs use admissible timed traces of timed I/O automata.

3 Preliminaries

This section introduces the concepts needed to describe the reconciliation proto-
col and its properties. We will define the necessary terms such as object, partition
and replica as well as defining consistency criteria for partitions.

3.1 Objects

For the purpose of formalisation we associate data with objects. Implementation-
wise, data can be maintained in databases and accessed via database managers.

Definition 1. An object o is a triple o = (S,O, T ) where S is the set of possible
states, O is the set of operations that can be applied to the object state and
T ⊆ S ×O × S is a transition relation on states and operations.

We assume all operation sets to be disjunct so that every operation is asso-
ciated with one object.

Transitions from a state s to a state s′ will be denoted by s
α
 s′ where

α = 〈op, k〉 is an operation instance with op ∈ O, and k ∈ IN denotes the unique
invocation of operation op at some client.

Definition 2. An integrity constraint c is a predicate over multiple object states.
Thus, c ⊆ S1 × S2 × . . . × Sn where n is the number of objects in the system.



Intuitively, object operations should only be performed if they do not violate
integrity constraints.

A distributed system with replication has multiple replicas for every object
located on different nodes in the network. As long as no failures occur, the
existence of replicas has no effect on the functional behaviour of the system.
Therefore, the state of the system in the normal mode can be modelled as a set
of replicas, one for each object.

Definition 3. A replica r for object o = (S,O, T ) is a triple r = (L, s0, sm)
where the log L = 〈α1 . . . αm〉 is a sequence of operation instances defined over

O. The initial state is s0 ∈ S and sm ∈ S is a state such that s0 α1

 . . .
αm

 sm.

The log can be considered as the record of operations since the last checkpoint
that also recorded the (initial) state s0.

We consider partitions that have been operating independently and we as-
sume the nodes in each partition to agree on one primary replica for each object.
This will typically be promoted by the middleware. Moreover, we assume that
all objects are replicated across all nodes. For the purpose of reconciliation the
important aspect of a partition is not how the actual nodes in the network are
connected but the replicas whose states have been updated separately and need
to be reconciled. Thus, the state of each partition can be modelled as a set of
replicas where each object is uniquely represented.

Definition 4. A partition p is a set of replicas r such that if ri, rj ∈ p are both
replicas for object o then ri = rj.

The state of a partition p = {(L1, s
0
1, s1), . . . , (Ln, s0

n, sn)} consists of the
state of the replicas 〈s1, . . . , sn〉. Transitions over object states can now be nat-
urally extended to transitions over partition states.

Definition 5. Let α = 〈op, k〉 be an operation instance for some invocation k

of operation op. Then sj
α
 sj+1 is a partition transition iff there is an object

oi such that si
α
 s′i is a transition for oi, sj = 〈s1, . . . , si, . . . , sn〉 and sj+1 =

〈s1, . . . , s
′

i, . . . , sn〉.

We denote by Apply(α, P ) the result of applying operation instance α at
some replica in partition P , giving a new partition state and a new log for the
affected replica.

3.2 Order

So far we have not introduced any concept of order except that a state is always
the result of operations performed in some order. When we later will consider
the problem of creating new states from operations that have been performed
in different partitions we must be able to determine in what (if any) order the
operations must be replayed.

At this point we will merely define the existence of a strict partial order
relation over operation instances. Later, in Sect. 4.2 we explain the philosophy
behind choosing this relation.



Definition 6. The relation → is a irreflexive, transitive relation over the oper-
ation instances obtained from operations O1 ∪ . . . ∪On.

In Definition 8 we will use this ordering to define correctness of a partition
state. Note that the ordering relation induces an ordering on states along the
time line whereas the consistency constraints relate the states of various objects
at a given “time point” (a cut of the distributed system).

3.3 Consistency

Our reconciliation protocol will take a set of partitions and produce a new parti-
tion. As there are integrity constraints on the system state and order dependen-
cies on operations, a reconciliation protocol must make sure that the resulting
partition is correct with respect to both of these requirements. This section de-
fines consistency properties for partitions.

Definition 7. A partition state s = 〈s1, . . . , sn〉 for partition where
P = {(L1, s

0
1, s1), . . . , (Ln, s0

n, sn)} is constraint consistent, denoted cc(P), iff
for all integrity constraints c it holds that s ∈ c.

Next we define a consistency criterion for partitions that also takes into ac-
count the order requirements on operations in logs. Intuitively we require that
there is some way to construct the current partition state from the initial state
using all the operations in the logs. Moreover, all the intermediate states should
be constraint consistent and the operation ordering must follow the ordering re-
strictions. We will use this correctness criterion in evaluation of our reconciliation
protocol.

Definition 8. Let P = {(L1, s
0
1, s1), . . . , (Ln, s0

n, sn)} be a partition, and let sk

be the partition state. The initial partition state is s0 = 〈s0
1, . . . s

0
n〉. We say that

the partition P is consistent if there exists a sequence of operation instances
L = 〈α1, . . . , αk〉 such that:

1. α ∈ Li ⇒ α ∈ L
2. s0

α1

 . . .
αk

 sk

3. Every sj ∈ {s0, . . . , sk} is constraint consistent
4. αi → αj ⇒ i < j

4 Application-Middleware Dependencies

In Sect. 3 we introduced integrity constraints and an order relation between
operations. These concepts are used to ensure that the execution of operations
is performed according to the clients’ expectations. In this section we will further
elaborate on these two concepts, and briefly explain why they are important for
reconciliation.

Due to the fact that the system continues to provisionally serve requests in
degraded mode, the middleware has to start a reconciliation process when the



system recovers from link failures (i.e. when the network is physically reunified).
At that point in time there may be several conflicting states for each object
since write requests have been serviced in all partitions. In order to merge these
states into one common state for the system we will have to replay the performed
operations (that are stored in the logs of each replica). Some operations may not
satisfy integrity constraints when multiple partitions are considered, and they
may have to be rejected (seen from a client perspective, undone). The replay
starts from the last common state (i.e. from before the partition fault occurred)
and iteratively builds up a new state. Note that the replay of an operation
instance may potentially take place in a different state compared to that where
the operation was originally applied in the degraded mode.

4.1 Integrity Constraints

Since some operations will have to be replayed we need to consider the conditions
required, so that replaying an operation in a different state than that it was
originally executed in does not cause any discrepancies. We assume that such
conditions are indeed captured by integrity constraints.

In other words, the middleware expects that an application writer has cre-
ated the needed integrity constraints such that replaying an operation during
reconciliation is harmless as long as the constraint is satisfied, even if the state
on which it is replayed is different from the state in which it was first executed.
That is, there should not be any implicit conditions that are checked by the
client at the invocation of the operation. In such a case it would not be possible
for the middleware to recheck these constraints upon reconciliation.

As an example, consider withdrawal from a credit account. It is acceptable to
allow a withdrawal as long as there is coverage for the account in the balance; it
is not essential that the balance should be a given value when withdrawal is all-
lowed. Recall that that an operation for which a later rejection is not acceptable
from an application point of view should be associated with a critical constraint
(thereby not applied during a partition at all). An example of such an operation
would be the termination of a credit account.

4.2 Expected Order

To explain the notion of expected order we will first consider a system in normal
mode and see what kind of execution order is expected by the client. Then
we will require the same expected order to be guaranteed by the system when
performing reconciliation. In our scenarios we will assume that a client who
invokes two operations α and β in sequence without receiving a reply between
them does not have any ordering requirements on the invocations. Then the
system need not guarantee that the operations are executed in any particular
order. This is true even if the operations were invoked on the same object.

Now assume that the client first invokes α and does not invoke β until it has
received a reply for α confirming that α has been executed. Then the client knows
that α is executed before β. The client process therefore assumes an ordering



between the execution of α and β due to the fact that the events of receiving a
reply for α precedes the event of invoking β. This is the order that we want to
capture with the relation → from Definition 6. When the reconciliation process
replays the operations it must make sure that this expected order is respected.

This induced order need not be specified at the application level. It can be
captured by a client side front end within the middleware, and reflected in a
tag for the invoked operations. Thus, every operation is piggybacked with infor-
mation about what other operations must precede it when it is later replayed.
This information is derived from the requests that are sent by the client and the
received replies. Note that it is only necessary to attach the IDs of the immediate
predecessors so the overhead will be small.

5 The Reconciliation Protocol

In this section we will describe the reconciliation protocol in detail using timed
I/O automata. However, before going into details we provide a short overview of
the idea behind the protocol. The protocol is composed of two types of processes:
a number of replicas and one reconciliation manager.

The replicas are responsible for accepting invocations from clients and send-
ing logs to the reconciliation manager during reconciliation. The reconciliation
manager is responsible for merging replica logs that are sent during reconciling
mode. It is activated when the system is reunified and eventually sends an in-
stall message with the new partition state to all replicas. The new partition state
includes empty logs for each replica.

The reconciliation protocol starts with one state per partition is faced with
the task of merging a number of operations that have been performed in different
partitions while preserving constraint consistency and respecting the expected
ordering of operations. In parallel with this process the protocol should take care
of operations that arrive during the reconciliation phase. Note that there may be
unreconciled operations in the logs that should be executed before the incoming
operations that arrive during reconciliation.

The state that is being constructed in the reconciliation manager may not yet
reflect all the operations that are before (→) the incoming operations. Therefore
the only state in which the incoming operation can be applied to is one of the
partition states from the degraded mode. Or in other words, we need to execute
the new operations as if the system was still in degraded mode. In order to do
this we will maintain virtual partitions while the reconciliation phase lasts.

5.1 Reconciliation Manager

In Algorithm 1 the variable mode represents the modes of the reconciliation
process and is basically the same as the system modes described in Fig. 1 except
that the normal and degraded mode are collapsed into an idle mode for the
reconciliation manager, which is its initial mode of operation.



When a reunify action is activated the reconciliation manager goes to recon-
ciling mode. Moreover, the variable P , which represents the partition state, is
initialised with the pre-partition state, and the variable opset that will contain
all the operations to replay is set to empty. Now the reconciliation process starts
waiting for the replicas to send their logs and the variable awaitedLogs is set to
contain all replicas that have not yet sent their logs.

Next, we consider the action receive(〈“log′′, L〉)iM which will be activated
when some replica ri sends its operation log. This action will add logged oper-
ations to opset and to ackset[i] where the latter is used to store acknowledge
messages that should be sent back to replica ri. The acknowledge messages are
sent by the action send(〈“logAck′′, ackset[i]〉)Mi. When logs have been received
from all replicas (i.e. awaitedLogs is empty) then the manager can proceed and
start replaying operations. A deadline will be set on when the next handle action
must be activated (this is done by setting last(handle)).

The action handle(α) is an internal action of the reconciliation process that
will replay the operation α (which is minimal according to → in opset) in the
reconciled state that is being constructed. The operation is applied if it results
in a constraint consistent state.

As we will show in Sect. 6.2, there will eventually be a time when opset is
empty at which M will enable broadcast(“stop′′)M . This will tell all replicas to
stop accepting new invocations. Moreover, M will set the mode to installingState
and wait for all replicas to acknowledge the stop message. This is done to guar-
antee that no messages remain untreated in the reconciliation process. Finally,
when the manager has received acknowledgements from all replicas it will broad-
cast an install message with the reconciled partition state and enter idle mode.

5.2 Replica Process

A replica process (see Algorithm 2) is responsible for receiving invocations to
clients and for sending logs to M . We will proceed by describing the states and
actions of a replica process. First note that a replica process can be in four dif-
ferent modes, normal, degraded, reconciling, and unavailable which correspond
to the system modes of Fig. 1.

In this paper we do not explicitly model how updates are replicated from
primary replicas to secondary replicas. Instead, we introduce two global shared
variables that are accessed by all replicas, provided that they are part of the
same group. The first shared variable P [i] represents the partition for the group
with ID i and it is used by all replicas in that group during normal and degraded
mode. The group ID is assumed to be delivered by the membership service.

During reconciling mode the group-ID will be 1 for all replicas since there
is only one partition during reconciling mode. However, as we explained in the
beginning of Sect. 5 the replicas must maintain virtual partitions to service
requests during reconciliation. The shared variable VP[j] is used to represent
the virtual partition for group j which is based on the partition that was used
during degraded mode.



Algorithm 1 Reconciliation manager M

States

mode ∈ {idle, reconciling, installingState} ← idle

P ← {(〈〉, s0
1, s

0
1), . . . , (〈〉, s

0
n, s0

n)}/* Output of protocol: Constructed partition */
opset /* Set of operations to reconcile */
awaitedLogs /* Replicas to wait for sending a first log message */
stopAcks /* Number of received stop “acks”*/
ackset[i]← ∅ /* Log items from replica i to acknowledge*/
now ∈ IR0+

last(handle)←∞ /* Deadline for executing handle */
last(stop)←∞ /* Deadline for sending stop */
last(install)←∞ /* Deadline for sending install */

Actions

Input reunify(g)M

Eff: mode← reconciling

P ← {(〈〉, s0
1, s

0
1), . . . , (〈〉, s

0
n, s0

n)}
opset← ∅
awaitedLogs← {All replicas}

Input receive(〈“log”, L〉)iM

Eff: opset← opset ∪ L

ackset[i]← ackset[i] ∪ L

if awaitedLogs 6= ∅
awaitedLogs← awaitedLogs \ {i}

else
last(handle)←

min(last(handle), now + dhan)

Output send(〈“logAck”, ackset[i]〉)Mi

Eff: ackset[i]← ∅
Internal handle(α)
Pre: awaitedLogs = ∅

mode = reconciling

α ∈ opset

∄β ∈ opset β → α

Eff: if cc(Apply(α,P ))
P ← Apply(α,P )

last(handle)← now + dhan

opset← opset \ {α}
if opset = ∅

last(stop) = now + dact

Output broadcast(“stop”)M

Pre: opset = ∅
awaitedLogs = ∅

Eff: stopAcks← 0
mode← installingState

last(handle)←∞
last(stop)←∞

Input receive(〈“stopAck”〉)iM

Eff: stopAcks ← stopAcks + 1
if stopAck = mn

last(install) = now + dact

Output broadcast(〈“install”, P 〉)M

Pre: mode = installingState

stopAcks = m · n
Eff: mode← idle

last(install) =∞

Timepassage v(t)
Pre: now + t ≤ last(handle)

now + t ≤ last(stop)
now + t ≤ last(install)

Eff: now ← now + t



During normal mode replicas apply operations that are invoked through the
receive(〈“invoke”, α〉)cr action if they result in a constraint consistent partition.
A set toReply is increased with every applied operation that should be replied
to by the action send(〈“reply′′, α〉)rc.

A replica leaves normal mode and enters degraded mode when the group
membership service sends a partition message with a new group-ID. The replica
will then copy the contents of the previous partition representation to one that
will be used during degraded mode. Implicit in this assignment is the determi-
nation of one primary per partition for each object in the system (as provided
by a combined name service and group membership service). The replica will
continue accepting invocations and replying to them during degraded mode.

When a replica receives a reunify message it will take the log of operations
served during degraded mode (the set L) and send it to the reconciliation man-
ager M by the action send(〈“log′′, L〉)rM . In addition, the replica will enter
reconciling mode and copy the partition representation to a virtual partition
representation. The latter will be indexed using virtual group-ID vg which will
be the same as the group-ID used during degraded mode. Finally, a deadline will
be set for sending the logs to M .

The replica will continue to accept invocations during reconciliation mode
with some differences in handling. First of all, the operations are applied to a
virtual partition state. Secondly, a log message containing an applied operation is
immediately scheduled to be sent to M . Finally, the replica will not immediately
reply to the operations. Instead it will wait until the log message has been
acknowledged by the reconciliation manager and receive(〈“logAck′′, L〉)Mr is
activated. Now any operation whose reply was pending and for whom a logAck
has been received can be replied to (added to the set toReply).

At some point the manager M will send a stop message which will make the
replica to go into unavailable mode and send a stopAck message. During this
mode no invocations will be accepted until an install message is received. Upon
receiving such a message the replica will install the new partition representation
and once again go into normal mode.

6 Properties of the Protocol

The goal of the protocol is to restore consistency in the system. This is achieved
by merging the results from several different partitions into one partition state.
The clients have no control over the reconciliation process and in order to guar-
antee that the final result does not violate the expectations of the clients we need
to assert correctness properties of the protocol. Moreover, as there is a growing
set of unreconciled operations we need to show that the protocol does not get
stuck in reconciliation mode for ever.

In this section we will show that (1) the protocol terminates in the sense that
the reconciliation mode eventually ends and the system proceeds to normal mode
(2) the resulting partition state which is installed in the system is consistent in
the sense of Definition 8.



Algorithm 2 Replica r

Shared vars

P [i]← {(〈〉, s0
1, s

0
1), . . . , (〈〉, s

0
n, s0

n)}, for i = 1 . . . N /* Representation for partition i,
before reunification */

VP[i], for i = 1 . . . N /* Representation for virtual partition i, after reunification */

States

mode ∈ {normal, degraded, reconciling, unavailable} ← idle

g ∈ {1 . . . N} ← 1 /* Group identity (supplied by group membership service) */
vg ∈ {1 . . . N} ← 1 /* Virtual group identity, used between reunification and install */
L← ∅ /* Set of log messages to send to reconciliation manager M*/
toReply ← ∅ /* Set of operations to reply to */
pending ← ∅ /* Set of operations to reply to when logged */
enableStopAck /* Boolean to signal that a stopAck should be sent */
last(log)←∞ /* Deadline for next send(〈“log′′, . . .〉) action */
last(stopAck)←∞ /* Deadline for next send(〈“stopAck′′, . . .〉) action */
now ∈ IR0+

Actions

Input partition(g′)r

Eff: mode← degraded

P [g′]← P [g]
g ← g′

Input reunify(g′)r

Eff: L← Lr where 〈Lr, s
0
r, sr〉 ∈ P

mode← reconciling

vg ← g

VP[vg]← P [g]
g ← g′

last(log)← now + dact

Input receive(〈“invoke”, α〉)cr

Eff: switch(mode)
normal | degraded⇒

if Apply(α,P [g]) is Consistent)
P [g]← Apply(α,P [g])
toReply ← toReply ∪ {〈α, c〉}

reconciling ⇒
if Apply(α,VP[vg]) is Consistent)

VP[vg]← Apply(α,VP[vg])
L← L ∪ {α}
last(log)← min(last(log), now + dact)
pending ← pending ∪ {〈α, c〉}

Output send(〈“log′′, L〉)rM

Pre: mode ∈ {reconciling, unavailable}
L 6= ∅

Eff: L← ∅
last(log)←∞

Input receive(〈“logAck′′, L〉)Mr

Eff: replies← {〈α, c〉 ∈ pending | α ∈ L}
toReply ← toReply ∪ replies

pending ← pending \ replies

Output send(〈“reply′′, α〉)rc

Pre: 〈α, c〉 ∈ toReply

Eff: toReply ← toReply \ {〈α, c〉}

Input receive(“stop′′)Mr

Eff: mode← unavailable

enableStopAck← true

last(stopAck)← now + dact

Output send(〈“stopAck′′〉)rM

Pre: enableStopAck = true

L = ∅
Eff: enableStopAck = false

last(stopAck)←∞

Input receive(〈“install′′, P ′〉)Mr

Eff: P [g]← P ′ /* g = 1 */
mode← normal

Timepassage v(t)
Pre: now + t ≤ last(log)

now + t ≤ last(stopAck)
Eff: now ← now + t



6.1 Assumptions

The results rely on a number of assumptions on the system. We assume a par-
tially synchronous system with reliable broadcast. Moreover, we assume that
there are bounds on duration and rate of partition faults in the network. Finally
we need to assume some restrictions on the behaviour of the clients such as the
speed at which invocations are done and the expected order of operations. The
rest of the section describes these assumptions in more detail.

Network Assumptions. We assume that there are two time bounds on the
appearance of faults in the network. TD is the maximal time that the network can
be partitioned. TF is needed to capture the minimum time between two faults.
The relationship between these bounds are important as operations are piled up
during the degraded mode and the reconciliation has to be able to handle them
during the time before the next fault occurs.

We will not explicitly describe all the actions of the network but we will
give a description of the required actions as well as a list of requirements that
the network must meet. The network assumptions are summarised in N1-N6,
where N1, N2, and N3 characterise reliable broadcast which can be supplied by
a system such as Spread[6]. Assumption N4 relates to partial synchrony which
is a basic assumption for fault-tolerant distributed systems. Finally we assume
that faults are limited in frequency and duration (N5,N6) which is reasonable,
as otherwise the system could never heal itself.

N1 A receive action is preceded by a send (or broadcast) action.
N2 A sent message is not lost unless a partition occurs.
N3 A sent broadcast message is either received by all in the group or a partition

occurs and no process receives it.
N4 Messages arrive within a delay of dmsg (including broadcast messages).
N5 After a reunification, a partition occurs after an interval of at least TF.
N6 Partitions do not last for more than TD.

Client Assumptions. In order to prove termination and correctness of the
reconciliation protocol we need some restrictions on the behaviour of clients.

C1 The minimum time between two invoke actions from one client is dinv.
C2 If there is an application-specific ordering between two operations, then the

first must have been replied to before the second was invoked. Formally,
admissible timed system traces must be a subset of ttraces(C2). ttraces(C2)
is defined as the set of sequences such that for all sequences σ in ttraces(C2):
α → β and (send(〈“invoke′′, β〉)cr, t1) ∈ σ ⇒
∃(receive(〈“reply′′, α〉)r′c, t0) ∈ σ for some r′ and t0 < t1.

In Table 1 we summarise all the system parameters relating to time intervals
that we have introduced so far.



Table 1. Parameter summary

TF Minimal time before a partition fault after a reunify

TD Maximal duration of a partition

dmsg Maximal message transmission time

dinv Minimal time between two invocations from one client

dhan Maximal time between two handle actions within reconciliation manager

dact Deadline for actions

Server Assumptions. As we are concerned with reconciliation and do not
want go into detail on other responsibilities of the servers or middleware (such
as checkpointing), we will make two assumptions on the system behaviour that
we do not explicitly model. First, in order to prove that the reconciliation phase
ends with the installment of a consistent partition state, we need to assume that
the state from which the reconciliation started is consistent. This is a reasonable
assumption since normal and degraded mode operations always respect integrity
constraints. Second, we assume that the replica logs are empty at the time when
a partition occurs. This is required to limit the length of the reconciliation as we
do not want to consider logs from the whole life time of a system. In practice,
this has to be enforced by implementing checkpointing during normal operation.

A1 The initial state s0 is constraint consistent (see Definition 7).
A2 All replica logs are empty when a partition occurs.

We will now proceed to prove correctness of the protocol. First we give a
termination proof and then a partial correctness proof.

6.2 Termination

In this section we will prove that the reconciliation protocol will terminate in
the sense that after the network is physically healed (reunified) the reconcili-
ation protocol eventually activates an install message to the replicas with the
reconciled state. As stated in the theorem it is necessary that the system is able
to replay operations at a higher rate than new operations arrive (reflected in the
ratio q).

Theorem 1. Let the system consist of the model of replicas, and the model
of reconciliation manager. Assume the conditions described in Sect. 6.1. As-
sume further that the ratio q between the minimum handling rate 1

dhan

and

the maximum interarrival rate for client invocations C · 1
dinv

, where C is the
maximum number of clients, is greater than one. Then, all admissible system
traces are in the set ttraces(Installing) of action sequences such that for every
(reunify(g)M , t) there is a (broadcast(〈“install”, P 〉)M , t′) in the sequence, with
t < t′, provided that TF > TD+7d

q−1
+ 9d, where d exceeds dmsg and dact.



t
log

t
reun
Mt

p

Partition Reunification Partition

Time

TI TH TE

t
inst

t
e

TD TF

Fig. 2. Reconciliation timeline

Proof. Consider an arbitrary admissible timed trace γ such that
(reunify(g)M , treun

M ) appears in γ. Let all time points ti below refer to points in
γ. The goal of the proof is to show that there exists a point tinst after treun

M , at
which there is an install message appearing in γ.

The timing relation between two partitions and the time line for manager M
can be visualised in Fig. 2 (see N5 and N6). Let treun

i denote the time point at
which the reunification message arrives at process i. The reconciliation activity is
performed over three intervals: initialising (TI), handling (TH), and ending (TE).
The proof strategy is to show that the reconciliation activity ends before the
next partition occurs, considering that it takes one message transmission for the
manager to learn about reunification. That is, dmsg + TI + TH + TE < TF.

Let tlog be the last time point at which a log message containing a pre-
reunification log is received from some replica. This is the time point at which
handling (replaying) operations can begin. The handling interval (TH) ends when
the set of operations to replay (opset) is empty. Let this time point be denoted
by te.

Initialising:
TI = tlog − treun

M

The latest estimate for tlog is obtained from the latest time point at which a
replica may receive this reunification message (treun

r ) plus the maximum time for
it to react (dact) plus the maximum transmission time (dmsg).

TI ≤ max
r

(treun
r ) + dact + dmsg − treun

M

By N4 all reunification messages are received within dmsg.

TI ≤ treun
M + dmsg + dact + dmsg − treun

M ≤ 2dmsg + dact (1)

Handling: The maximum handling time is characterised by the maximum num-
ber of invoked client requests times the maximum handling time for each op-
eration (dhan, see Algorithm 1), times the maximum number of clients C. We
divide client invocations in two categories, those that arrive at the reconciliation
manager before tlog and those that arrive after tlog.

TH ≤
(

[pre-tlog messages] + [post-tlog messages]
)

· C · dhan



The maximum time that it takes for a client invocation to be logged at M is
equal to 2dmsg + dact, consisting of the transmission time from client to replica
and the transmission time from replica to manager as well as the reaction time
for the replica. The worst estimate of the number of post-tlog messages includes
all invocations that were initiated at a client prior to tlog and logged at M after
tlog. Thus the interval of 2dmsg + dact must be added to the interval over which
client invocations are counted.

TH ≤

(

TD + dmsg + TI

dinv

+
TH + 2dmsg + dact

dinv

)

· C · dhan (2)

using earlier constraint for TI in (1). Finally, together with the assumption in
the theorem we can simplify the expression as follows:

TH ≤
TD + 5dmsg + 2dact

q − 1
(3)

Ending: According to the model of reconciliation manager M an empty opset
results in the sending of a stop message within dact. Upon receiving the mes-
sage at every replica (within dmsg), the replica acknowledges the stop message
within dact. The the new partition can be installed as soon as all acknowledge
messages are received (within dmsg) but at the latest within dact. Hence TE can
be constrained as follows:

TE = tinst − te ≤ 3dact + 2dmsg (4)

Final step: Now we need to show that dmsg + TI + TH +TE is less than TF (time
to next partition according to N5). From (1), (3), and (4) we have that:

TI + TH + TE ≤ 2dmsg + dact +
TD + 5dmsg + 2dact

q − 1
+ 3dact + 2dmsg

Given a bound d on delays dact and dmsg we have:

dmsg + TI + TH + TE ≤
TD + 7d

q − 1
+ 9d

Which concludes the proof according to theorem assumptions. ⊓⊔

6.3 Correctness

As mentioned in Sect. 3.3 the main requirement on the reconciliation protocol
is to preserve consistency. The model of the replicas obviously keeps the parti-
tion state consistent (see the action under receive(〈“invoke′′, α〉)cr. The proof
of correctness is therefore about the manager M withholding this consistency
during reconciliation, and specially when replaying actions. Before we go on to
the main theorem on correctness we present a theorem that shows the ordering
requirements of the application (induced by client actions) are respected by our
models.



Theorem 2. Let the system consist of the model of replicas, and the model of
reconciliation manager. Assume the conditions described in Sect. 6.1. Define the
set ttraces(Order) as the set of all action sequences with monotonically increas-
ing times with the following property: for any sequence σ ∈ ttraces(Order), if
(handle((α), t) and (handle((β), t′) is in σ, α → β, and there is no
(partition(g), t′′) between the two handle actions, then t < t′. All admissible
timed traces of the system are in the set ttraces(Order).

Proof. We assume α → β, and take an arbitrary timed trace γ belonging to
admissible timed traces of the system such that (handle(α), t) and (handle(β), t′)
appear in γ and no partition occurs in between them. We are going to show that
t < t′, thus γ belongs to ttraces(Order). The proof strategy is to assume t′ < t
and prove contradiction.

By the precondition of (handle(β), t′) we know that α cannot be in the opset
at time t′ (see the Internal action in M). Moreover, we know that α must be
in opset at time t because (handle(α), t) requires it. Thus, α must be added to
opset between these two time points and the only action that can add operations
to this set is receive(〈“log′′, . . .〉)rM . Hence there is a time point tl at which
(receive(〈“log′′, 〈. . . , α, . . .〉〉)rM , tl) appears in γ and

t′ < tl < t (5)

Next consider a sequence of actions that must all be in γ with
t0 < t1 < . . . < t8 < t′.

1. (handle((β), t′)
2. (receive(〈“log′′, 〈. . . , β, . . .〉〉, t8)r1M for some r1

3. (send(〈“log′′, 〈. . . , β, . . .〉〉, t7)r1M

4. (receive(〈“invoke′′, β〉, t6)cr1
for some c

5. (send(〈“invoke′′, β〉, t5)cr1

6. (receive(〈“reply′′, α〉, t4)cr2
for some r2

7. (send(〈“reply′′, α〉, t3)r2c

8. (receive(〈“logAck′′, 〈. . . , α, . . .〉〉, t2)Mr2

9. (send(〈“logAck′′, 〈. . . , α, . . .〉〉, t1)Mr2

10. (receive(〈“log′′, 〈. . . , α, . . .〉〉, t0)r2M

We show that the presence of each of these actions requires the presence of
the next action in the list above (which is preceding in time).

– (1⇒2) is given by the fact that β must be in opset and that
(receive(〈“log′′, 〈. . . , β, . . .〉〉, t8)r1M is the only action that adds operations
to opset.

– (2⇒3), (4⇒5), (6⇒7) and (8⇒9) are guaranteed by the network (N1).
– (3⇒4) is guaranteed since β being in L = 〈. . . , β, . . .〉 at r1 implies that some

earlier action has added β to L and (receive(〈“invoke′′, β〉, t6)cr1
is the only

action that adds elements to L at r1.
– (5⇒6) is guaranteed by C3 together with the fact that α → β.



– (7⇒8) Due to 7 α must be in toReply at r2 at time t3. There are two
actions that set toReply: one under the normal/degraded mode, and one
upon receiving a logAck message from the manager M .
First, we show that r2 cannot be added to toReply as a result of
receive(〈′′invoke′′, α〉)cr2

in normal mode. Since α is being replayed by the
manager ((handle(α), t) appears in γ) then there must be a partition be-
tween applying α and replaying α. However, no operation that is applied in
normal mode will reach the reconciliation process M as we have assumed
(A2) that the replica logs are empty at the time of a partition. And since α
belongs to opset in M at time t, it cannot have been applied during normal
mode.
Second, we show that r2 cannot be added to toReply as a result of
receive(〈′′invoke′′, α〉)cr2

in degraded mode. If α was added to toReply in
degraded mode then the log in the partition to which r2 belongs would be
received by M shortly after reunification (that precedes handle operations).
But we have earlier established that α /∈ opset at t′, and hence α cannot
have been applied in degraded mode. Thus α is added to toReply as a result
of a logAck action and (7⇒8).

– (9⇒10) is guaranteed since α must be in ackset[r2] and it can only be put
there by (receive(〈“log′′, 〈. . . , α, . . .〉〉, t0)r2M

We have in (5) established that the received log message that includes α
appeared in γ at time point tl, t′ < tl. This contradicts that t0 = tl < t′, and
concludes the proof. ⊓⊔

Theorem 3. Let the set ttraces(Correct) be the set of action sequences with
monotonically increasing times such that if (broadcast(〈“install′′, P 〉)M , tinst) is
in the sequence, then P is consistent according to Definition 8. All admissible
timed executions of the system are in the set ttraces(Correct).

Proof. Consider an arbitrary element σ in the set of admissible timed system
traces. We will show that σ is a member of the set ttraces(Correct). The strategy
of the proof is to analyse the subtraces of σ that correspond to actions of each
component of the system. In particular, the sequence corresponding to actions
in the reconciliation manager M will be of interest.

Let γ be the sequence that contains all actions of σ that are also actions
of the reconciliation manager M (γ = σ|M). It is trivial that for all processes
C 6= M it holds that σ|C ∈ ttraces(Correct) as there are no install messages
broadcasted by any other process. Therefore, if we show that γ is a member of
ttraces(Correct) then σ will also be a member of ttraces(Correct).

We will proceed to show that γ is a member of ttraces(Correct) by perform-
ing induction on the number of actions in γ.

Base case: Let P be the partition state before the first action in γ. The model
of the reconciliation manager M initialises P to {(〈〉, s0

1, s
0
1), . . . , (〈〉, s

0
n, s0

n)}.
Therefore, requirements 1,2 and 4 of Definition 8 are vacuously true and 3 is
given by A1.



Inductive step: Assume that the partition state resulting from action i in γ is
consistent. We will then show that the partition state resulting from action i+1
in γ is consistent. It is clear that the model of the reconciliation manager M does
not affect the partition state except when actions reunify(g)M and handle(α)
are taken. Thus, no other actions need to be considered. We show that reunify
and handle preserve consistency of the partition state.

The action (reunify(g)M , t) sets P to the initial value of P which has been
shown to be consistent in the base case.

The action (handle(α), t) is the interesting action in terms of consistency
for P . We will consider two cases based on whether applying α results in an
inconsistent state or not. Let P i be the partition state after action i has been
taken.

(1) If Apply(α, P i) is not constraint consistent then the if-statement in the
action handle is false and the partition state will remain unchanged, and thus
consistent after action i + 1 according to the inductive assumption.

(2) If Apply(α, P i) is constraint consistent then the partition state P i+1 will
be set to Apply(α, P i). By the inductive assumption there exists a sequence
L leading to P i. We will show that the sequence L′ = L + 〈α〉 satisfies the
requirements for P i+1 to be consistent.

Consider the conditions 1-4 in the definition of consistent partition (Def. 8).

1. By the definition of Apply we know that all replicas in P remain unchanged
except one which we denote r. So for all replicas 〈Lj , s

0
j , sj〉 6= r we know

that β ∈ Lj ⇒ β ∈ L ⇒ β ∈ L′. Moreover the new log of replica r will
be the same as the old log with the addition of operation α. And since all
elements of the old log for r are in L, they are also in L′. Finally, since α is
in L′ then all operations for the log of r leading to P i+1 is in L′.

2. Consider the last state sk = 〈s1, . . . , sj, . . . sn〉 where sj is the state of the
replica that will be changed by applying α. Let s′j be the state of this replica

in P i+1 which is the result of the transition sj
α
 s′j . By the inductive

assumption we have that s0
α1

 . . .
αk

 sk. Then s0
α1

 . . .
αk

 sk
α
 sk+1 where

sk+1 = 〈s1, . . . , s
′

i, . . . sn〉 is a partition transition according to Definition 5.
3. By the inductive assumption we know that P i is consistent and therefore

∀j ≤ k sj is constraint consistent. Further since Apply(α, P i) is constraint
consistent according to (2), sk+1 is constraint consistent.

4. The order holds for L according to the inductive assumption. Let t be the
point for handle(β) in γ. For the order to hold for L′ we need to show that
α 9 β for all operations β in L. Since β appears in L there must exist a
handle(β) at some time point t′ in γ. Then according to Theorem 2 α 9 β
(since if α → β then t < t′ and obviously t < t′). ⊓⊔

7 Related Work

In this section we will discuss how the problem of reconciliation after network
partitions has been dealt with in the literature. For more references on related



topics there is an excellent survey on optimistic replication by Saito and Shapiro
[7]. There is also an earlier survey discussing consistency in partitioned networks
by Davidson et al. [8].

Gray et al. [9] address the problem of update everywhere and propose a
solution based on a two-tier architecture and tentative operations. However, they
do not target full network partitions but individual nodes that join and leave
the system (which is a special case of partition). Bayou [10] is a distributed
storage system that is adapted for mobile environments. It allows updates to
occur in a partitioned system. However, the system does not supply automatic
reconciliation in case of conflicts but relies on an application handler to do this.
This is a common strategy for sorting out conflicts, but then the application
writer has to figure out how to solve them. Our approach is fully automatic and
does not require application interaction during the reconciliation process.

Some work has been done on partitionable systems where integrity con-
straints are not considered, which simplifies reconciliation. Babaouglu et al. [11]
present a method for dealing with network partitions. They propose a solution
that provides primitives for dealing with shared state. They do not elaborate
on dealing with writes in all partitions except suggesting tentative writes that
can be undone if conflicts occur. Moser et al. [12] have designed a fault-tolerant
CORBA extension that is able to deal with node crashes as well as network
partitions. There is also a reconciliation scheme described in [13]. The idea is
to keep a primary for each object. The state of these primaries are transferred
to the secondaries on reunification. In addition, operations which are performed
on the secondaries during degraded mode are reapplied during the reconciliation
phase. This approach is not directly applicable with integrity constraints.

Most works on reconciliation algorithms dealing with constraints after net-
work partition focus on achieving a schedule that satisfies order constraints.
Fekete et al. [14] provide a formal specification of a replication scheme where
the client can specify explicit requirements on the order in which operations are
to be executed. This allows for a stronger requirement than the well-established
causal ordering [15]. Our concept of ordering is weaker than causal ordering, as
it is limited to one client’s notion of an expected order of execution based on the
replies that the client has received. Lippe et al. [16] try to order operation logs to
avoid conflicts with respect to a before relation. However, their algorithm requires
a large set of operation sequences to be enumerated and then compared. The
IceCube system [17, 18] also tries to order operations to achieve a consistent final
state. However, they do not fully address the problem of integrity constraints
that involve several objects. Phatak et al. [19] propose an algorithm that pro-
vides reconciliation by either using multiversioning to achieve snapshot isolation
[20] or using a reconciliation function given by the client. Snapshot isolation is
more pessimistic than our approach and would require a lot of operations to be
undone.



8 Conclusions and Future Work

We have investigated a reconciliation mechanism designed to bring a system
that is inconsistent due to a network partition back to a consistent state. As the
reconciliation process might take a considerable amount of time it is desirable
to accept invocations during this period.

We have introduced an order relation that forces the reconciliation protocol
to uphold virtual partitions in which incoming operations can be executed. The
incoming operations cannot be executed on the state that is being constructed.
Since the protocol would then have to discard all the operations that the client
expects to have been performed. However, maintaining virtual partitions during
reconciliation will make the set of operations to reconcile larger. Thus, there is
a risk that the reconciliation process never ends.

We have proved that the proposed protocol will indeed result in a stable
partition state given certain timing assumptions. In particular, we need time
bounds for message delays and execution time as well as an upper bound on client
invocation rate. Moreover, we have proved that the result of the reconciliation
is correct based on a correctness property that covers integrity consistency and
ordering of operations.

The current work has not treated the use of network resources by the proto-
col and has not characterised the middleware overheads. These are interesting
directions for future work. Performing simulation studies would show how much
higher availability is dependent on various system parameters, including the
mix of critical and non-critical operations. Another interesting study would be
to compare the performance with a simulation of a majority partition implemen-
tation.

An ongoing project involves implementation of replication and our reconcilia-
tion services on top of a number of well-known middlewares, including CORBA
[3]. This will allow evaluation of middleware overhead in this context, and a
measure of enhanced availability compared to the scenario where no service is
available during partitions.

References

1. Szentivanyi, D., Nadjm-Tehrani, S.: Middleware Support for Fault Tolerance. In:
Middleware for Communications. John Wiley & Sons (2004)

2. Felber, P., Narasimhan, P.: Experiences, strategies, and challenges in building
fault-tolerant corba systems. IEEE Trans. Comput. 53(5) (2004) 497–511

3. DeDiSys: European IST FP6 DeDiSys Project. http://www.dedisys.org (2006)
4. Asplund, M., Nadjm-Tehrani, S.: Post-partition reconciliation protocols for main-

taining consistency. In: Proceedings of the 21st ACM/SIGAPP symposium on
Applied computing. (2006)

5. Szentivanyi, D., Nadjm-Tehrani, S., Noble, J.M.: Optimal choice of checkpointing
interval for high availability. In: Proceedings of the 11th Pacific Rim Dependable
Computing Conference, IEEE Computer Society (2005)

6. Spread: The Spread Toolkit. http://www.spread.org (2006)



7. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37(1) (2005)
42–81

8. Davidson, S.B., Garcia-Molina, H., Skeen, D.: Consistency in a partitioned net-
work: a survey. ACM Comput. Surv. 17(3) (1985) 341–370

9. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a
solution. In: SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD international
conference on Management of data, New York, NY, USA, ACM Press (1996) 173–
182

10. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser,
C.H.: Managing update conflicts in bayou, a weakly connected replicated storage
system. In: SOSP ’95: Proceedings of the fifteenth ACM symposium on Operating
systems principles, New York, NY, USA, ACM Press (1995) 172–182

11. Babaoglu, Ö., Bartoli, A., Dini, G.: Enriched view synchrony: A programming
paradigm for partitionable asynchronous distributed systems. IEEE Trans. Com-
put. 46(6) (1997) 642–658

12. Moser, L.E., Melliar-Smith, P.M., Narasimhan, P.: Consistent object replication
in the eternal system. Theor. Pract. Object Syst. 4(2) (1998) 81–92

13. Narasimhan, P., Moser, L.E., Melliar-Smith, P.M.: Replica consistency of corba
objects in partitionable distributed systems. Distributed Systems Engineering 4(3)
(1997) 139–150

14. Fekete, A., Gupta, D., Luchangco, V., Lynch, N., Shvartsman, A.: Eventually-
serializable data services. In: PODC ’96: Proceedings of the fifteenth annual ACM
symposium on Principles of distributed computing, New York, NY, USA, ACM
Press (1996) 300–309

15. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7) (1978) 558–565

16. Lippe, E., van Oosterom, N.: Operation-based merging. In: SDE 5: Proceedings
of the fifth ACM SIGSOFT symposium on Software development environments,
New York, NY, USA, ACM Press (1992) 78–87

17. Kermarrec, A.M., Rowstron, A., Shapiro, M., Druschel, P.: The icecube approach
to the reconciliation of divergent replicas. In: PODC ’01: Proceedings of the twen-
tieth annual ACM symposium on Principles of distributed computing, New York,
NY, USA, ACM Press (2001) 210–218

18. Preguica, N., Shapiro, M., Matheson, C.: Semantics-based reconciliation for col-
laborative and mobile environments. Lecture Notes in Computer Science 2888

(2003) 38–55
19. Phatak, S.H., Nath, B.: Transaction-centric reconciliation in disconnected client-

server databases. Mob. Netw. Appl. 9(5) (2004) 459–471
20. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique of

ansi sql isolation levels. In: SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD
international conference on Management of data, New York, NY, USA, ACM Press
(1995) 1–10


