Empowering Configurable QoS Management in Real-Time
Systems’

Aleksandra Tesanovic, Mehdi Amirijoo, Mikael Bjork, and Jérgen Hansson
Department of Computer Science
Linkdping University
Linkdping, Sweden

{alete,meham,jorha}@ida.liu.se

ABSTRACT

Current Quality of Service (QoS) management methods in
real-time systems using feedback control loop lack support
for configurability and reusability as they cannot be config-
ured for a target application or reused across different appli-
cations. In this paper we present a method for developing re-
configurable feedback-based QoS management for real-time
systems, denoted Re-QoS. By combining component-based
design with aspect-oriented software development Re-QoS
enables successful handling of crosscutting nature of QoS
policies, as well as evolutionary design of real-time systems
and QoS management architectures. Re-QoS defines a QoS
aspect package, which is an implementation of a set of as-
pects and components that provide a number of different
QoS policies. By adding a QoS aspect package to an exist-
ing system without QoS guarantees, we are able to use the
same system in unpredictable environments where perfor-
mance guarantees are essential. Furthermore, by exchang-
ing aspects within the QoS aspect package one can efficiently
tailor the QoS management of a real-time system based on
the application requirements. We demonstrate the useful-
ness of the concept on a case study of an embedded real-
time database system, called COMET. Using the COMET
example we show how a real-time database system can be
adapted to be used in different applications with distinct
QoS needs.

Categories and Subject Descriptors

D.2.11 [Software Engineering|: Software Architectures;
D.3.3 [Programming Languages|: Language Constructs
and Features—Aspects, Components

*This work is supported by the Swedish Foundation for
Strategic Research (SSF) via the SAVE project (SAfety crit-
ical component-based VEhicular systems), the Swedish Na-
tional Graduate School in Computer Science (CUGS), and
the Center for Industrial Information Technology (CENIIT)
under contract 01.07

General Terms

Design, Performance, Languages

1. INTRODUCTION

A large majority of computational activities in modern soci-
ety are performed within embedded and real-time systems.
Real-time systems are typically constructed out of concur-
rent programs, called tasks, due to the inherent nature of the
environment with which these systems interact. The most
common type of temporal constraint that a real-time sys-
tem must satisfy is the completion of task deadlines. There
exist a number of real-time scheduling techniques to ensure
that tasks meet their respective deadlines (see [8]), and these
typically require the knowledge of the worst-case execution
time of a task.

Depending on the consequences of a missed deadline, real-
time systems can be classified as hard or soft. In a hard
real-time system consequences of missing a deadline can be
catastrophic, while in a soft real-time system missing a dead-
line does not cause catastrophic damage to the system, but
may affect performance negatively.

In recent years, the domain of real-time computing has ex-
panded from hard real-time application areas, e.g., avionics
and automotive applications, where performance relies on
worst-case guarantees (so-called closed applications) to soft
application areas operating in open and unpredictable envi-
ronments where arrival patterns and resource requirements
of tasks are generally unknown, e.g., mobile computing sys-
tems, web-servers, and e-commerce. Further, these appli-
cations are becoming more complex and at the same time
performance guarantees are required.

Traditional approaches providing hard real-time guarantees
rely on worst-case execution times and worst-case arrival
patterns of tasks, and are not effective for a large class of
soft real-time systems as they result in highly underutilized
systems. Feedback control has been introduced as a promis-
ing foundation for performance control of real-time systems
that are both resource insufficient and exhibit unpredictable
workloads [5, 2, 18, 19, 22, 9, 16]. Feedback-based QoS man-
agement is attractive as it enables the designer or system
operator to explicitly specify the performance of the system
in terms of desired steady-state and transient-state system
performance.

In this paper we use the following terminology. A QoS man-
agement architecture denotes the way the feedback control
structure is implemented with the real-time system. A QoS
management policy refers to the way the system is controlled
and performance guaranteed. A QoS management method
refers to both a QoS management architecture and a policy
as well as the relationship between the two. When the dis-
tinction between the QoS management architecture, policy,
and method is not of interest the simple term QoS manage-
ment is used.

We observe that existing feedback-based QoS management
methods for real-time systems [5, 2, 18, 19, 22, 9, 16|, do not
address some of the most important QoS design challenges,
such as [11, 6]:

e enabling configurability in QoS management by allow-
ing the designer to choose the QoS policy depending
on the application requirements; and

e supporting reusability of QoS policies and architec-
tures across application areas.

The requirements for configurability and reusability in real-
time computing systems have been addressed in approaches
that combine component-based software development tech-
nologies with real-time systems, e.g., [34, 27, 29, 25]. These
approaches provide configurability of the system by enabling
a system to be developed out of pre-defined software compo-
nents with well defined interfaces. These, however, do not
provide efficient support for crosscutting features, such as
QoS algorithms that typically crosscut the structure of the
overall system. In an effort to integrate the two software en-
gineering techniques, aspect-oriented and component-based
software development, into real-time system development we
have developed aspectual component-based real-time system
development, ACCORD [32]. ACCORD enables efficient
system configuration from components and aspects from the
library based on the system requirements.

In this paper we address the essential QoS challenges by
providing a method for building reconfigurable QoS man-
agement (Re-QoS). The Re-QoS method is founded on AC-
CORD, and thereby has components and aspects as con-
stituents of the QoS management architecture and policies.
Hence, by adapting the ACCORD notion of combining co-
mponent-based design with aspect-oriented software devel-
opment, Re-QoS enables successful handling of crosscutting
QoS policies, as well as the evolutionary design of real-time
systems and QoS management. The Re-QoS method is gen-
eral and applicable to a large class of real-time systems
across different domains and application areas that conform
to a set of requirements elaborated in the paper, e.g., avail-
able and well-structured code, and conformance to an aspect
language.

Re-QoS defines the concept of a QoS aspect package, which
represents the implementation of a plethora of different QoS
management policies. Hence, a QoS aspect package consists
of a number of components and aspects implementing the
policies. By adding a QoS aspect package to an existing sys-
tem without QoS guarantees, we are able to use the same

: (K) Uk
—»| Controller (; Actuator —» Controlled
System
Y
1 | y(k)
— 7 Sensor

Figure 1: An architecture of the real-time system
using feedback control structure

system in unpredictable environments where performance
guarantees are essential. Furthermore, by exchanging as-
pects within the QoS aspect package one can efficiently tai-
lor the QoS management of a real-time system based on the
application requirements.

We evaluate Re-QoS by doing a case study of an embed-
ded real-time database, called COMET [20, 31|, where we
illustrate how a real-time database can be used in different
applications, each with distinct QoS needs. We also report
the experiences collected from this case study for applying
aspect languages in general, and Re-QoS in particular, for
real-time system development.

The paper is organized as follows. In section 2 we identify
the problems in current QoS management implementations
with respect to lack of configurability in QoS management
and application dependence of the QoS methods. ACCORD
is then briefly discussed in section 3. We propose, in section
4, Re-QoS as a method that addresses the identified prob-
lems. We present a case study using the COMET database
in section 5, where we demonstrate the successful applica-
tion of the Re-QoS method. The paper finishes with main
conclusions and directions for future work in section 6.

2. QOSMANAGEMENT

We first review main characteristics of feedback-based QoS
management policies and then identify main problems of
current QoS management (section 2.1). We discuss the goals
and methodology adopted in this paper to address the iden-
tified problems in section 2.2.

2.1 Feedback-Based QoS Management

A typical structure of a feedback control system is given in
figure 1 along with the control related variables. A sampled
variable a(k) refers to the value of the variable a at time
kT, where T is the sampling period and k is the sampling
instant. In the remainder of the paper we omit k where the
notion of time is not of primary interest.

Input to the controller is the difference between the refer-
ence y-(k), representing the desired state of the controlled
system, and the actual system state given by the controlled
variable y(k), which is measured using the sensor. Based on
the performance error, y.(k) — y(k), the controller changes
the behavior of the controlled system via the manipulated
variable u(k) and the actuator. The objective of the control
is to compute u(k) such that the difference between the de-
sired state and the actual state is minimized, i.e., we want

to minimize (y.(k) — y(k))?. This minimization results in

a more reliable performance and system adaptability as the
actual system performance is closer to the desired system
performance.

We have identified the following problems with current feed-
back-based QoS management methods.

(P1) QoS methods are specific to the domain, application,
and real-time system, since a QoS method developed
for one real-time system in one domain and one ap-
plication cannot easily be applied to the same domain
with a different application. Here a domain refers to
the domain in which a real-time system is used. An
application refers to the application area or an envi-
ronment in which a real-time system resides. For ex-
ample, a real-time database is a real-time system that
is used in the database domain to ensure efficient ma-
nipulation of data. It can reside in applications such as
vehicle control applications, Internet applications, mo-
bile, web services etc. Currently, there exist a number
of QoS management methods specifically developed to
suit either the needs of a specific real-time system or a
specific application, e.g., real-time databases [5], con-
trol applications [9], and web services [1].

(P2) QoS policies employed in existing methods [5, 2, 18,
19, 22, 9, 16] are metric-centric, since a QoS controller
(see figure 1) is typically developed to control a certain
type of metric, and without extensive modifications
to the system and the controller, the QoS controller
cannot be reused for another metric.

(P3) QoS policies used in [5, 2, 18, 19, 22, 9, 16] are crosscut-
ting, since they are integrated with parts of a real-time
system crosscutting its overall structure and, thus, can-
not be exchanged or modified separately.

(P4) QoS management architectures [5, 2, 18, 19, 22, 9, 16]
are non-evolutionary, since they are fixed and mono-
lithic, and modifications in the QoS management re-
quire complex modifications in the code of the over-
all system. Moreover, current methods do not enable
taking existing systems without QoS management and
adapting them to be used in an application with spe-
cific QoS needs. The trend in the vehicular industry,
for example, is to incorporate QoS guarantees in vehi-
cle control systems [26, 20]. In this case a cost-effective
way of building QoS-aware vehicle control systems is
to efficiently incorporate QoS mechanisms into already
existing systems.

All the identified problems (P1)-(P4) result in two addi-
tional drawbacks of the existing feedback-based QoS meth-
ods, namely the methods are (P5) not configurable, and (P6)
not reusable. Thus, existing QoS methods for real-time sys-
tems due to shortcomings (P5) and (P6) do not comply with
essential QoS principles of enabling configuration and reuse

[6]-

As the problems (P1)-(P4) induce the problems (P5) and
(P6), it is apparent that providing a QoS method developed
specifically to addresses the problems (P1)-(P4), would re-
sult in solving also the remaining problems (P5) and (P6).

2.2 Goalsand Methodology

The goal of the work presented in this paper is to address
the problems (P1)-(P6) of the current feedback-based QoS
methods identified in section 2.1. We do that by propos-
ing a reconfigurable QoS management method (Re-QoS).
In order to provide a method that is application-, domain-,
and system-independent, i.e., address (P1), we need to en-
sure that Re-QoS is applicable to a large class of real-time
systems across different applications, and that the QoS ar-
chitecture is flexible in that QoS policies can be exchanged
and modified depending on the application requirements.
We do this by: (i) defining a set of requirements that a
real-time system needs to fulfill in order to apply the Re-
QoS method, and (ii) utilizing aspect-oriented software de-
velopment, together with component-based development in
Re-QoS. Aspects allow us to overcome (P2) as we can ex-
change the controlling metric by simply weaving appropriate
aspects into the controllers. Further, by using the notion of
aspect as modules that encapsulate crosscutting features in
the system [15], we efficiently handle the crosscutting QoS
management feature and thereby attack the problem (P3).
Re-QoS enables evolutionary design of existing QoS man-
agement architectures, thus, resolving problem (P4). We
show that the solution to (P1)-(P4) by Re-QoS leads to a
method that is both configurable and reusable, correspond-
ing to (P5) and (P6).

We evaluate Re-QoS using a case study of a real-time datab-
ase called COMET, where we demonstrate the way a real-
time database can be used in different applications. The
case study also serves as a guide for instantiating a QoS
management architecture built based on Re-QoS for an ar-
bitrary real-time system (given that it conforms to the re-
quirements) across a number of applications.

3. ASPECTUAL COMPONENT-BASED REAL-

TIME SYSTEMS DEVELOPMENT

Aspectual component-based real-time systems development,
denoted ACCORD, is an approach that enables development
of reconfigurable real-time systems [31, 32]. ACCORD pre-
scribes that real-time systems should first be decomposed
into a set of components followed by decomposition into a
set of aspects.

Within ACCORD aspects in real-time systems are classified
in different categories [31, 32]: (i) application aspects, (ii)
run-time aspects, and (iii) composition aspects. The clas-
sification eases the reasoning about different embedded and
real-time related requirements, as well as the composition of
the system and its integration into a run-time environment.
Application aspects can change the internal behavior of com-
ponents to suit a particular application as they crosscut the
code of components in the system, e.g., memory optimiza-
tion aspect and real-time policy aspect. Run-time aspects
give information needed by the run-time system to ensure
that integrating a real-time system would not compromise
timeliness or available memory consumption. Composition
aspects describe with which components a component can
be combined, the version of the component, and possibilities
of extending the component with additional aspects.

ACCORD provides a real-time component model, denoted

Composition interface Required
(reconfig. locations) functional
o [7 0 interface

? RTCOM:

iyl
Provided
functional
interface

Figure 2: RTCOM in a nutshell

i LIBRARY

i components aspects

g H

- % i

::jr =L -

i | N— : S
74 7//////////;[::]

b
]

.
system configuration

Figure 3: ACCORD-based design

RTCOM, to support reconfigurability [31, 32]. RTCOM
components are “grey” as they are encapsulated in inter-
faces, but changes to their behavior can be performed in a
predictable way using aspects. Hence, components provide
certain initial functionality that can be modified or changed
by weaving of aspects. Each RTCOM component has two
types of functional interfaces: provided and required (see fig-
ure 2). Provided interfaces reflect a set of operations that a
component provides to other components, while required in-
terfaces reflect a set of operations that a component requires
(uses) from other components. Composition interfaces de-
fine reconfiguration locations of the component code (repre-
sented as black circles in figure 2). Reconfiguration locations
define the points in the component code where additional
modification of components can be done by aspect weaving,
i.e., they represent explicitly declared join points in the com-
ponent code. These points can be used by the component
user (or component developer) to reconfigure a component
for a specific application or reuse context. Note also that
the operations declared in the provided functional interface
can be used for aspect weaving and, thus, they represent
also implicit reconfiguration locations.

By choosing appropriate components and aspects from the
library, different real-time system configurations can be made
(see figure 3).

4. RECONFIGURABLE QOSMANAGEMENT

Requirements that a real-time system needs to fulfill in order
to apply Re-QoS are elaborated in section 4.1. The Re-QoS
method is then presented in section 4.2.

4.1 System Requirements

The Re-QoS method applies both to the class of traditional
(monolithic) real-time systems, and to the class of component-
based real-time systems, provided that they conform to the
following requirements.

1. Traditional real-time systems:

e should be written in a language that has a corre-
sponding aspect language;

e should have the source code of the system avail-
able; and

e should have well-structured code such that the
code is structured in fine-grained pieces that per-
form well-defined functions, i.e., good coding prac-
tice is employed, and, thereby, the locations in
which reconfiguration could be performed can be
determined and extracted.

2. Configurable, component-based, real-time systems: the
system should be built using "glass box" or "grey box"
component models, where the component has well-
defined interfaces, but also internals are accessible for
manipulation by the software developer, e.g., Koala
[34], RTCOM [32], AutoComp [25], PBO [29], and
Rubus-based component models [13].

When a real-time systems is built from scratch, then the
system can be optimized during design and development for
Re-QoS. This is done by simply following the guidelines out-
lined in the following section adopted for developing different
parts of the Re-QoS framework.

4.2 Re-QoSMethod

The Re-QoS method prescribes a hierarchical QoS manage-
ment architecture that, on the highest level, consists of two
classes of entities: the QoS component type and the QoS
aspect types (see figure 4). The top level of the QoS archi-
tecture can be used for any QoS management. On the lower
level, the component type includes a feedback controller
component (FCC), a QoS actuator component (QAC), and
a sensor component (SC). The aspect types are constructed
to embrace the following types of aspects (see figure 4):

e QoS policy aspects,
e QoS task model aspects, and

e QoS composition aspects.

The QoS component type is defined as a grey box compo-
nent implementing a well-defined function and it conforms to
the RTCOM model. As such, a component has an interface
that contains the following information: (i) functionality, in
terms of functions, procedures, or methods, that a compo-
nent requires (uses) from the system, and functionality that
a component provides to the system; (ii) the list of reconfig-
uration locations where the changes of the component policy
can be done.

The QAC is of QoS component type and, in its simplest
form, acts as a simple admission controller. It publishes a

component type aspect types
AN\
QoS .
QAC FCC sC management QoS task model QoS composition
policy aspects aspects aspects
actuator controlling sensor basic utilization QAC FCC SC

policy policy policy model model composition composition composition

Figure 4: Re-QoS hierarchical model

list of reconfiguration locations in its interfaces where differ-
ent actuator policies can be woven. Similarly, the FCC is by
default designed with a simple control functionality and ap-
propriate reconfiguration locations, such that the controller
can be extended to support more sophisticated control al-
gorithms, e.g., adaptive control [35]. The SC collects nec-
essary data and possibly aggregates it to form the metric
representing the controlled variable. In its simplest form
the SC measures utilization, which is commonly used as a
controlled variable [18]. The SC publishes a set of reconfigu-
ration locations, where it is possible to change the measured
metric.

The QoS policy aspects adapt the system to provide differ-
ent QoS management policies. Based on the target applica-
tion, the aspects modify the FCC to support an appropriate
QoS controller, and also changes the QAC and the SC ac-
cording to the choice of manipulated variable and controlled
variable, respectively. For example, if deadline miss ratio
is to be controlled by changing the computation quality of
the tasks, then a QoS policy aspect is chosen such that the
deadline miss ratio is measured. The QAC is modified by the
aspect, exchanging the simple admission policy for a quality
adaptation actuator. Hence, QoS policy aspects can further
be refined into actuator policy, controller policy and sensor

policy.

The QoS task model aspects adapt the task model of a real-
time system to the model used by different QoS policies.
There can be a number of aspects defined to ensure enrich-
ment or modifications of the task model, so that the result-
ing task model is suitable for different QoS or applications
needs. Here we only give simple examples of task models;
see [8] for a detailed overview of available task models. For
example, one may model a task to be periodic, aperiodic,
or sporadic. Similarly, a task may be soft or firm. Concrete
examples of the task model are given in section 5.3.

The QoS composition aspects facilitate the composition of
a real-time system with the QoS-related components, FCC,
QAC, and SC.

The Re-QoS architecture is shown in figure 5. This architec-
ture allows QoS management policies to easily be exchanged
by adding/changing aspects within the QoS management
policy type. Hence, it ensures that QoS management poli-
cies are modifiable and configurable, depending on the appli-
cation requirements; thereby addressing the problems (P1)-
(P4). QoS composition aspects add the FCC and QAC to
the parts/components of the system or a system itself, where

[Controlled System
7\ /%
\\%\\\\\\\\\\w
7

bhd

QI

’/////////////////AF]
oo

QoS composition aspects

QoS aspect package:
as Sgti for i Q0S QoS :]
pol?cies and mcomposﬂon—"‘m components

aspects

task model

Figure 5: The Re-QoS architecture

needed; these aspects are represented with grey dashed lines
between component connections in figure 5. Additionally,
QoS composition aspects offer significant flexibility in the
system design as the feedback loop can be placed just as
easily “outside” the system as between any components in
the system by simply adding QoS composition aspects.

Once the QoS management is developed according to Re-
QoS, all developed aspects and components implementing
a plethora of different QoS management policies and algo-
rithms, are grouped into a so-called QoS aspects package.
Hence, a QoS aspect package represents an implementation,
i.e., an instantiation, of the Re-QoS method for a specific
set of QoS management policies and a specific set of appli-
cations.

Now, a real-time system can be developed so that it fulfills
certain functionality (without QoS mechanisms), and then
QoS-mechanisms can be added to the system using Re-QoS.
A specific implementation of a set of components and as-
pects based on Re-QoS, i.e., a QoS aspect package for a
particular system, is developed. Re-QoS then enables effi-
cient upgrades of already existing systems to support QoS
performance assurance by simply adding aspects that imple-
ment different QoS policies from the developed QoS aspect
package. When adopting a real-time system for new QoS
needs, the developer takes appropriate aspects and compo-
nents from the QoS aspect package and adds them to the
system, depending on the application QoS requirements.
This gives ability to produce a variety of different system
configurations with distinct QoS management algorithms,
which corresponds to solving problem (P5). Note also that
aspects implemented within a QoS aspect package can eas-
ily be reused in different applications, hence, problem (P6)
is addressed. Moreover, the Re-QoS method via its aspect
package concept enables closed systems to be efficiently used
in open environments.

It is indeed possible to design a real-time system without
the QoS management and then add the QoS dimension to
the system using Re-QoS (including an instantiation of the
appropriate QoS aspect packages for a set of different appli-

cations). We prove these claims in the following section on
the example of the COMET database.

5. A CASE STUDY

In this section we present a case study on a component-based
embedded real-time database, called COMET. Initially, we
developed COMET to be suitable for hard real-time applica-
tions in vehicular systems [20, 31]. Thus, the initial COMET
implementation, which is discussed in section 5.1, does not
contain QoS mechanisms. To adapt COMET to the real-
time systems with performance assurance guarantees we ap-
plied the Re-QoS method to the existing COMET configura-
tion, and developed a COMET QoS aspect package. In order
to understand the choices made when developing different
aspects for COMET QoS, we first present the QoS policies
used for implementation of the QoS aspect package (section
5.2) and then we discuss the data and transaction mod-
els used in different COMET configurations (section 5.3).
In section 5.4 we discuss in depth the details of different
components and aspects within the COMET QoS. Possible
COMET QoS configurations are given in section 5.5. In
section 5.6 we prove experimentally that COMET with the
QoS extensions indeed provides expected QoS guarantees.
Finally, we report our experiences from the case study in
section 5.7.

5.1 COMET Overview

Following the ACCORD design method described in sec-
tion 3, the architecture of COMET consists of a number
of components and a number of aspects. COMET compo-
nents are (see figure 6(a)): user interface component (UIC),
transaction management component (TMC), index manage-
ment component (IMC), and memory management compo-
nent (MMC). The UIC provides a database interface to the
application, which enables a user (application) to query and
manipulate data elements. Application requests are parsed
by the UIC, and are then converted into an execution plan.
The TMC is responsible for executing incoming execution
plans, thereby performing the actual manipulation of data.
The IMC is responsible for maintaining an index of all tuples
in the database. The COMET configuration containing the
named components provides only basic functionality of the
database, which is especially suitable for small embedded
vehicular systems [20].

Depending on the application with which the database is
to be integrated, additional aspects and components can be
added to the basic COMET configuration. For example,
to enable concurrent access to the database two additional
components, the locking manager component (LMC) and
the scheduling manager component (SMC), are needed (see
figure 6(b)). The SMC is responsible for registering new
transactions to the system and scheduling them according
to the chosen scheduling policy, e.g., earliest-deadline first
(EDF) [17]. The LMC is responsible for obtaining and re-
leasing locks on data items accessed by transactions. Con-
currency control aspects, providing algorithms for detecting
and resolving conflicts among transactions, can also be wo-
ven to the system. The concurrent COMET configuration
is out of scope of this paper and we refer interested readers
to [32]. For purposes of this paper it is important to note
that we are implementing the COMET QoS aspect package
for the concurrent COMET implementation.

Concurrent COMET
configuration

Basic COMET
configuration

o b
¥ UIC
Concurrency
control aspect
T™MC
MMC @ IMC

(€Y (b)

Figure 6: Basic and concurrent COMET configura-
tions

Each component has interfaces as defined by RTCOM where
it publishes both operations and reconfiguration locations.
For example, the TMC executes transactions by executing
an operation TMC_getResult () declared in its provided in-
terface. The SMC declares an operation SMC_CreateNew ()
in its provided interface, which registers transactions. More-
over, transactions in the SMC are scheduled using internal
function scheduleRecord (), and this function is declared as
a reconfiguration location of the SMC.

5.2 QoSPolicies

Given that we want to use the COMET database with ap-
plications that require performance guarantees, we need to
adapt some existing QoS policies and, using Re-QoS, inte-
grate them into the database. Hence, in this section we give
a brief overview over two instances of feedback-based QoS
management methods we use in our case study; we found
that these are especially suitable for ensuring performance
guarantees in real-time systems. First we describe one in-
stance of the feedback-based QoS management method, re-
ferred to as FC-M [18], where deadline miss ratio is con-
trolled by modifying the admitted utilization. This is fol-
lowed by a description of the QoS sensitive approach for
miss ratio and freshness guarantees (QMF) [14], used for
managing QoS in real-time databases.

FC-M uses a control loop to control the deadline miss ratio
by adjusting the utilization in the system. We say that a
transaction is terminated when it has completed or missed
its deadline. Let missedTransactions(k) be the number of
tasks that have missed their deadline and admittedI ransac-
tions(k) be the number of terminated admitted tasks in the
time interval [(k — 1)T', kT]. The deadline miss ratio,

missedTransactions(k)

m(k) =

admittedTransactions(k) M)
denotes the ratio of tasks that have missed their deadlines.
The performance error, en (k) = m,(k) —m(k), is computed
to quantize the difference between the desired deadline miss
ratio mr(k) and the measured deadline miss ratio m(k).
Note that m(k) is a controlled variable, corresponding to
y(k) in figure 1, while m, (k) is a reference, corresponding to
yr(k). The change to the utilization du(k), which we denote
as the manipulated variable, is derived using a P controller

[12], hence, du(k) = Kpem(k), where Kp is a tunable vari-
able. The utilization target u(k) is the integration of du(k).
Admission control is then used to carry out the change in
utilization.

Another way to change the requested utilization is to apply
the actuation approach used in QMF [14], where a feedback
controller, similar to that of FC-M, is used to control the
deadline miss ratio. The actuator in QMF manipulates the
quality of data in real-time databases in combination with
admission control to carry out changes in the controlled sys-
tems. If the database contains rarely requested data items,
then continuously updating them is unnecessary, i.e., they
can be updated on-demand. On the other hand, data items
that are frequently requested should be updated continu-
ously, because updating them on-demand would cause se-
rious delays and possibly deadline overruns. When a lower
utilization is requested via the deadline miss ratio controller,
some of the least accessed data objects are classified as on-
demand, thus, reducing the utilization. In contrast, if a
greater utilization is requested then the data items that were
previously updated on-demand, and have relatively higher
number of accesses, are moved from on-demand to imme-
diate update, meaning that they are updated continuously.
This way the utilization is changed according to the system
performance.

5.3 Dataand Transaction Model

We consider a main memory database model, where there is
one CPU as the main processing element. We consider the
following data and transaction models.

In the basic configuration of COMET we have a basic data
model and a basic transaction model. The basic model for
data is simple and does not support data freshness require-
ments. The basic transaction model is such that each trans-
action 7; is characterized only with the period p;, and the
relative deadline d;. However, QoS algorithms like FC-M
and QMF require distinct and more complex data and the
transaction models.

In the differentiated data model, data objects are classified
into two classes, temporal and non-temporal [23]. For tem-
poral data we only consider base data, i.e., data objects that
hold the view of the real-world and are updated by sensors.
A base data object b; is considered temporally inconsistent
or stale if the current time is later than the timestamp of
b; followed by the absolute validity interval avi; of b;, i.e.,
currenttime > timestamp; + avi;. Both FC-M and QMF
policies require a transaction model where transaction 7; is
classified as either an update or a user tramnsaction. Up-
date transactions arrive periodically and may only write to
base data objects. User transactions arrive aperiodically and
may read temporal and read/write non-temporal data. In
this model, denoted the wtilization transaction model, each
transaction has the following characteristics:

e the period p; (update transactions),

e the estimated mean interarrival time rg ; (user trans-
actions),

e the actual mean interarrival time 74, (user transac-
tions),

Attribute Periodic Tasks Aperiodic Tasks

d; di = pi di=ra;
UE,i lgi=2p:i/pi lB:=2E:/TE
UA,; lay=xai/Di lag=zai/TAs

Table 1: The utilization transaction model.

e the estimated execution time z g,
e the actual execution time x4 ;,
e the relative deadline d;,

e the estimated utilization®, ux ;, and

the actual utilization, w4 ;.

Table 1 presents the complete utilization transaction model.
Upon arrival, a transaction presents the estimated average
utilization ug ; and the relative deadline d; to the system.
The actual utilization of the transaction w4 ; is not known
in advance due to variations in execution time.

54 COMET QoS Aspect Package

Applying the Re-QoS method on COMET resulted in the de-
velopment of the COMET QoS aspect package that enables
the database to be used in applications that have uncertain
workloads and where requirements for data freshness are
essential. The current QoS aspect package provides compo-
nents and aspects that implement the FC-M and QMF QoS
policies. The aspects within the package are implemented
using AspectC++ [28]. The COMET QoS aspect package
consists of the QAC and FCC components and the following
aspects:

e QoS management policy aspects: QAC utilization pol-
icy, missed deadline monitor, missed deadline controller,
scheduling strategy, data access monitor, and QoS thr-
ough update scheduling aspect;

e QoS transaction and data model aspects: utilization
transaction model aspect and data differentiation as-
pect; and

e QoS composition aspects: QAC composition and FCC
composition aspect.

The QAC is a component that, based on an admission pol-
icy, decides whether to allow new transactions into the sys-
tem. Operations provided by the QAC are QAC_Admit (),
which performs the admission test, and QAC_Adjust (), which
adjusts the number of transactions that can be admitted.
The default admission policy is allowing all transactions to
be admitted to the system. This admission policy of the
QAC can be changed by weaving specific QoS actuator pol-
icy aspects.

The FCC is a components that computes input to the ad-
mission policy of the QAC at regular intervals. By default,
an input of zero is generated, but by using QoS controlling
policy aspects different feedback policies can be used. The

1 Utilization is also referred to as load.

1: aspect QAC_composition{

2: // Insert QAC between UIC and SMC.

3: advice call("bool SMC_CreateNew(...)") : around() {
4 if (QAC_Admit(*(scheduleRecord *)tjp->arg(0)))
5: tjp->proceed();

6: else

7 *(bool *)tjp->result() = false;

8}

9:

b

Figure 7: QAC composition aspect

1: aspect QAC_utilization_policy{

2: // Add a utilization reference to the system

3: advice "UIC_SystemParameters" : float utilizationRef;
4: // Changes the policy of the QAC to the utilization

5: advice execution("% QAC_Admit(...)") : around() {

6: // Get the current estimated total utilization

7: totalUtilization = GetTotalEstimatedUtilization();

8: // Check if the current transaction ct can be admitted
9: if (utilizationTarget > totalUtilization + ct->utilization)
10: { (*(bool *)tjp->result()) = true; }

11 else

12 { (*(bool *)tjp->result()) = false; }

13}

Figure 8: QAC utilization policy aspect

FCC provides only one operation, FCC_Init (), that initial-
izes the FCC component. FCC calls QAC_Adjust () after
computing the manipulated variable.

The utilization transaction model aspect augments the basic
COMET transaction model so that it suits the utilization
transaction model described in section 5.3. This is done
using inter-type declaration that adds new parameters to the
basic model, e.g., estimated utilization ug ; and estimated
execution time zg ;.

The QAC composition aspect enables QAC to intercept re-
quests to create new transactions that are posed by the UIC
to the SMC. This is done via an advice of type around which
is executed when the SMC operation SMC_CreateNew() is
called (lines 3-8 in figure 7). Since this operation of the
SMC is in charge of registering a new transaction to the
system, the advice ensures that, before the transaction is
actually registered, an admission test is made by the QAC
(line 4). If the transaction can be admitted the transaction
registration is resumed; the proceed() in line 5 enables the
normal continuation of the join point SMC_CreateNew(). If
the transaction is to be aborted, then the around advice re-
places the execution of the transaction registration in full
and, thus, ensures that the transaction is rejected from the
system (line 7).

The QAC utilization policy aspect shown in figure 8 replaces,
via the around advice (lines 5-13), the default admission pol-
icy of QAC with an admission policy based on utilization
(lines 9-12). The current transaction examined for admis-
sion in the system is denoted ct in figure 8.

The FCC composition aspect facilitates the composition of
FCC with all other components in the system by ensuring
that the FCC is properly initialized during the system ini-
tialization.

1: aspect missed_deadline_monitor {
2: advice call("% SMC_CreateNew(...)") : after(){
3: if (*(bool *)tjp->result()) { admittedTransactions++; }

4}

5: advice call("% SMC_Completed(...)") : before(){

6: ScheduleRecord *sr = (ScheduleRecord *)tjp->arg(0);

7 _getTime(¤tTime);

8: node = findNode(ActiveQueue_root, sr->id);

9: if ((node '= NULL) && (_compareTimes(¤tTime,

10: &(node->data->deadline))))
11 { missedTransactions++; }
12:

}
13: advice call("% SMC_Aborted(...)") : before(){...
14: admittedTransactions--;}
15: advice call("% SMC_RejectLeastValuableTransaction(...)") : after(){
16: if (*(bool *)tjp->result()) { admittedTransactions--;}

}
18: advice call("% getTimeToDeadline(...)") && within("%
19: getNextToExecute(...)") : after() {... missedTransactions++;}
20: }

Figure 9: Missed deadline monitor aspect

The missed deadline monitor aspect modifies the SMC to
keep track of transactions that have missed their deadlines,
missedl'ransactions, and transactions that have been ad-
mitted to the system, admittedT'ransactions. This is done
by having a number of advices of different types that inter-
cept SMC operations that handle completion and abortion
of transactions (see figure 9). For example, the advice of
type after that intercepts the call to SMC_CreateNew() in-
crements the number of admitted transactions once trans-
actions have been admitted to the system (lines 2-4). Simi-
larly, the advice in lines 5-12 checks if the number of trans-
actions with missed deadlines should be incremented before
the transaction has completed, i.e., before invoking the TMC
operation SMC_Completed().

The missed deadline controller aspect, illustrated in figure
10, is an instance of the feedback control policy aspect and
it modifies the SMC to keep track of the deadline miss ratio,
using equation 1. The aspect does so with two advices. One
is of type after and is executed after the initialization of
the UIC (lines 3-11), thus, ensuring that the appropriate
variables needed for FCC policy are initialized. The other
advice modifies the output of the FCC to suit the chosen
feedback control policy, which is deadline miss ratio in this
case (lines 13-17).

The data differentiation aspect enriches the data model of
the basic COMET configuration to differentiate between
base data and derived data. Differentiation is done by as-
signing avi; and timestamp; attributes to data items ma-
nipulated by the transaction. Inserted data items contain-
ing fields for avi; and timestamp; are assumed to be base
data. Whenever these data values are inserted or modified,
timestamp; is set to the current time.

The scheduling strategy aspect modifies the scheduling strat-
egy and the data model of the COMET to support two dis-
tinct update strategies for base data: immediate and on-
demand [23]. To accommodate these strategies the aspect
adds an update wait queue in the SMC (advice of type after
in lines 2-6 in figure 11). The name of the update strat-
egy is stored in a field in the relation (see line 15 for an

1: aspect missed_deadline_control{

2: // Initialize the new variales need for control

3: advice call("% UIC_init(...)") : after() {

4: UIC_SystemParameters *sp =

5: (UIC_SystemParameters *)tjp->arg(0);

6: if (*(bool *)tjp->result()) {

7 missRatioReference = sp->missRatioReference;
8: missRatioControlVariableP =

9: sp->missRatioControlVariableP;

12: // Modify the calculation of the control output
13: advice call("% calculateOutput(...)") : after(){
14: missRatioOutputHm =
15: calculateMissRatioOutput(RSMC_GetDeadlineMissRatio());
16: *((float *)tjp->result()) = missRatioOutputHm;
}

Figure 10: Missed deadline control aspect

aspect scheduling_policy{
advice call("% SMC_constructor(...)") : after(){
// Initialize the update-wait queue
UpdateWaitQueue_root = SMC_createNode(...);

}
advice call("% insert(...)") : before(){
/7 Set update type to immediate upon
9: //if the data is base data.
10: if (isUpdateTypeData(buffer)){
11: while (updateTypeNr > counter){

1:
2:
3:
4:
5:
6:
7
8:

12: counter++;

13: treePtr = treePtr->right;

14 '}

15: strcpy(treePtr->left->Data.operandID, "IMMEDIATE");
16: }

17:

}
18: advice call("% ReadData(...)") : after(){
19: // Ifitis a base data relation...
20: /7 If itis not an update or insert transaction...
21: //Ifitisinvalid...

Figure 11: Scheduling strategy aspect

example). Hence, an inserted data that contains a field for
update strategy as well as fields for avi; and timestamp; is
handled by this aspect. Note that, when a transaction reads
a base data item, the freshness of the item is examined in
the advice that is executed after TMC readData() is called,
i.e., after the data is read from the memory (lines 18-22 in
figure 11). If the base data item is stale and the updat-
ing strategy is set to on-demand, the transaction is rolled
back and moved to the update wait queue. If the updating
strategy is set to immediate, the transaction is rolled back
and restarted. Updates of base data items set to immediate
are always allowed, while updates of base data items set to
on-demand are rejected unless these data items have been
requested by a transaction in the update wait queue. If so,
the requesting transaction is moved to the ready queue and
the update executes normally.

The data access monitor aspect modifies the TMC to keep
track of how often base data items are accessed. Remember
that in QMF data base items are updated on-demand or

Table 2: Relationship between different parts of the
QoS package and different COMET QoS configura-
tions

COMET configurations
o
XY A A
0S aspect package N 2 2
QoS aspect packag S oo%‘\ OO®$\Q

Y9 < (o)
QAC utilization policy X X X
Missed deadline monitor X §

. . X
policy Missed deadline controller
aspects Scheduling strategy X
Data access monitor X
QoS through update

scheduling X

transaction Utilization transaction model X X X

model
aspects Data differentiation X
composition | QAC composition aspect X X X
aspects FCC composition aspect X X
QAC X X X
components

FCC X X

immediate based on how often they are accessed.

The QoS through update scheduling aspect uses the data dif-
ferentiation aspect, scheduling strategy aspect, and the data
access monitor aspect to modify the QAC such that the ac-
tuator policy in QMF is used. Hence, when applying the
QoS through update scheduling aspect, changes to quality
of data in combination with admission policy is used to en-
force utilization changes based on the control signal from
FCC.

55 QO0SCOMET Configurations

In this section we show that Re-QoS with its QoS aspect
package concept ensures configurability and reusability of
QoS management, and also in practice solves (P5) and (P6).
Depending on the demands of the application with which
COMET is used, three distinct COMET QoS configurations
can be made by selecting appropriate aspects and compo-
nents within the package. Table 2 illustrates which elements
of the QoS aspect package are used in different configura-
tions.

The admission control configuration requires the utilization
transaction model aspect to extend the transaction model
as well as the QAC, and its composition aspect (see table
2). This configuration is simple as it only provides facilities
for admission control.

The miss ratio feedback configuration (COMET FC-M) pro-
vides the QoS guarantees based on FC-M policy. The con-
figuration includes both the QAC and FCC components and
their corresponding composition aspects, as well as the uti-
lization transaction model aspect, and the missed deadline
monitor and controller aspect (see table 2). These aspects
modify the policy of the SMC and FCC to ensure that QoS
based on deadline misses is enforced.

The update scheduling configuration (COMET QMF) pro-
vides the QoS guarantees based on QMF policy. Here the

1
—v— Open Loop
0.8 —4— FC-M
i) Reference
©
o
g 0.6
=
2
= 04
pe}
©
()
0
0.2
03457 1 1 1 A
0 0.2 0.4 0.6 0.8 1

Load

Figure 12: Deadline miss ratio as a function of load

data differentiation aspect and scheduling strategy aspect
are used to enrich the transaction model even further than
it was done in the previous configuration. Moreover, the
data access monitor aspect is required to ensure the metric
used in QMF, and the QoS through update scheduling as-
pect to further adjust the policy of QAC to suit the QMF
algorithm.

5.6 Experimental Evaluation

In this section we present one experiment made on the COM-
ET platform with and without the QoS aspect package. The
goal of the experiment is to show that the QoS management
mechanisms in COMET perform as expected and thereby
show that, when adding the QoS aspect package, we indeed
achieve reconfigurability in QoS management with required
performance guarantees. It should be noted that we have
performed several other experiments to show that we achieve
the desired behavior under different COMET QoS configu-
rations (see [7]). Due to space limitations we present only
one of the experiments.

For doing the experiment we have chosen the following ex-
periment setup. The database consists of eight relations,
each containing ten tuples. Constant streams of transaction
requests are used in the experiments. To vary the load on
the system, i.e., utilization, the interarrival time between
the transactions is altered. Update transactions arrive peri-
odically, whereas user transactions arrive aperiodically. The
deadline miss ratio reference, i.e., the desired deadline miss
ratio, is set to 10%.

We present an experiment applied to the COMET FC-M
configuration, where the load applied on the database is var-
ied. This way we can determine the behavior of the system
under increasing load. We use the behavior of the open-loop
system, i.e., concurrent COMET configuration without the
QoS aspect package, as a baseline. For all the experiment
data, we have taken the average of 10 runs. Figure 12 shows
the deadline miss ratio of concurrent COMET and COMET
with the FC-M configuration. The dotted line indicates the
reference deadline miss ratio, i.e., the desired QoS.

Starting with concurrent COMET, the deadline miss ratio
starts increasing at approximately 0.85 load. However, the
deadline miss ratio increases more than the desired deadline
miss ratio and, hence, concurrent COMET does not provide
any QoS guarantees. On the contraryy, COMET with the
FC-M configuration manages to keep the deadline miss ratio
at the reference, even during high loads. This is in line with
our earlier observations where feedback control has shown
to be very effective in guaranteeing QoS [3, 4, 5].

The consequence of this is that we achieve reliable QoS man-
agement when using the FC-M configuration, as the actual
QoS is equal to the desired QoS. From this we conclude
that the COMET FM-C configuration is able to provide
QoS guarantees under varying load.

5.7 Experience Report
This section contains observations we made with respect to
our usage of aspect-oriented software development in general
and Re-QoS in particular for ensuring configurability and
reusability of QoS mechanisms.

Lesson 1: There is a tradeoff between configurability, reusa-
bility, and maintenance. Having a large number of aspects
leads to high demands on maintainability of the aspects and
the system, while fewer aspects lead to better maintainabil-
ity of the aspects and the system at the expense of limiting
configurability and reusability of the aspects in the system.
This conforms to the conclusions made in [33] where a trade-
off between requirements for reconfigurability and mainte-
nance when using aspects in software systems is identified.
In the case when there is a focus on maintainability, the
missed deadline monitor aspect and the missed deadline con-
trol aspect, which are part of the QoS policy aspects cate-
gory and implement FC-M policy, could be combined into
one aspect which both monitors and controls the deadline
misses. The same is true for the scheduling strategy aspect
and the QoS through update scheduling aspect that both
implement parts of the QMF algorithm. We have chosen,
however, to have these in different aspects to enable them
to be independently exchanged from the configuration and
from each other. For example, the missed deadline monitor
aspect is decoupled from missed deadline controller aspect
to ensure that reuse of aspects is increased, since the missed
deadline monitor aspect can generally be used in combina-
tion with another controller policy.

Lesson 2: Aspects can be reused in all phases of the sys-
tem development. We found that aspects that are developed
within the Re-QoS and implemented in an aspect package
can efficiently be reused in different phases of the of the sys-
tem development. For example, the missed deadline moni-
tor aspect is used in the design and implementation phase
of the system as a part of a QoS method, i.e., to implement
a specific QoS policy. Additionally, this aspect is efficiently
reused in the evaluation phase of the system development,
where it was used for performance evaluation and gathering
statistics. All performance evaluations presented in section
5.6 are done using aspects as means of monitoring system
performance.

Lesson 3: Reconfiguration locations lead to an efficient
and analyzable product-line architecture. We observed that,

for development of different system configurations using the
same set of components in combination with different as-
pects, we need to explicitly define places in the architecture
where extensions can be made, i.e., aspects woven. There-
fore, we enforced in our component model that the places
where possible extensions can take place (component can
be reconfigured) are explicitly declared in the component
interfaces. Although we restrict the join point model of
the aspect language, we obtain clear extension points in the
components and the system architecture. Moreover, the re-
configuration locations in the component code are desirable
in the real-time domain as they provide pre-defined places
where code modifications can be done, and therefore can be
analyzed more efficiently during the design and pre-run time
phases of the system development [30, 32]. Hence, using Re-
QoS and notion of aspect package we can efficiently develop
product line architecture of a real-time system that has the
ability to satisfy specified QoS needs.

Lesson 4: Aspect languages are means of dealing with legacy
software. Since we developed the COMET database system
to be primarily suited for hard real-time systems in the ve-
hicular industry [21], the programming language used for the
development of the basic database functionality (described
in section 5.1) needed to be suited for the software that al-
ready existed in a vehicular control system. Moreover, anal-
ysis techniques that have been used in the existing system
should have been applicable to our basic database compo-
nents. This leads to the development of the COMET ba-
sic configuration using C programming language. Aspects
provided efficient means for introducing extensions to the
system; we used the AspectC++ weaver since a weaver for
C language [10] is not publicly available. In overall, we
have concluded that, if extending existing real-time systems,
which are typically developed in a non-object-oriented lan-
guage such as C, aspects are of greater value than rebuilding
the system using an object-oriented language and then mak-
ing extensions to it using an object-oriented language such
as C++.

6. SUMMARY

In this paper we have presented the feedback-based QoS
method Re-QoS that empowers reconfigurability in QoS man-
agement of real-time systems. The Re-QoS method provides
a flexible QoS management architecture consisting of as-
pects and components, where parts of the architecture can
be modified, changed, or added depending on the target
application QoS requirements. Furthermore, QoS policies
within Re-QoS are encapsulated into aspects and can be ex-
changed and modified independently of the controlled real-
time system. This improves reusability of QoS management
and ensures applicability of Re-QoS across different applica-
tions. Re-QoS also enables existing real-time systems, with-
out QoS guarantees, to be used in applications that require
specific performance guarantees. This is done through the
concept of a QoS aspect package, which is a Re-QoS-based
implementation of different QoS policies (suitable for a num-
ber of applications) for a specific real-time system. By ex-
changing aspects within the QoS aspect package one can
efficiently tailor the QoS management of a real-time system
based on the application requirements. We have shown how
the concept can be applied in practice by describing the way
we have adopted the COMET database platform. Initially,

COMET was developed to be used in closed real-time sys-
tems, but by adding the QoS aspect package COMET can
be used in open environments with unpredictable workloads.

Our on-going work focuses on adaptive control techniques
[35], encapsulated into aspects, for reconfigurable QoS man-
agement. This approach enables a system to adapt to ex-
changes to or upgrades of system components on-line while
preserving the specified level of QoS.

7. REFERENCES
[1] T. F. Abdelzaher, J. A. Stankovic, C. Lu, R. Zhang,
and Y. Lu. Feedback performance control in software
services. IEFE Control Systems Magazine,
23(3):74-90, June 2003.

[2] M. Amirijoo, J. Hansson, S. Gunnarsson, and S. H.
Son. Enhancing feedback control scheduling
performance by on-line quantification and suppression
of measurement disturbance. In Proceedings of the
IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2005.

[3] M. Amirijoo, J. Hansson, and S. H. Son. Error-driven
QoS management in imprecise real-time databases. In
Proceedings of the IEEE Euromicro Conference on
Real-Time Systems (ECRTS), 2003.

[4] M. Amirijoo, J. Hansson, and S. H. Son. Specification
and management of QoS in imprecise real-time
databases. In Proceedings of the IEEE International
Database Engineering and Applications Symposium
(IDEAS), 2003.

[6] M. Amirijoo, J. Hansson, S. H. Son, and
S. Gunnarsson. Robust quality management for
differentiated imprecise data services. In Proceedings
of the IEEE International Real-Time Systems
Symposium (RTSS), 2004.

[6] C. Aurrecoechea, A. T. Campbell, and L. Hauw. A
survey of QoS architectures. Verlag Multimedia
Systems Journal, 6(3):138-151, May 1998.

[7] M. Bjork. QoS management in configurable real-time
databases. Master’s thesis LITH-IDA-EX-04/071-SE,
Department of Computer Science, Linkoping
University, Sweden, 2004.

[8] G. C. Buttazzo. Hard Real-Time Computing Systems.
Kluwer Academic Publishers, 1997.

[9] A. Cervin, J. Eker, B. Bernhardsson, and K. Arzén.
Feedback-feedforward scheduling of control tasks.
Journal of Real-time Systems, 23(1/2),
July/September 2002. Special Issue on
Control-Theoretical Approaches to Real-Time
Computing.

[10] Y. Coady and G. Kiczales. Back to the future: A
retroactive study of aspect evolution in operating
system code. In Proceedings of the Second
International Conference on Aspect-Oriented Software
Development (AOSD 2003), pages 50-59, Boston,
USA, 2003. ACM Press.

[11] D. Ecklund, V. Goebel, T. Plagemann, E. F. E. Jr.,
C. Griwodz, J. Aagedal, K. Lund, and A.-J. Berre.
QoS management middleware: A separable, reusable
solution. In Proceedings of the 8th International
Workshop on Interactive Distributed Multimedia
Systems (IDMS’01), 2001.

[12] G. F. Franklin, J. D. Powell, and M. Workman.
Digital Control of Dynamic Systems. Addison-Wesley,
third edition, 1998.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

27]

D. Isovic and C. Norstrom. Components in real-time
systems. In Proceedings of the Eight International
Conference on Real-Time Computing Systems and
Applications (RTCSA’02), pages 135-139, Tokyo,
Japan, March 2002.

K.-D. Kang, S. H. Son, J. A. Stankovic, and T. F.
Abdelzaher. A QoS-sensitive approach for timeliness
and freshness guarantees in real-time databases. In

Proceedings of the Euromicro Conference on Real-time
Systems (ECRTS), 2002.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of the
ECOOP, volume 1241 of Lecture Notes in Computer
Science, pages 220—-242. Springer-Verlag, 1997.

B. Li and K. Nahrstedt. A control theoretical model
for quality of service adaptations. In Proceedings of the
International Workshop on Quality of Service, 1998.

C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in hard real-time environments.
Journal of the Association for Computing Machinery,
20(1):46-61, January 1973.

C. Lu, J. A. Stankovic, G. Tao, and S. H. Son.
Feedback control real-time scheduling: Framework,
modeling and algorithms. Journal of Real-time
Systems, 23(1/2), July/September 2002.

Y. Lu, A. Saxena, and T. F. Abdelzaher.
Differentiated caching services; a control-theoretical
approach. In Proceedings of the International
Conference on Distributed Computing Systems
(ICDCS), 2001.

D. Nystréom, A. TeSanovié, M. Nolin, C. Norstrom,
and J. Hansson. Comet: A component-based real-time
database for automotive systems. In Proceedings of the
Workshop on Software Engineering for Automotive
Systems at 26th International Conference on Software
engineering (ICSE’04), Edinburgh, Scotland, May
2004. IEEE Computer Society Press.

D. Nystrom, A. TeSanovi¢, C. Norstrom, J. Hansson,
and N.-E. Bankestad. Data management issues in
vehicle control systems: a case study. In Proceedings of
the 14th Euromicro International Conference on
Real-Time Systems, Vienna, Austria, June 2002.

S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury,

T. Jayram, and J. Bigus. Using control theory to
achieve service level objectives in performance
management. Journal of Real-time Systems, 23(1/2),
July/September 2002.

K. Ramamritham. Real-time databases. International
Journal of Distributed and Parallel Databases, (1),
1993.

K. J. Astrém and B. Wittenmark. Adaptive Control.
Addison-Wesley, second edition, 1995.

K. Sandstrém, J. Fredriksson, and M. A. Kerholm.
Introducing a component technology for safety critical
embedded realtime systems. In In Proceedings of the
International Symposium on Component-based
Software Engineering (CBSE7), Scotland, May 2004.
Springer-Verlag.

M. Sanfridson. Problem formulations for QoS
management in automatic control. Technical Report
TRITA-MMK 2000:3, ISSN 1400-1179, ISRN
KTH/MMK-00/3-SE, Mechatronics Lab KTH, Royal
Institue of Technology (KTH), Sweden, March 2000.

H. Schmidt. Trustworthy components-compositionality
and prediction. The Journal of Systems and Software,
pages 215-225, 2003.

28]

[29]

[30]

31]

32]

[33]

[34]

[35]

O. Spinczyk, A. Gal, and W. Schréder-Preikschat.
AspectC++: an aspect-oriented extension to C++. In
Proceedings of the 40th International Conference on
Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002), Sydney, Australia, February
2002. Australian Computer Society.

D. B. Stewart, R. Volpe, and P. K. Khosla. Design of
dynamically reconfigurable real-time software using
port-based objects. IEEE Transactions on Software
Engineering, 23(12), December 1997.

A. Te8anovi¢, S. Nadjm-Tehrani, and J. Hansson.
Modular Verification of Reconfigurable Components
chapter in Embedded System Development with
Components. Springer-Verlag, 2005.

A. Tesanovié¢, D. Nystrom, J. Hansson, and

C. Norstrom. Towards aspectual component-based
real-time systems development. In Proceedings of the
9th International Conference on Real-Time and
Embedded Computing Systems and Applications
(RTCSA’03), volume 2968 of Lecture Notes in
Computer Science. Springer-Verlag, 2003.

A. Teanovié¢, D. Nystrom, J. Hansson, and

C. Norstrom. Aspects and components in real-time
system development: Towards reconfigurable and
reusable software. Journal of Embedded Computing,
1(1), October 2004.

A. Teganovi¢, K. Sheng, and J. Hansson.
Application-tailored database systems: a case of
aspects in an embedded database. In Proceedings of
the 8th International Database Engineering and
Applications Symposium (IDEAS’04), Coimbra,
Portugal, July 2004. IEEE Computer Society.

R. van Ommering. Building product populations with
software components. In Proceedings of the 24th
international conference on Software engineering,
pages 255265, Orlando, Florida, USA, May 2002.
ACM Press.

K. J. Astrém and B. Wittenmark. Adaptive Control.
Addion-Wesley, second edition, 1995.

