
Adaptive Real-Time Anomaly Detection
with Improved Index and Ability to Forget∗

Kalle Burbeck and Simin Nadjm-Tehrani
Department of Computer and Information Science

Linköping university SE–581 83 Linköping, Sweden

E-mail: {kalbu, simin}@ida.liu.se

Abstract

Anomaly detection in IP networks, detection of devia-
tions from what is considered normal, is an important com-
plement to misuse detection based on known attack descrip-
tions. Performing anomaly detection in real-time places
hard requirements on the algorithms used. First, to deal
with the massive data volumes one needs to have efficient
data structures and indexing mechanisms. Secondly, the
dynamic nature of today’s information networks makes the
characterization of normal requests and services difficult.
What is considered as normal during some time interval
may be classified as abnormal in a new context, and vice
versa. These factors make many proposed data mining tech-
niques less suitable for real-time intrusion detection. In this
paper we extend ADWICE, Anomaly Detection With fast In-
cremental Clustering. Accuracy of ADWICE classifications
is improved by introducing a new grid-based index, and its
ability to build models incrementally is extended by intro-
ducing forgetting. We evaluate the technique on the KDD
data set as well as on data from a real (telecom) IP test
network. The experiments show good detection quality and
illustrate the usefulness of adapting to normality.

1. Introduction

Intrusion detection is an important part of computer sys-
tem defence. Due to increasing complexity of the intru-
sion detection task, the use of many IDS sensors to increase
coverage, and the need for improved usability of intrusion
detection, a recent trend is alert or event correlation [3, 6].
Correlation combines information from multiple sources to

∗This work was supported by the European project Safeguard [13] IST–
2001–32685. We would like to thank Thomas Dagonnier, Tomas Lingvall
and Stefan Burschka at Swisscom for fruitful discussions and their many
months of work with the test network. The work is currently supported
by a grant from CENIIT, Center for Industrial Information Technology at
Linköping university.

improve information quality. By correlation the strength of
different types of detection schemes may be combined, and
weaknesses compensated for.

The main detection scheme of most commercial intru-
sion detection systems is misuse detection, where known
bad behaviours (attacks) are encoded into signatures. In
anomaly detection normal behaviour of users or the pro-
tected system is modelled, often using machine learning or
data mining techniques rather than given signatures. Dur-
ing detection new data is matched against the normality
model, and deviations are marked as anomalies. Since no
knowledge of attacks is needed to train the normality model,
anomaly detection may detect previously unknown attacks.

Anomaly detection still faces many challenges, where
one of the most important is the relatively high rate of false
alarms (false positives). The problem of capturing a com-
plex normality makes the high rate of false positives intrin-
sic to anomaly detection except for simple problems. We ar-
gue that the usefulness of anomaly detection is increased if
combined with further aggregation, correlation and analysis
of alarms, thereby minimizing the number of false alarms
propagated to the administrator (or automated response sys-
tem) that further diagnoses the scenario. The fact that nor-
mality changes constantly makes the false alarm problem
even worse. When normality changes over time, a model
with acceptable rates of false alarms may rapidly deterio-
rate in quality. To minimize this problem and the resulting
additional false alarms, the anomaly detection model needs
to be adaptable.

The training of the normality model for anomaly detec-
tion may be performed by a variety of different techniques
and many approaches have been evaluated. One impor-
tant technique is clustering, where similar data points are
grouped together into clusters using a distance function. In
this paper we develop a new indexing mechanism for AD-
WICE (Anomaly Detection With fast Incremental Cluster-
ing), an adaptive anomaly detection scheme inspired by the
BIRCH clustering algorithm [15]. We improve an earlier



version of the algorithm used for anomaly detection [2] in
two ways: (1) a novel search index that increases precision
detection quality, and (2) new means to handle adaptation
of the model (forgetting). This paper does not attempt to
justify the quality of clustering within anomaly detection
or compare performance with other machine learning work.
The interested reader is referred to the original report for
that purpose [2].

The paper is organised as follows. In section 2 the moti-
vation of this work is presented together with related work.
Section 3 describes the indexing technique, and evaluation
is presented in section 4. The final section discusses the re-
sults and describes opportunities and challenges for future
work.

2 Motivation and Related Work

One fundamental problem of intrusion detection re-
search is the limited availability of good data to be used for
evaluation. Producing intrusion detection data is a labour
intensive and complex task involving generation of normal
system data as well as attacks, and labelling the data to
make evaluation possible. If a real network is used, the
problem of producing good normal data is reduced, but then
the data may be too sensitive to be released to other re-
searchers publicly. Learning-based methods require data
not only for testing and comparison but also for training,
resulting in even higher data requirements. The data used
for training needs to be representative for the network to
which the learning-based method will be applied, possibly
requiring generation of new data for each deployment.

Classification-based methods [4, 9] require training data
that contains normal data as well as good representatives of
those attacks that should be detected, to be able to separate
attacks from normality. Producing a good coverage of the
very large attack space (including unknown attacks) is not
practical for any network. Also the data needs to be labelled
and attacks to be marked. One advantage of clustering-
based methods [5,10,12,14] is that they require no labelled
training data set containing attacks, significantly reducing
the data requirement. There exist at least two approaches.

When doing unsupervised anomaly detection [5, 12, 14]
a model based on clusters of data is trained using unlabelled
data, normal as well as attacks. If the underlying assump-
tion holds (i.e. attacks are sparse in data) attacks may be
detected based on cluster sizes, where small clusters cor-
respond to attack data. Unsupervised anomaly detection is
a very attractive idea, but unfortunately the experiences so
far indicate that acceptable accuracy is very hard to obtain.
Also, the assumption of unsupervised anomaly detection is
not always fulfilled making the approach unsuitable for at-
tacks such as denial of service (DoS) and scanning.

In the second approach, which we simply denote (pure)

anomaly detection in this paper, training data is assumed
to consist only of normal data. Munson and Wimer [10]
used a cluster-based model (Watcher) to protect a real web
server, proving anomaly detection based on clustering to be
useful in real life. ADWICE uses pure anomaly detection to
reduce the training data requirement of classification-based
methods and to avoid the attack volume assumption of un-
supervised anomaly detection. By including only normal
data in the detection model the low accuracy of pure anom-
aly detection can be significantly improved.

In a real live network with connection to Internet, data
can never be assumed to be free of attacks. Pure anomaly
detection also works when some attacks are included in the
training data, but those attacks will be considered normal
during detection and therefore not detected. To increase de-
tection coverage, attacks should be removed from the train-
ing data to as large an extent as possible, with a trade-off
between coverage and data cleaning effort. Attack data can
be filtered away from training data using updated misuse de-
tectors, or multiple anomaly detection models may be com-
bined by voting to reduce costly human effort.

One of the inherent problems of anomaly detection in
general is the false positives rate. In most realistic settings
normality is hard to capture and even worse, is changing
over time. Rather than making use of extensive periodi-
cal retraining sessions on stored off-line data to handle this
change, ADWICE is fully incremental making very flexible
on-line adaptation of the model possible without destroying
what is already learnt.

An intrusion detection system in a real-time environment
needs to be fast enough to cope with the information flow,
have explicit limits on resource usage, and adapt to changes
in the protected network in real-time. Many proposed clus-
tering techniques require quadratic time for training [7],
making real-time adaptation of a cluster-based model hard.
They may also not be scalable, requiring all training data to
be kept in main memory during training, limiting the size of
the trained model. We argue that it is important to consider
scalability and performance in parallel to detection quality
when evaluating algorithms for intrusion detection. Most
work on applications of data mining to intrusion detection
consider those issues to a very limited degree or not at all.
ADWICE is scalable since compact cluster summaries are
kept in memory rather than individual data. ADWICE also
has better performance compared to similar approaches due
to the use of local clustering with an integrated improved
search index.

3 The Anomaly Detection algorithm

This section describes how ADWICE handles training
and detection, more details on the old index may be found
in the original paper [2]. The present implementation re-



quires data to be numeric. Data is therefore assumed to be
transformed into numeric format by pre-processing.

3.1 Basic concepts

The basic clustering concepts are presented in the orig-
inal BIRCH paper [15] and the relevant parts are summa-
rized here. An ADWICE model consists of a number of
clusters, a number of parameters, and a tree index in which
the leaves contain the clusters. A central idea of BIRCH
inherited by ADWICE is to store only condensed informa-
tion (cluster feature) instead of all data points of a cluster.
A cluster feature is a triple CF = (n,S, SS) where n is
the number of data points in the cluster, S is the linear sum
of the n data points and SS is the square sum of all data
points. From now on we represent clusters by cluster fea-
tures (CF ).

Given n d-dimensional data vectors vi|i = 1 . . . n in a
cluster CF the centroid v0 is defined as v0 =

∑
i vi/n,

which may be computed given only the summary CF . The
distance between a data point v and a cluster CF is the
Euclidian distance between v and the centroid, denoted
D(v, CF ) while the distance between two clusters CFi and
CFj is the Euclidian distance between their centroids, de-
noted D(CFi, CFj). If two clusters CFi = (ni,Si, SSi)
and CFj = (nj ,Sj , SSj) are merged, the CF of the result-
ing cluster may be computed as (ni + nj ,Si + Sj , SSi +
SSj). This also holds if one of the CFs is only based on one
data point making incremental update of CFs possible.

A leaf node contains at most LS (leaf size) entries, each
of the form CFi where i ∈ {1, . . . , LS}. Each CFi of the
leaf node must satisfy a threshold requirement (TR) with
respect to the threshold value T to allow the cluster to ab-
sorb a new data point v. In the current implementation the
threshold requirement is D(v, CFi) ≤ T .

3.2 Training

The algorithm for training works with a parameter M
(maximum size of the model, denoted by total number of
clusters), and the parameter LS. The threshold T may be
initialized to zero.

Given a model and a new data vector v, a search for the
closest cluster is performed. If the threshold requirement is
fulfilled, the new data point may be merged with the closest
cluster, otherwise a new cluster needs to be inserted:

Case 1: If it is possible to add clusters to the model (the
size is still below M ), we find the leaf where the new cluster
should be included and insert the cluster if there is still space
in the leaf. Otherwise we need to split the leaf and insert the
new cluster in the most suitable of the new leafs.

Case 2: If the size (number of clusters) of the model has
reached the maximum M we need to reduce the model size
by allowing clusters to grow. The threshold T is increased,
relaxing the threshold requirement and the model is rebuilt.
When rebuilding the model, the old cluster features are re-
moved and reinserted into the model. Due to the increase
of T , previously close (similiar) clusters may be merged,
thereby reducing the size of the model. The new data point
v is then inserted into the new model.

Rebuilding the model requires much less effort than the
initial insertion of data since only cluster features rather
than individual data points are inserted. If the increase of
T is too small, a new rebuild of the tree may be needed to
reduce the size below M again. A heuristic described in
the original BIRCH paper [15] may be used for increasing
the threshold to minimize the number of rebuilds, but in this
work we use a simple constant to increase T conservatively
(to avoid influencing the result by the heuristic).

Below is an algorithmic description of the training phase
of ADWICE, in which only the main points of the algorithm
are presented and some simplifications made to facilitate
presentation. Note also that the index is abstracted away at
this point.

1: procedure TRAIN(v,model)
2: closestCF = findClosestCF()
3: if thresholdRequirementOK(v,closestCF ) then
4: merge(v,closestCF )
5: else
6: if size(model) < M then
7: leaf = getLeaf(v,model)
8: if spaceInLeaf(leaf ) then
9: insert(newCF(v), leaf )

10: else
11: splitLeaf(leaf , newCF(v))
12: end if
13: else
14: increaseThreshold()
15: model = rebuild(model)
16: TRAIN(v, model)
17: end if
18: end if
19: end procedure

The first implementation of ADWICE [2] used the origi-
nal BIRCH index: a tree structure where the non-leaf nodes
contained one CF for each child, summarizing all clusters
contained in the child below. Unfortunately the original in-
dex results in a suboptimal search where the closest clus-
ter is not always found. Although this does not decrease
processing performance, accuracy suffers. If a cluster in-
cluded in the normality model is not found and the test data
is normal, an index error results in an erroneous false pos-
itive and degrades detection quality. Because of this un-
wanted property a new grid-based index was developed pre-



serving the adaptability and good performance of ADWICE
and designed to eliminate the index errors of BIRCH.

3.3 New indexing mechanism

A subspace of d-dimensional space is defined by two
vectors, ssMax and ssMin, specifying for each dimen-
sion an interval or slice. A grid is a division of space into
subspaces. In two dimensions this results in a space divided
into rectangles. The idea of the new grid index is to use a
grid-tree which is a sparse, possibly unbalanced tree with
the parameters threshold (T ), leaf size (LS) and maximum
number of clusters (M ). Each node specifies a subspace
and each increase in depth decreases the size of the sub-
space facilitating searching by gradually zooming in on the
data space. We explain the index by a simple 2-dimensional
example illustrated by Figure 1.

Each dimension di has a maximum value Maxi and a
minimum value Mini, in the running example of Figure 1
Min1 = Min2 = 0 and Max1 = Max2 = 1. For un-
bounded domains those extreme values are in practice real-
ized during feature extraction. The user divides each di-
mension di in a number of slices denoted NumSlicesi,
in the example NumSlices1 = 3 and NumSlices2 =
4. The slice width may be computed as SliceWidthi =
(Maxi − Mini)/NumSlicesi. In the example this results
in SliceWidth1 = 0.33 and SliceWidth2 = 0.25. A
function getSliceDimension(depth) mapping tree depth
to dimension index is specified, i.e [0 → d1, 1 → d2].

Each entity of a non-leaf node is mapping from the slice
number to a child node (see Figure 1), realized by a hash ta-
ble to facilitate quick search and reducing space by not rep-
resenting empty children. The leaf nodes contain the cluster
features similarly to the original BIRCH index.

During training the general training algorithm of section
3.2 is followed. Assume we want to train the model of Fig-
ure 1 with the new data point v = 〈0.28, 0.2〉 by inserting v
in the closest cluster. Merging of a data point with a cluster
CFi may only be performed if the D(v, CFi) < T imply-
ing those are the only clusters we need to consider when
searching for the closest one.

To find the closest cluster we perform a top-down search
of the grid-tree. At the root, i.e. depth = 0, we obtain
getSliceDimension(0) = d1. Given the value of v in
dimension i (v[i]) and SliceWidthi we compute the slice
number into which v fits, in the example slice 1. However,
since v is close to the border between slices 1 and 2 it may
be the case that the closest cluster is located in slice 2. We
compute a search width [v[i] − T, v[i] + T ] and search in
all slices overlapping the search width interval, in this case
1 and 2. No child exists for slice 2 due to lack of clusters in
the corresponding subspace, eliminating the need for search
in 2. In slice 1 we descend and find a leaf-cluster and return

b as the closest cluster since D(v, b) < D(v, a). Our intu-
ition and experience tells us that in our domain the grid is
sparsely populated decreasing the need for searching multi-
ple slices at each depth.

During learning/adapting the normality model there are
three cases in which the nodes of the grid tree need to be
updated:

• If no cluster is close enough to absorb the data point,
v is inserted into the model as a new cluster. If there
does not exist a leaf subspace in which the new cluster
fits, a new leaf is created. However, there is no need for
any additional updates of the tree, since nodes higher
up do not contain any summary of data below.

• When the closest cluster absorbs v, its centroid is up-
dated accordingly. This may cause the cluster to move
in space. A cluster may potentially move outside its
current subspace. In this case, the cluster is removed
from its current leaf and inserted anew in the tree from
the root, since the path all the way up to the root may
have changed. If the cluster was the only one in the
original leaf, the leaf itself is removed to keep unused
subspaces without leaf representations.

• If a cluster is removed/forgotten (section 3.5) the index
is only changed if the leaf is now empty in which case
the leaf of the removed cluster is also removed.

Compared to the continuously updated original BIRCH
index, the need for grid index updates are very small, since
the first case above requires only insertion of one new leaf,
and the second case occurs infrequently. The third case re-
quires most often no index update at all.

In case of a split of a leaf, the original leaf is transformed
to a non leaf node. The new node computes its split dimen-
sion according to its depth in the tree, and the clusters of
the original leaf are inserted in the new node resulting in
creation of leaves as children to the node.

The getSliceDimension(depth) function should be
defined manually or automatically according to statistics of
the input data to minimize the depth of the tree, thereby
maximizing performance. For example, if all data have the
same or almost the same value in a certain dimension, this
dimension is not useful for slicing, since the depth of the
tree will increase without distributing the clusters into mul-
tiple children.

In most cases not all dimensions need to be used for slic-
ing (thus limiting the height of the tree), assuming that the
function getSliceDimension(depth) is selected appropri-
ately. However, if the situation arises that all useful dimen-
sions have been used for slicing, and still the number of
clusters to be inserted does not fit in one leaf due to the
limited leaf size (LS), then the LS parameter for that leaf
can be increased, affecting only that leaf locally. This is the



dc

0.33 0.67 10
0

1

0.25

0.5

0.75

Dimension d1 slices

D
im

en
si

o
n 

d
2

sl
ic

es

1

2

3

4

S
lic

e 
n

um
be

r
2 31

Slice number

e

b
a

1 3

2 4
a b

d1

d2

Leaf subspaces Corresponding grid tree

1 3

e

Non-leaf 
node

Leaf node

Data point

Cluster

Legend

Hash 
mapping

v v

e CF

c d e

Figure 1. Basic notions of the grid and grid tree

approach that our current implementation adopts. An alter-
native or complementary approach to handle this situation
is to rebuild the tree using a smaller width of the intervals
for each dimension.

3.4 Detection

The basic detection procedure is the same for any choice
of index and thus similar to the original index [2]. During
the detection the model is searched for the closest cluster
CFi (using the index). Then the distance D(v, CFi) from
the centroid of the cluster to the new data point v is com-
puted. Informally, if D is small, i.e. lower than a limit,
v is similar to data included in the normality model and v
should therefore be considered normal. If D is large, v is
an anomaly.

Let the threshold T be the limit (L) used for detection.
Using two parameters E1 and E2, MaxL = E1 ∗ L and
MinL = E2 ∗ L may be computed. Then we compute the
belief b that v is anomalous using the formula below:

b =




0 if D ≤ MinL
1 if D ≥ MaxL

D−MinL
MaxL−MinL if MinL < D < MaxL

(1)

A belief threshold (BT) is then used to make the final
decision. If v is considered anomalous an alarm is raised.
The belief threshold may be used by the administrator to
change the sensitivity of the anomaly detection. For the rest
of the paper, to simplify the evaluation, we set E1 = E2 =
E so that v is anomalous if and only if D > MaxL.

For the grid-tree the search for the closest cluster during
detection differs slightly from the search during training.
When deciding search width now MaxL rather T needs to
be used.

3.5 Adaptation of the normality model

Below we describe two scenarios in which it is very use-
ful to have an incremental algorithm in order to adapt to
changing normality.

Scenario 1 New cases of normality require the model to
adapt incrementally. In some settings, it may be useful to
let the normality model relearn autonomously. If normal-
ity drifts slowly, an incremental clustering algorithm may
handle this in real-time during detection by incorporating
every test data classified as normal with a certain confidence
into the normality model. If slower drift of normality is re-
quired, a subset of those data based on sampling could be
incorporated into the normality model. Even if autonomous
relearning is not allowed in a specific network there is need
for model adaptation. Imagine that the ADWICE normal-
ity model has been trained, and is producing good detec-
tion results for a specific network during some time inter-
val. However, in an extension of the interval the admin-
istrator recognizes that normality has changed and a new
class of data needs to be included as normal. Otherwise this
new normality class produces false positives. Due to the
incremental property, the administrator can incorporate this
new class without relearning the working fragment of the
existing normality model. That is, there is no need for re-
training the complete model. The administrator may inter-
leave incremental training with detection, completely elim-
inating the need for downtime required by non-incremental
approaches.

Scenario 2 The opposite scenario, is when the model of
normality needs to shrink. That is, something that was
considered normal earlier is now considered as undesir-
able. In our approach this situation is adapted to by for-



getting the segment of normality that is no longer consid-
ered as normal. This too can be performed autonomously
or manually. We have experimented with one autonomous
forgetting process which checks the model periodically
(CheckPeriod) to decide what clusters can be forgotten. If
the difference between current time and time of last use is
larger than a forgetting threshold (RememberPeriod), the
cluster is removed from the model. The rest of the model is
not influenced.

Each time a cluster is used, either during training or de-
tection, forgetting of the cluster is postponed for an amount
of time specified by the user. This is similar to the positive
influence of repetition in case of human learning.

4 Evaluation

In all following experiments ADWICE with a grid index
is used unless otherwise stated.

We choose to start evaluation of detection quality using
the KDDCUP99 intrusion detection data set [11] to be able
to compare the results with earlier evaluations [2]. Despite
the shortcomings of the DARPA related data sets [8] they
have been used in at least twenty research papers and are un-
fortunately currently the only openly available network data
set commonly used for comparison purposes. The purpose
of this first evaluation is a proof of concept for anomaly de-
tection with ADWICE using a large feature set in real-time,
testing the grid index.

Since ADWICE needs only normal data for training at-
tacks in the KDD training data set are removed resulting
in 972 781 session records (41 fields summarizing a TCP
session) used to train the ADWICE model. This model is
evaluated on the KDD testing set consisting of 311 029 ses-
sion records of normal data and many instances from 37
different attack types.

With a model size of 12 000 clusters, mean processing
time per testing instance was 0.5-0.6 ms in off-line experi-
ments on 1.8 GHz P3 computer with 512 MB RAM illus-
trating the good performance of the old ADWICE model.
Figure 2 shows that the primitive search operation of the
new grid-index (hashing) is 6-10 times faster than the prim-
itive operation of the old index (Euclidian distance, D) de-
pending on the number of dimensions (60-20 in Figure 2).
Full performance evaluation of the new index depends on
the parameters and the function getSplitDimension() and
is left as future work. The use of 972 781 elements of 41
dimensional data in the normality model illustrates the scal-
ability of ADWICE.

To illustrate forgetting and incremental training in a
more realistic setting, a data set generated by the tele-
com management test network in the European Safeguard
project [13] was used, at the time of evaluation consisting
of 50 real machines (now more than 100). A period of three

0

5000

10000

15000

HashMap D dim60 D dim40 D dim20

Type of operation

O
p

er
at

io
n

s/
m

s

Figure 2. Relative performance of primitive
index operations

0,75

0,8

0,85

0,9

0,95

1

0,015 0,02 0,025 0,03 0,035
False positives rate

D
et

ec
tio

n 
ra

te

ADWICE-TRR ADWICE-TRD ADWICE-Grid

Figure 3. Detection quality of ADWICE on
KDD data

days data is used for training an initial model, while the fol-
lowing seven days of data are used for testing. The features
include source and destination IP addresses and port num-
bers, time of day, connection length, bytes transferred and a
flag indicating a parsing error.

4.1 Detection quality of ADWICE

In all we have evaluated three different versions of AD-
WICE as shown in Figure 3. The trade-off between detec-
tion rate and false positives rate are realised by changing the
detection parameter E.

ADWICE-TRR [2] is base-line with a training phase
very similar to the original clustering algorithm BIRCH.
ADWICE-TRD [2] improves the first implementation while
still using the original index. ADWICE-Grid uses the new
grid index rather than the original BIRCH index, elimi-
nating the index-misses and thereby further improving the
result. A comparison with a classification based method
and unsupervised anomaly detection is present in earlier
work [2].

4.2 Incremental training

An important property of ADWICE is that the original
model, known to truly reflect recent normality, does not



0
2
4
6
8

10
12

0 20 40 60 80 100 120
Number of 2 hour periods from start of testing

N
um

be
r 

of
 a

la
rm

s

original m odel increm ental 1 increm ental 2

Figure 4. Adapting to changing normality
with incremental training

need to be retrained as soon as new cases of normality are
encountered. We evaluate this on data generated in the Safe-
guard test network. The three days of training data is used
to train an initial model which is then used for detection on
the seven days of testing data. When certain types of traf-
fic (new cases of normality) start producing false alarms the
administrator may tell ADWICE to incrementally learn the
data causing those alarms to avoid similar false alarms in
the future. Figure 4 shows alarms for host x.x.202.183 in
three scenarios. Period number 1 starts at time 2004-03-
11 00:00 (start of testing data) and each two-hour period
presents the sum of alarms related to host x.x.202.183 dur-
ing the corresponding time interval. At 2004-03-14 12:00,
corresponding to period number 43, the host is connected to
the network.

In the first scenario, no incremental training is used, and
the testing is performed on the original model. This corre-
sponds to the first curve of Figure 4. We see that when the
host connects, ADWICE starts to produce alarms and this
continues until the testing ends at period 102.

In the second scenario the administrator recognizes the
new class of alarms as false positives. She tells ADWICE
to learn the data resulting in those false alarms at time 2004-
03-14 17:55 (end of period 45).The second curve shows that
many of the original false alarms are no longer produced.
However, at regular intervals there are still many alarms.
Those intervals correspond to non-working hours.

In the third scenario incremental training is done in two
steps. After the first incremental training 2004-03-14 a sec-
ond incremental training is initiated at 2004-03-15 07:55
(end of period 52) when the administrator notices that false
alarms related to host x.x.202.183 are still produced. Fig-
ure 4 shows how almost all alarms now disappear after the
second incremental training period.

The need for the two-step incremental learning arouse
since the model differs between working hours and non-
working hours. The alarms the administrator used for ini-
tial incremental training were all produced during working
hours (2004-03-14 12:00 - 2004-03-14 17:55).

0
1

2
3

4
5

0 20 40 60 80 100 120

Number of 2 hour periods from start of testing

N
um

be
r 

of
 a

la
rm

s

forgetting no forgetting

Figure 5. Adapting to changing normality us-
ing forgetting

4.3 Forgetting

In this section we illustrate the use of forgetting. A
model is trained on data from three days of data and is then
used for detection with and without forgetting on the fol-
lowing seven days of data. Figure 5 shows alarms for one
instance of traffic (host x.x.202.73, port 137) that ceases to
be present in the (normal) testing data, making that kind
of traffic anomalous. With forgetting this fact is reflected
in the normality model. In this experiment a CheckPeriod
of 12 hours and RememberPeriod of 3 days (72 hours) are
used.

When traffic from host x.x.202.73 on port 137 is again
visible in data (periods 55-66) the traffic is detected as
anomalous. Without forgetting these anomalies would go
undetected.

5 Discussion and future work

We have developed and preliminary evaluated an adap-
tive network anomaly detector. In related work, real-time
detection and indexes for fast matching against the normal-
ity model are seldom considered together with the basic de-
tection approach. We consider the index in the detection
scheme from the start, since the index may influence not
only performance, but also other properties such as adap-
tiveness.

Preliminary evaluations show that there may be a need
for the administrator to tell the anomaly detector to learn
not only the data producing the alarm, but also a gener-
alisation of data. For example, the two step incremental
training in section 4.2 would not have been necessary if the
administrator could have told the system to learn that the
data producing alarms was normal both during working and
non-working hours. Those experiences call for more intel-
ligent tools, such as sophisticated model and data visual-
ization mechanisms, to help the administrator use anomaly
detection in a real environment. Also systematic methods to
decide on suitable parameter settings (e.g. M,numSlices)



is needed. Full evaluation of how sensitive ADWICE is to
minor changes of parameters remains to be done.

Extensions of the work will consider cluster size and fre-
quency of usage as criteria to decide whether a cluster ought
to be forgotten. Large clusters, corresponding to very com-
mon normality in the past, should be very resistant against
forgetting. With this approach also outliers resulting in
small clusters in the model could be handled by forgetting
them. Another improvement would be to gradually decrease
the influence of clusters over time, rather then forgetting
them completely.

Full evaluation of forgetting and incremental training re-
quires a long period of real data collection. We see the cur-
rent work as a proof of concept. It is improbable that parts
of normality should be forgotten already after a few days
in a real network and suitable configuration of forgetting
is network and policy specific. This is a trade-off between
(1) performance (decreasing model size), (2) detection of
(very) old normality as anomalies and (3) false positives if
the normality is forgotten too soon.

Producing good public data for intrusion detection evalu-
ation including anomaly detection and correlation is still an
important task for the intrusion detection community and
we think collaboration on this task is very important. Two
approaches exist:

• A test network or simulator can be used for genera-
tion of data, thereby realising a fully controlled envi-
ronment. Generation of more extensive data sets in
the Safeguard test network is ongoing work but re-
quires more resources, primarily to generate good nor-
mal data, but also to perform attacks.

• Data can be collected from real live networks. Here,
normality is no longer a problem, but privacy is, and so
is the issue of attack coverage. Emerging tools [1] can
be used to sanitize data with some limitations. San-
itizing data while keeping relevant properties of data
so that intrusion detection analysis is still valid is not
easy, especially for unstructured information, for ex-
ample, network packet content. Attacks may have to
be inserted into data off-line if the real attack present
in data is not enough, since performing attacks in a real
network is typically not a viable option.

We would like to explore both paths for evaluation of fu-
ture work and possibly include not only network data, but
also explore other types of data. This is possible since AD-
WICE is a general and flexible anomaly detection scheme.

References

[1] M. Bishop, B. Bhumiratana, R. Crawford, and K. N. Levitt.
How to sanitize data. In Proceedings of 13th IEEE Interna-
tional Workshops on Enabling Technologies, Infrastructure

for Collaborative Enterprises (WETICE 2004), pages 217–
222, Modena, Italy, 2004. IEEE Computer Society.

[2] K. Burbeck and S. Nadjm-Tehrani. Adwice - anomaly detec-
tion with real-time incremental clustering. In Proceedings
of the 7th International Conference on Information Security
and Cryptology, Seoul, Korea, 2004. Springer Verlag.

[3] T. Chyssler, S. Burschak, M. Semling, T. Lingvall, and
K. Burbeck. Alarm reduction and correlation in intrusion de-
tection systems. In Proceedings of Detection of Intrusions
and Malware & Vulnerability Assessment, GI SIG SIDAR
Workshop (DIMVA 2004), volume 46 of LNI, pages 9–24,
Dortmund, Germany, July 2004. GI.

[4] C. Elkan. Results of the kdd’99 classifier learning. ACM
SIGKDD Explorations, 1(2):63 – 64, 2000.

[5] Y. Guan, A. A. Ghorbani, and N. Belacel. Y-means a cluster-
ing method for intrusion detection. In Canadian Conference
on AI, volume 2671 of Lecture Notes in Computer Science,
pages 616–617, Montreal, Canada, 2003. Springer.

[6] J. Haines, D. Kewley Ryder, L. Tinnel, and S. Taylor. Valida-
tion of sensor alert correlators. IEEE Security and Privacy,
1(1):46–56, 2003.

[7] J. Han and M. Kamber. Data Mining - Concepts and Tech-
niques. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2001.

[8] M. V. Mahoney and P. K. Chan. An analysis of the 1999
darpa/lincoln laboratory evaluation data for network anom-
aly detection. In Recent Advances in Intrusion Detection,
volume 2820 of Lecture Notes in Computer Science, pages
220–237, Pittsburgh, PA, USA, 2003. Springer.

[9] S. Mukkamala, G. Janoski, and A. Sung. Intrusion detec-
tion using neural networks and support vector machines. In
Proceedings of the 2002 International Joint Conference on
Neural Networks (IJCNN ’02), pages 1702–1707, Honolulu,
HI, 2002. Institute of Electrical and Electronics Engineers
Inc.

[10] J. Munson and S. Wimer. Watcher the missing piece of the
security puzzle. In Proceedings of the 17th Annual Com-
puter Security Applications Conference, pages 230–9, New
Orleans, LA, USA, 2001. IEEE Comput. Soc.

[11] U. of California Irvine. The uci kdd archive, 2003.
http//kdd.ics.uci.edu Acc. February 2004.

[12] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection with
unlabeled data using clustering. In ACM Workshop on Data
Mining Applied to Security, 2001.

[13] Safeguard. The safeguard project, 2003. http//www.ist-
safeguard.org/ Acc. May 2004.

[14] K. Sequeira and M. Zaki. Admit anomaly-based data min-
ing for intrusions. In Proceedings of the 8th ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 386–395, Edmonton, Alberta, Canada, 2002.
ACM Press.

[15] T. Zhang, R. Ramakrishnan, and M. Livny. Birch an efficient
data clustering method for very large databases. SIGMOD
Record 1996 ACM SIGMOD International Conference on
Management of Data, 25(2):103–14, 1996.


