
�MS ID: STTT0152

6 August 2004 15:27 CET

Int J Softw Tools Technol Transfer (2004) 00: 1–12 / Digital Object Identifier (DOI) 10.1007/s10009-004-0152-y

Formal verification of fault tolerance
in safety-critical reconfigurablemodules

Jerker Hammarberg∗, Simin Nadjm-Tehrani

Department of Computer and Information Science, Linköping University, Linköping, Sweden
e-mail: simin@ida.liu.se

Published online: 2004 –  Springer-Verlag 2004

Abstract. Demands for higher flexibility in aerospace
applications has led to increasing deployment of recon-
figuarble modules in the form of Field Programmable
Gate Arrays (FPGAs). FPGAs act as digital hardware,
but in the context of safety analysis they should be
treated as software. Formal anlysis of safety-related prop-
erties of such components is thus essential for their use
in safety-critical subsystems. The contributions of this
paper are twofold. First, we illustrate a development pro-
cess using a language with formal semantics (Esterel) for
design, formal verification of high-level design, and au-
tomatic code generation down to synthesisable VHDL.
We argue that this process reduces the likelihood of sys-
tematic (permanent) faults in the design and still pro-
duces VHDL code that may be of acceptable quality
(size of FPGA, delay). Second, we provide a framework
in which component fault modes and effects can be for-
mally studied. We show how the design model can be
modularly extended with fault models that represent
specific or random faults (e.g. radiation leading to bit
flips in the component under design) and transient or
permanent faults in the rest of the environment. Some
faults corrupt inputs to the component and others jeop-
ardise the effect of output signals that control the en-
vironment. This process supports a formal version of
Failure Modes and Effects Analysis (FMEA). The set-
up is then used to formally determine which (single or
multiple) fault modes cause violation of the top-level
safety-related property, much in the spirit of fault-tree
analyses (FTA). All of this is done without building
the fault tree and using a common model for design
and for safety analyses. An aerospace hydraulic moni-
toring system is used to illustrate the analysis of fault
tolerance.

∗ Present address: DST Control AB, Linköping, Sweden.

Keywords: Safety analysis – Formal verification – Fault
tolerance – FPGA – Esterel

1 Introduction

The drive to produce faster, cheaper and better systems
in the last decade has made the need for reuse of mod-
ules in development cycles of safety-critical systems a re-
ality. Contrary to current life cycle processes in which
several teams use various partially overlapping models
and documents in almost independent activities, one now
looks for ways to reuse the same component in different
activities using different views. An important example
of such component-based reuse is when a formal design
model captures the functions of a component to be inte-
grated into a system. In this paper we propose that the
same (mathematical) functional model is used for non-
functional (safety-related) analysis at the system level.
This opens up for reuse of the component both in different
parallel processes in the same development cycle and with
respect to reuse in future generations.
This paper argues for such a reuse methodology in

the context of a specific example: design of reconfigurable
and safety-critical hardware. The results thus build on
languages and tools that promote flexible and depend-
able hardware. However, the generic message of the paper
is the merger between the functional and safety-related
analyses that are by no means language or application de-
pendent.

1.1 FPGAs

The combination of flexibility and efficiency requirements
in the development of digital components has made the
use of Field Programmable Gate Arrays (FPGAs) preva-
lent, not only in space electronics [17] but also in more

�MS ID: STTT0152

6 August 2004 15:27 CET

2 J. Hammarberg, S. Nadjm-Tehrani: Formal verification of fault tolerance in safety-critical reconfigurable modules

traditional avionic systems. FPGAs have gained popular-
ity during the last decade because they provide many of
the advantages from both hardware and software com-
ponents. Being a hardware component, an FPGA is effi-
cient compared to software, and the rapid development of
the technology results in growing capacities. At the same
time, an FPGA can be configured, tested and reconfig-
ured in the field, that is to say by the developers them-
selves, and this provides for flexibility that could earlier
only be achieved by using a software component. Due to
this flexibility and because FPGAs are standard compo-
nents manufactured on a large scale, the use of FPGAs in-
stead of more traditional hardware can drastically reduce
both costs and time-to-market. In a recent study of an
air intercept missile system, FPGAs were used at design
stage to provide flexibility, but they were later carried
over to the tactical system due to cost considerations as
compared with the more prohibitive application-specific
integrated circuits (ASICs) [14]. This trend necessitates
development of techniques for evaluation of the safety
risks associated with FPGAs.
When considering traditional safety evaluation tech-

niques, FPGAs lie somewhere in between hardware and
software. Although traditional quantitative safety and re-
liability analysis favours the use of hardware in safety-
critical applications, recent results show that this may be
a changing reality. Shivakumar et al. estimate that soft
error rates per chip (bit flips in hardware as a result of
cosmic radiation) of logic circuits will increase nine orders
of magnitude in a 10-year perspective by 2011, at which
point they will be comparable to the soft error rate per
chip of unprotected memory units [25].

1.2 Design languages

The development of hardware with software-like prop-
erties calls for new, software-like development methods,
and indeed this is now sought by industry. The traditional
gate-level schematics and other low-level design methods
are being abandoned in favor of high-level languages in
order to cope with increasing complexity and to make use
of the flexibility allowed by FPGAs. For safety-critical
systems, where faults in a component may have disas-
trous consequences, there are additional safety and reli-
ability demands that have to be taken into account. The
use of VHDL and other hardware description languages is
insufficient because they are still at a too low level, mak-
ing them error prone for larger and more complex sys-
tems, and they are not well suited for formal analysis such
as model checking and causality analysis. Here we argue
that the use of synchronous languages such as Esterel for
FPGA design can in many cases be a feasible solution to
these problems. Esterel is modular, easy to use and based
on formal semantics, allowing for efficient formal verifi-
cation. Moreover, Esterel can now be automatically com-
piled to synthesisable VHDL with a commercially avail-
able compiler. In this article we consider the potential

shortcomings of an FPGA design obtained in this man-
ner by looking at the ‘costs’ associated with using Esterel.
The main concern with automatic code generation from
a language at a high abstraction level such as Esterel is
the degraded efficiency and performance of the implemen-
tation. In particular, the additional logic blocks needed as
a result of the overhead from the compilation could ex-
ceed the capacity of the FPGA.

1.3 Combined reliability and safety analysis

The above considerations motivate a serious study of sys-
tem development processes that facilitate efficient inte-
gration of FPGAs and other software or hardware com-
ponents in systems design, with improved levels of safety.
In this paper we study the integration of reconfigurable
modules in safety-critical aerospace applications by illus-
trating two aspects of fault management. First, we con-
sider techniques that help the developer to remove or pre-
vent systematic permanent design faults. Second, we put
forward an analysis method that helps the system safety
engineer to concentrate on combinations of external and
random faults that should be the focus of the fault toler-
ance and containment techniques. These faults may be of
a permanent or transient nature.
The suggestedmethod combines analysis of functional

correctness (thereby reliability) with safety analysis.1 It
builds upon elements of analysis normally performed to
concentrate on faults that lead to system-level hazards,
much in the spirit of fault-tree analysis (FTA) and failure
modes and effects analysis (FMEA) techniques [13]. The
novelty of our approach is the combination of this type
of safety-related analysis with the model-driven develop-
ment of a design, early formal verification, and automatic
code generation. The contributions of the paper are there-
fore not in development of core techniques but in bringing
together a number of ingredients that have so far existed
as isolated activities, by providing a systematic approach
to the introduction of engineering knowledge in a for-
mal development process. This approach is illustrated on
a real aerospace case study, the hydraulic control unit in
an aircraft.
We round up the article with a discussion of the

trade-off between high dependability and performance
requirements, and compare the characteristics of Es-
terel with other candidates in a PID control application
taken from an aircraft arrester system. More specifically,
an Esterel-based design is compared with a hand-coded
VHDL design.
The remainder of the paper is structured as follows.

Section 2 presents the hydraulic system case study. Sec-
tion 3 introduces some of the necessary concepts and

1 The certification authorities use the term functional safety to
denote the evaluation of safety of a piece of equipment during func-
tional use, which is somewhat confusing for computer engineers
that consider safety a non-functional property distinguished from
reliability.

�MS ID: STTT0152

6 August 2004 15:27 CET

J. Hammarberg, S. Nadjm-Tehrani: Formal verification of fault tolerance in safety-critical reconfigurable modules 3

techniques involved in the development and safety an-
alysis of the system. Section 4 describes our approach to
a combined development of reusable design models and
safety-related analyses. Section 5 provides some insights
into the size/performance trade-offs for higher abstrac-
tion models and higher dependability. Section 6 compares
with related works, and Sect. 7 concludes the paper and
presents future projects.

2 Aerospace application

The ideas presented in this paper were motivated by the
need for safety analysis of a subsystem inside the JAS 39
Gripen multi-role aircraft, obtained from the Aerospace
division of Saab AB in Linköping, Sweden. The purpose
of the system is to detect and stop leakages in the two hy-
draulic systems, which feed the moving parts, including
the flight control surfaces and the landing gear, with me-
chanical power. Leakages in the hydraulic systems could
in the worst case result in such low hydraulic pressure
that the airplane becomes uncontrollable. To avoid this,
some of the branching oil pipes are protected by shut-off
valves. These valves can be used to isolate a branch in
which a leakage has been detected. Then, although the
leaking branch will no longer function, the other branches
will still keep the pressure and be able to supply the mov-
ing parts with power.
The reading of oil level sensors and the controlling of

the four shut-off valves are handled by three electronic
components, as depicted in Fig. 1. The H-ECU is a soft-
ware component that continually reads the oil reservoir
levels of the two hydraulic systems and determines which
shut-off valve to close accordingly. However, it would be
very dangerous if some electrical fault caused more than
one valve to close at the same time – this could result
in the locking of the flight control surfaces and the land-
ing gear. For this reason, two programmable logic devices,

Fig. 1. Hydraulic leakage detection subsystem. White boxes indicate electronic components and
patterned boxes indicate physical parts. Arrows indicate signal flows;

double arrows are collections of several signals

here called PLD1 and PLD2, continually read the sig-
nals to and the statuses of the valves, and if the readings
indicate closing of more than one valve, they will dis-
allow further closing. Thus, PLD1 and PLD2 add fault
tolerance to the shut-off subsystem implemented in the
H-ECU. PLD2 will only accept a request from the H-ECU
for closing a particular valve if the check, which is partly
done in PLD1, indicates that everything is OK. A valve
will close only when both the low-side signal, which is the
shut-off signal directly from the H-ECU, and the high-
side signal, which is the checked signal from PLD2, are
present.
Design for fault tolerance is an inherent part of

satisfying safety requirements for a system. Although
quantification of dependability using selected metrics
is well studied in electromechanical systems, satisfac-
tion of safety requirements in the presence of software
or software-like hardware is still a major challenge. In
this particular example, one wants to verify that no sin-
gle fault, be it in the components, in the wires or in the
valves, can cause more than one valve to close at the same
time. Moreover, the safety engineer is interested in com-
binations of faults that might lead to violation of top
safety requirements. These goals are traditionally pur-
sued through the FTA/FMEA processes. In the following
discussion, we will show how a design model of the system
can be used to formally verify that it is tolerant to single
faults. The proofs also pinpoint the significant combina-
tions of potential double faults.

3 Background

This section introduces some concepts and earlier work
that will be used for the analysis described in Sect. 4. An
introduction to the properties of Esterel will be followed
by a short description of fault-tree analysis and earlier
related works. Since model-based development down to

�MS ID: STTT0152

6 August 2004 15:27 CET

4 J. Hammarberg, S. Nadjm-Tehrani: Formal verification of fault tolerance in safety-critical reconfigurable modules

code generation and formal verification is supported by
the Esterel language and tools, these will be used to illus-
trate the ideas.

3.1 Esterel

Esterel [1] is a synchronous language with formal seman-
tics, making it ideal for analyses with formal methods.
This means that if systems are designed in Esterel, effi-
cient formal verification is available directly on the actual
design code.
Esterel is tailored for designing reactive systems [21],

which continually read inputs and produce outputs. In
Esterel, time is modelled as a discrete sequence of in-
stants. Each instant, new outputs are computed from the
inputs and from the internal state (control state, latched
signals and variables) according to the imperative state-
ments of the Esterel programme. Figure 2 shows some of
the Esterel code for PLD2 in the aerospace example. Es-
terel systems and subsystems are always defined as mod-
ules, as seen in lines 1 and 15 that enclose the code for this
example. Lines 2, 3 and 5 declare the input and output
signals of this module, much like in a hardware descrip-
tion language. Lines 7 through 14 define an infinite loop,
running one iteration at each instant that is represented
by ‘each tick’. This means that the code from line 8 to
line 13, emitting the ShutOff_1B signal if a given condi-
tion is present, will be executed instantaneously at every
instant. The output signal ShutOff_1B will be emitted
only if there is an incoming request to close valve 1B,
all input seems to be OK and the CheckOK signal was
present at the previous instant.
Our experience [12] indicates that synchronous hard-

ware systems can be written more easily and with fewer
lines of code in Esterel than in hardware description lan-
guages such as VHDL [9]. This is due to the higher level
of abstraction and the suitable constructs for modelling
hierarchical reactive modules. Bug count per thousand
lines of code (bugs/kloc) appears to be constant over dif-

1: module PLD2:

2: input CheckOK;

3: input ShutOffRequest_1B;

4: % more inputs

5: output ShutOff_1B;

6: % more outputs

7: loop

8: signal InputNotOK in

9: % some code emitting InputNotOK if something is wrong with the input

10: present ShutOffRequest_1B and not InputNotOK and pre(CheckOK) then

11: emit ShutOff_1B

12: end present

13: end signal

14: each tick

15: end module

Fig. 2. Part of the Esterel code for PLD2

ferent languages [23]. Hence, we believe that the use of
Esterel could contribute to system correctness and main-
tainability at a lower cost (i.e. development time) com-
pared to the design methods that are commonly used in
industry today.
The main advantage with using Esterel for hardware

development is, however, its tight coupling to formal
methods for system analysis. Esterel compilers automat-
ically check the design for causality loops, and the fact
that Esterel is synchronous makes formal verification
particularly efficient [11]. Non-deterministic control pro-
grammes are rejected at compilation stage, making the
reliance on the output of a module at each instant pos-
sible. The commercial tool Esterel Studio [7] has two
model checkers built in – one based on binary decision
diagrams (BDDs) [22] and one based on propositional
satisfiability (SAT) techniques [26]. Thus, many design
faults should be quickly found and eliminated already at
the design stage of the process.
The two model checkers bring the best of both worlds

in the battle against complexity, namely state space ex-
plosion and long proofs with many open hypotheses, re-
spectively. The tool used in our experiments was the SAT
solver. It implements the St̊almarck proof technique that
is based on the observation that many systems with large
state spaces have short proofs.2 The interested reader is
referred to the tutorial by Sheeran and St̊almarck [27] for
a full exposure to the method, which is beyond the scope
of this paper.
In Esterel, the safety3 properties to prove with the

model checker are formalised as synchronous observers.
The observer is a process, also written in Esterel, that
runs in parallel with the actual system and monitors its
input and output signals, as depicted in Fig. 3. As soon as
the observer finds that the property is violated, it emits
an alarm signal (sometimes also called bug signal). Prov-

2 In the sense of Gentzen style deductions.
3 In the formal verification sense: non-reachability of a bad state.

�MS ID: STTT0152

6 August 2004 15:27 CET

J. Hammarberg, S. Nadjm-Tehrani: Formal verification of fault tolerance in safety-critical reconfigurable modules 5

Fig. 3. A system being monitored by an observer. Arrows
indicate signal flow or signal readings

ing the property is thus reduced to proving that the alarm
signal will never be emitted. Note that the observer is
used only during verification of the design. For code gen-
eration and during actual execution of the system, these
modules are not present.
Finally, it should be noted that there are other syn-

chronous languages, e.g. Signal [19] and Lustre [10], that
support formal verification. However, none of them can
presently be compiled to VHDL (and thus not synthesised
to an FPGA) with a commercially available compiler.
This is the main reason for Esterel being chosen in our
studies.

3.2 Fault-tree analysis (FTA)

A traditional technique for safety analysis is to produce
a fault tree that displays the hazardous events and their
possible implicants. In a fault tree, each node represents
an event, and the top event is the disaster that one wants
to find the possible causes to. The children of an event
in the tree are the events that, alone or together, may
cause that event. By producing a complete fault tree,
one can reveal what faults (or combinations of faults) are
hazardous and must be attended to. In addition, if the
probabilities for the leaf events are known, a probability
for the top event can be calculated.
Consider now a fault tree for the aerospace applica-

tion, where the top event is the airplane crashing. One
event (internal node in the fault tree) that can single-
handedly cause the top event is when two or more shut-
off valves close simultaneously. To further derive the de-
scendants of this event in the fault tree would require
a complete analysis of the behaviour of the three elec-
tronic components H-ECU, PLD1 and PLD2, something
that would be extremely tedious to do in separate models
developed in FTA tools, and this fault tree would not
be the only analysed fault tree for this system. Clearly,
there is a need for tool support to create the fault tree
automatically in a way seamlessly related to the design
models. With current techniques every change in the de-
sign would potentially mean reconstructing the fault tree.
Moreover, the current FTA/FMEA analyses assume that
the event represented in the leaves are independent, and
thus dependent faults or faults whose effects are non-
monotonic in time (i.e. one fault masking the effect of an-

other fault) cannot be analysed by traditional methods.
Our approach to performing FTA/FMEA-like analyses
based on the design models both reduces the need for
constructing the fault trees and makes the formal an-
alysis of complex software/hardware dependencies auto-
matic. It also allows modelling dependencies among var-
ious fault modes and non-monotonic faults if needed by
the application.

3.3 Related work

Earlier work on the combination of design models and
FTA-like analysis is sparse. Where fomal analysis is com-
bined with methods for safety/reliability analysis, the
major works in the area try to improve the efficiency of
the computations on fault trees or improve the tools that
perform such computations by strengthening their math-
ematical underpinnings (including dynamic fault trees).
An example of the first category of work is the study by
Dutuit and Rauzy [4], and an example of the second cat-
egory is the Galileo project at the University of Virginia
(see e.g. [20]). Our work is mostly related to research that
enables the use of common models for system develop-
ment and for safety/reliability analyses. In fact, in our
work we avoid building the fault tree.
Leveson points out the risks of confusing safety and

reliability analyses or assuming that higher reliability for
a software component automatically enhances safety [18].
We believe that similar arguments hold for reconfigurable
hardware. Fenelon et al. [8] recognise the missing link be-
tween the design and safety analysis.
In 1999 Åkerlund et al. showed how FTA-like analy-

sis of a hardware or a software component could be per-
formed with the help of an SAT solver [29]. The compon-
ent was first modelled as a set of logic formulas in the
tool NP-Tools relating the input and output variables.
By checking that the formulas that constitute the model
imply a specific property, such as ‘at most one shut-off
valve is signalled to close simultaneously’, compliance
with a safety property (in the sense of non-reachability)
in the absence of external faults could be proved. This is
ordinary model checking. Then, the model was extended
with additional input signals representing specific fault
modes in the environment that could cause corruption of
the real input to the component. A fault was modelled

�MS ID: STTT0152

6 August 2004 15:27 CET

6 J. Hammarberg, S. Nadjm-Tehrani: Formal verification of fault tolerance in safety-critical reconfigurable modules

Fig. 4. Extending a component with a fault mode. Arrows indicate signal flow

by a macro that modifies the input signals if the fault
mode signal is present, as illustrated in Fig. 4. By again
verifying this extended model, one could either prove
that the component was tolerant to the modelled faults
or see which fault modes could cause violation of the
property on the basis of the produced counter-examples.
The counter-examples were automatically generated by
the verification tool as a side effect of the analysis. Note
that a fault tree was never built explicitly, but the set-up
allowed the study of effects of single as well as multi-
ple faults (including those with non-monotonic effects).
These boolean expression descriptions of the model were
considered as too low level for describing complete com-
plex systems, but at that point there were no commercial
tools with high-level models, code generation and formal
verification. This paper extends the above work by work-
ing at a higher abstraction level and considering faults in
the outputs generated by a module (as well as its inputs).
ESACS is an ambitious European project that at-

tempts to bridge this gap by an approach similar to ours
using an integration of the Statemate and SCADE en-
vironments respectively with the industrial FaultTree+
tool [6]. Recent work in the project by Buzzano and Vil-
lafiorita [2] uses the NuSMV2 model checker to generate
minimal cut sets from a system model and definiton of
failure modes. An elegant approach to modelling failures
in mode automata and compiling into boolean formulas
has recently been proposed by Rauzy [24]. However, some
steps remain before exploitation of the techniques in com-
mercial tools. The need for raising the abstraction levels
in modelling embedded control systems is increasingly
recognised in current projects that promote model-driven
development.
VHDL is the dominant hardware description language

in industry, which is why we have chosen it for compara-
tive study in this paper. However, research environments
that promote general-purpose programming languages
for FPGA designs are emerging. For example, JHDL [15]
provides a development environment that includes simu-
lation and testing and makes future formal verification
a possibility via verification tools that accept subsets of
Java as input language.

4 Analysis of fault tolerance

In this section, we combine the formal modelling of the
design and FTA/FMEA-like analyses to obtain several

advantages. First, instead of low-level (circuit) modelling
of the design as in the Åkerlund et al. study, we lift the
design abstraction to a higher level. Due to the maturity
of Esterel tools, high-level design can now be used for au-
tomatic code generation.Without this step, original ideas
with automated FTA-like analysis are far from applica-
ble in everyday industrial settings. Second, we extend the
classes of considered faults. In addition to faulty inputs
of the component under design, we model faulty outputs
generated by the component itself as a result of failures,
as well as faults in the environment that receives the out-
put of the component. The higher abstraction level allows
arbitrary classes of faults to be modelled based on de-
tailed knowledge of the application. In the FPGA case
study, for example, an interesting fault type was random
errors due to radiation.
We present an extension of the current Esterel devel-

opment environment in which templates are used to ver-
ify effects of the above fault types on any design module.
Hence we remove the need for creating and managing two
separate models (one for design verification and one for
FTA/FMEA analysis of safety-related properties). The
idea builds on a framework for combining individual com-
ponents to form a verification bench that allows the study
of the effects of the above fault classes.
Next we show the steps involved in formally analysing

functional correctness and fault tolerance in an integrated
way.

4.1 Development of verification bench

In order to verify the hardware and software components
working together with physical parts of the system, it will
be necessary to build an Esterel model of relevant parts
of the environment. In addition to models of the physical
parts, we include models of all necessary wires between
various components as well as wires between the compo-
nents and the physical parts. Next, observers running in
parallel with the components and the environment are
added. This construction will be referred to as a verifica-
tion bench, which various components can be plugged into
and analysed.
A verification bench for the aerospace application is il-

lustrated inFig. 5. It containsmodels of the four valves and
of thewires between the components; it has empty slots for
H-ECU, PLD1 and PLD2. The observermonitors the out-
put of the valve models and emits an alarm signal as soon
as more than one valve is closed at the same instant.

�MS ID: STTT0152

6 August 2004 15:27 CET

J. Hammarberg, S. Nadjm-Tehrani: Formal verification of fault tolerance in safety-critical reconfigurable modules 7

Fig. 5. Verification bench for aerospace application. Grey boxes indicate modules of the verifica-
tion bench and white boxes indicate modules to be verified. Arrows indicate wires; double arrows
are collections of several wires. The vertical bar in the middle is shorthand for a set of connections

module Main:

sensor HS1Pressure : double;

% more main inputs

output HS1B_Closed;

% more main outputs

output Alarm;

signal

ShutOffLow_1B;

% more wires

in

run HECU [

signal HS1Pressure / HS1Pressure;

% more connections

]

||

run PLD1 [...]

||

run PLD2 [...]

||

run Valve [...]

||

% more valves

||

loop

present HS1B_Closed and HS1C_Closed then

emit Alarm;

end present;

% more checks

each tick

end signal

end module

module Valve:

% valve model

end module

Fig. 6. Skeleton code for aerospace application
verification bench in Esterel

Figure 6 shows a skeleton for the implementation of
the verification bench in Esterel. All wires are modelled
with local signals using the signal construct. The main
body consists of calls to the components (run keyword),
and the valve models run in parallel with the observer
that checks that no pair of valve-closed signals is sim-
ultaneously present. The signal renamings in the run
construct defines how the interface of the component is
connected to the local signals or to the main inputs or
outputs.
Note that the verification bench can be written in-

dependently of the components. This is useful for dis-
tributed development – upgrades and code from differ-
ent departments, or even different companies, can easily
be plugged in and immediately checked by formal veri-
fication. Also note that this allows verifying sequential
circuits (modelled in Esterel) and arbitrary fault models
that can be expressed as Esterel ‘fault patterns’. For ex-
ample, if the application demands that ‘no transients that
affect more than X cycles of computation should lead to
the top event’, then the templates for fault pattern can be
made more complicated than those needed for this case
study to reflect this.
From here on we assume that the design models for

the components that are included in the safety analysis
have been formally verified for compliance with their re-
quirements specifications. This can be done in the Esterel
environment (illustrated in Fig. 9 below).

4.2 Augmenting with fault modes

The next step in the process of checking for safety-related
fault tolerance is to model faults in the verification bench.
Here we will show how to model malfunctions in the chips
on which the components run, in our case the micropro-
cessor and the two PLDs. Many other classes of faults,
such as electrical or mechanical faults in physical parts of
the system, can also be modelled in the verification bench
with some creativity.

�MS ID: STTT0152

6 August 2004 15:27 CET

8 J. Hammarberg, S. Nadjm-Tehrani: Formal verification of fault tolerance in safety-critical reconfigurable modules

Fig. 7. Fault switch modelling component faults. Thick arrows indicate
possibly several signals and the thin arrow indicates a pure signal

Faults in the hardware parts, such as FPGAs or mi-
croprocessors on which the system components run, can
occur due to sudden power-down, overheating or radia-
tion that flips over some bits inside the chip. Modelling
such faults at fine granularity would be complicated, so
we will opt for a coarse granularity strategy and assume
that if such a fault occurs, the outputs of the compon-
ent running on the chip can be anything. Besides being
much simpler, this strategy also has the advantage that
the component designmodule does not have to be altered;
the malfunction can be completely modelled in the verifi-
cation bench.
To induce completely arbitrary output from a com-

ponent, one can add an additional block coming in be-
tween the outputs of the component and the following
wires, as depicted in Fig. 7. This block will be referred to
as the fault switch and can be seen as the formal verifi-
cation counterpart of fault injectors used in test benches.
Whereas in test environments the objective is to see what
the output of a computation is in the presence of a fault,
here the objective is to see whether a safety-related prop-
erty that was earlier formally verified still holds in the
presence of the fault. Figure 8 shows the Esterel imple-
mentation of a fault switch following the H-ECU, and it
should replace the run HECU call in Fig. 6. The idea is to
let through the correct output of the component into the

...

run HECU [

signal HS1Pressure / HS1Pressure;

% more connections

% feed output to local correct-values wire

]

||

loop

present FaultHECU then

% feed arbitrary values to local signals (ShutOffLow_1B etc)

else

% feed correct values to local signals

end present

each tick

...

Fig. 8. Skeleton code for fault switch in Esterel

wires as long as the fault mode signal is absent, but when
it is present, arbitrary values will be fed into the wires
instead. These arbitrary values can be taken from addi-
tional inputs of the verification bench since the verifica-
tion tool will allow these to be anything. The component
must furthermore be connected to the inputs of the fault
switch instead of the wires.
In the hydraulic application case, the following 15

faults were modelled:

– Arbitrary malfunction in the H-ECU, in PLD1 or in
PLD2 (e.g. due to radiation).
– Short-cut to ground on the incoming low-side shut-off
signal to each of the four valves.
– Short-cut to ground on the low side of each valve.4

– Short-cut between the low and the high side of each
valve.

4.3 Fault mode verification

In Esterel Studio, plugging in the designs of the compo-
nents is simply a matter of loading them into the verifica-

4 This is not the same as grounding of the incoming low-side
shut-off signal since there are electronic components in the valve
that, based on the incoming signals, produce a voltage that makes
the valve close. This fault models grounding of the low side of the
voltage.

�MS ID: STTT0152

6 August 2004 15:27 CET

J. Hammarberg, S. Nadjm-Tehrani: Formal verification of fault tolerance in safety-critical reconfigurable modules 9

tion bench project. The verification bench and the com-
ponents together then constitute a model of the complete
subsystem that can be verified with the built-in model
checker.
To analyse safety-related fault tolerance, we make use

of the feature in Esterel Studio to constrain some input
signals. In this case the fault mode signals can be re-
stricted to analyse different scenarios. By further testing
for the observer alarm signal emission, we can check for
violation of the safety property in the presence of those
faults. For example, if we are only interested in com-
ponent malfunction to see what combinations of faulty
components the system can withstand, we can constrain
all other fault mode signals to be absent. This is sim-
ply achieved by marking the appropriate faults as absent
in the input window within the Esterel verification en-
vironment (Fig. 9). Note that finding systematic design
faults that are unrelated to the run-time environment is
the same as finding violations of safety properties in the
absence of external faults. This is done by designating all
fault mode signals to be absent, which is typically done
first, before analysis for fault tolerance begins. Next, sin-
gle (and possibly double) faults can be found by allowing
all single (and all pairs of) fault modes, constraining the
other fault mode signals to be absent.
Figure 9 shows the model checker window in Esterel

Studio when verifying the aerospace application verifica-

Fig. 9. The model checker window in Esterel Studio

tion bench. It should be clear that if this model were veri-
fied with all fault mode signals allowed to be present, then
the safety properties would most probably be found false,
unless the system is extremely robust and can withstand
any fault. When a property is found false, a counter-
example is produced that shows a sequence of combina-
tions of faults and inputs that lead to safety violation.
Note that if there are many fault modes, there will be
too many of such combinations, so running the unre-
stricted fault scenario does not provide any insight to
the engineer.
Using this technique on the aerospace application ver-

ification bench, consisting of 422 lines of code spread over
6 Esterel modules, we could verify the following:

– The components do not contain design faults causing
violation of the property. This was shown by constrain-
ing all fault mode signals to be absent before running
the verification.
– No combination of the 12 valve faults can cause viola-
tion of the property. This was verified by constraining
the three component fault mode signals to be absent.
– No single random fault can cause violation of the prop-
erty. The three component fault modes were first
checked independently, constraining two of them to be
absent and one present at a time. The other 12 faults
were already cleared by the previous step.

�MS ID: STTT0152

6 August 2004 15:27 CET

10 J. Hammarberg, S. Nadjm-Tehrani: Formal verification of fault tolerance in safety-critical reconfigurable modules

– The only double fault violating the property was shown
to be when both the H-ECU and PLD2 were faulty. This
was checked by testing the relevant possible double
faults, again constraining the other fault mode signals
for each pair. Since the four valves are symmetrical, it
was sufficient to check physical faults in one valve such
as 1B, reducing the number of combinations to 12.

The model checking never took more than a few sec-
onds. As long as the system is mainly combinatorial (as in
this case), the complexity of the problem, in average case
for an SAT solver, is linear to the size of the model [27].
This means that it should still be feasible to verify sys-
tems of this kind even if they are as large as thousands
of lines of code. Alternatively, if testing for validity takes
too long, one may opt for the bug-chasing strategy option
in Esterel Studio. This option omits the proof-searching
part of the model checking and only searches for counter-
examples, which is considerably quicker and can thus
not be used for proofs but only for finding fault mode
combinations.5

5 Performance and resource considerations

The ability to verify a design at early stages and to extend
the analysis to cover fault tolerance is obviously beneficial
in safety-related systems. However, industry is interested
in knowing what performance/size trade-offs are involved
in a new technology. To evaluate the performance and
resource usage of an FPGA produced using the above ap-
proach, we have studied Esterel in comparison with other
languages typically used in control applications.
In the Saab case study we did not have access to the

VHDL code on which the real implementation was based.
We were simply presented with requirements specifica-
tions for the system in natural language. Thus, to make
a detailed comparison against other potential languages,
we used a simpler example for benchmarking purposes.
The case study is presented in more detail elsewhere [12].
However, the details presented here suffice for comparison
purposes.
The application is a brake control for an aircraft ar-

rester system, provided by DST Control Systems AB,
that works as follows. A large net is placed at the end of an
airfield runway. If an aeroplane fails to take off, it will run
into the net, which is connected to ropes that are rolled
up on wheels in stations on both sides of the runway.
The task of the brake control is to calculate an optimal
brake force that is applied to the net in order to deceler-
ate the aeroplane, and a PID controller applies the actual
brake force accordingly. Since this is a safety-critical ap-
plication, methods that minimise the development time

5 The model checking is an induction proof over the discrete
time. The induction depth is increased until either the base step
is found false or the inductive step is found true. The bug-chasing
strategy omits the inductive step.

while increasing safety and reliability of the product are
of interest.
To evaluate the trade-offs, we will consider the size of

the generated circuit and its delay time, which is a meas-
urement of its performance. Delay refers to the time that
the circuit takes to stabilise the values after a clock tick –
this does indeed take some time since the voltage needs to
transmit through all the components. In order to have full
control over the comparative designs, we developed two
versions of the PID controller module for the application;
one in hand-coded and manually optimised VHDL and
one in Esterel using the same latency. The Esterel code
was then used to automatically generate VHDL (using
version 4 of the commercial compiler released in August
2002). Both versions were then used to synthesise the PID
on a Xilinx Spartan2 XC2S150 using the tool Synplify
Pro 7.1 from Synplicity [28]. These results were then pre-
sented to the company that prior to this project had im-
plemented an FPGA core on which the PID was running.
The core had been generated using circuit schematics as
a design language.
Table 1 shows the comparative results. The Size col-

umn indicates the percentage of logic blocks in the FPGA
needed for the implementation as calculated by the syn-
thesis tool. The Delay, that is the maximum stabilisation
time after a clock tick, was also calculated by the tool.
The Latency column shows the number of cycles for com-
puting the control value. Note that this is entirely a de-
sign choice. Finally, the No. of lines column presents the
number of lines of code for each implementation, exclud-
ing blank lines and comments.
The difference between Esterel and VHDL is clear

by comparing the first and second rows. The hardware-
tailored VHDL language leads to an implementation that
is superior in terms of efficiency, computing the result
three times faster and occupying less than half of the
logic blocks. A large part of the extra space needed by
the Esterel implementation turns out to be due to the
wide integers. There is no way of specifying the range
for an integer in Esterel; one can only choose between 16
and 32 bits for the whole system at once. The PID con-
troller uses both 16- and 32-bit integers, so 32 bits for all
integers was the only choice. As an experiment, the un-
necessarily wide integers were manually narrowed in the
Esterel-generated VHDL code, and then the size could
be reduced to 33%. This fares much better against the
handwritten VHDL code. However, such manual modifi-
cations effectively invalidate any formal verification made

Table 1. Comparison between
two design approaches

Method Size Delay No. of lines

Esterel 52% 82 ns 98
VHDL 22% 29 ns 139

�MS ID: STTT0152

6 August 2004 15:27 CET

J. Hammarberg, S. Nadjm-Tehrani: Formal verification of fault tolerance in safety-critical reconfigurable modules 11

on the Esterel design and should therefore be avoided. In
any case, the size of the design (in terms of lines of code)
is always likely to be smaller in Esterel (a 30% decrease
compared to the VHDL code size in this case).
The more interesting comparison would be between

these two designs and the existing technique at the com-
pany for representation of the design as schematics. How-
ever, it is not possible to compare the area of the FPGA
solution with both the processor core and the PID appli-
cation that runs on it as a set of sequential instructions.
While optimising latency and delay had not been the
prime concern when designing the in-house FPGA, the
application developers were clearly impressed by getting
an FPGA that was formally verifiable and occupying an
acceptable area of the chip.
To sum up the analysis, one may say that VHDL is

still the appropriate design language for FPGAs if effi-
ciency is the prime concern. In many cases, however, the
acceptance criteria may simply be small enough to fit into
the chip, as was the case in both the Saab and the DST
case studies. Not fitting into an existing chip means using
several chips or moving to a more expensive generation
of chips (the more expensive solution in both cases). If
the ‘small enough’ criterion is chosen, Esterel may pro-
duce implementations of fully acceptable size and speed
in many existing applications. Moreover, one could argue
that the additional cost of using a larger FPGA, should
the implementation not fit, will in many cases be minor
compared to the potential gains resulting from shorter
development time and increased reliability. Ongoing re-
search (see for instance [5] and [16]) aims at further im-
proving the compilation of Esterel to hardware, and the
language itself is being developed to allow for better con-
trol over the hardware resources.

6 Conclusions and future work

The quest to develop safe systems while incorporating
modern technology and more complex functionality is
a driving force behind the rising interest in FPGAs in
safety-related systems. As with other reusable compo-
nents, we need guidelines on how to incorporate such
components into the development and safety-analysis
processes. Furthermore, we need specific guidelines as
to the treatment of FPGAs when building up safety
arguments.
The analysis performed on some subsystem (e.g. the

hydraulic subsystem in this paper) may be useful to carry
over to another system that ‘imports’ this subsystem as
a component. In this paper we did not consider the form
and character of interfaces that make such a reuse in
a new system efficient. When (reusable) software compo-
nents become a reality in safety-critical applications, then
well-defined interfaces that characterise the failure modes
and effects of a component failure are necessary. This is
a topic for our current research.

In this paper we provide some evidence that results of
the last decade of research in language design, formal ver-
ification and tool development are reaching maturity lev-
els that make a serious case for incorporating these tech-
niques in real applications. We have illustrated how an
FPGA design process can combine analyses for safety and
functional correctness and guide the designer in finding
the focus for system-level fault tolerance. The abstract
(implementation-independent) design model was shown
to be transformable to a VHDL implementation with ac-
ceptable loss of efficiency (still fitting in the circuit that
was intended for the design) and at the same time sup-
porting formal analysis of the design.
We proposed a formal verification bench for analys-

ing systematic, specific and random faults in the external
environment, using the standard technique of observers,
and showed it to be an efficient means of pinpointing fault
combinations that need more attention in safety evalua-
tions. The use of verification benches for safety analyses
should be applicable to any design language with formal
verification support, not only to Esterel.
Ideally, the analysis should render a set of prime impli-

cants of the system failure function, so that the engineer
can see all the causes of a safety property violation with
one push on a button rather than having to try all the
fault mode combinations manually. However, this is not
possible to accomplish in the current version of Esterel
Studio. One algorithmic approach is presented in [3]. Cur-
rent work on the Esterel verification bench includes ex-
tension of the tool so that prime implicants (or FTA-like
cut-sets) are automatically generated. Another extension
would be visualisations and combination with quantita-
tive methods currently used by engineers’ state-of-the-art
FTA tools.

Acknowledgements. This work was partially financed by project
SAVE supported by Swedish Strategic Research Foundation (SSF),
the national aerospace programme NFFP3-428. The early ground-
ing work was supported by the Swedish Board for Technical Re-
search (TFR).
The authors gratefully acknowledge the valuable feedback of

contact persons at Saab Aerospace, Lars Holmlund, Hans Sjöblom,
Thomas Trei, Anna-Karin Rosén, and Marriane Almes̊aker, as well
as contact persons at DST Control, Jan Nyg̊ard and Jan-Erik
Strömberg.

References

1. Berry G, Gonthier G (1992) The Esterel synchronous pro-
gramming language: design, semantics, implementation. Sci
Comput Programm 19(2):87–152

2. Bozzano M, Villafiorita A (2003) Improving system reliabil-
ity via model checking: the FSAP/NuSMV-SA safety analysis
platform. In: Proceedings of the 22nd international conference
on computer safety, reliability and security (SAFECOMP’03).
Lecture notes in computer science, vol 2788. Springer, Berlin
Heidelberg New York, pp 49–62

3. Deneux J (2001) Automated fault-tree analysis. Master’s the-
sis, Uppsala University, Uppsala, Sweden

4. Dutuit Y, Rauzy A (2000) Efficient algorithms to assess com-
ponents and gates importances in fault tree analysis. Reliabil
Eng Sys Safety 72(2):213–222

�MS ID: STTT0152

6 August 2004 15:27 CET

12 J. Hammarberg, S. Nadjm-Tehrani: Formal verification of fault tolerance in safety-critical reconfigurable modules

5. Edwards SA (2002) High-level synthesis from the synchronous
language Esterel. In: Proceedings of the international work-
shop on logic and synthesis (IWLS), New Orleans, June 2002

6. ESACS: Enhanced safety assessment for complex systems
(2004) http://www.cert.fr/esacs/principal.html. Accessed
30 April

7. Esterel Technologies Web site (2004)
http://www.esterel-technologies.com.
Accessed 30 April

8. Fenelon P, McDermid JA, Nicholson M, Pumfrey DJ (1994)
Towards integrated safety analysis and design. ACM SIGAPP
Appl Comput Rev 1(2):21–32

9. Ghosh S (1999) Hardware description languages: concepts and
principles. Wiley-IEEE Press, New York

10. Halbwachs N (1992) Synchronous programming of reactive
systems. Kluwer international series in engineering and com-
puter science, December 1992

11. Halbwachs N, Lagnier F, Raymond P (1993) Synchronous
observers and the verification of reactive systems. In: Proceed-
ings of the 3rd international conference on algebraic method-
ology and software technology (AMAST’93), workshops in
computing. Springer, Berlin Heidelberg New York, June 1993

12. Hammarberg J (2002) High-level development and formal ver-
ification of reconfigurable hardware. Master’s thesis LiTH-
IDA-Ex-02/102, Linköping University, Linköping, Sweden

13. Henley EJ, Kumamoto H (1981) Reliability engineering and
risk assessment. Prentice-Hall, Upper Saddle River, NJ

14. Holbrook D (2001) FPGA use for safety critical functions in an
air intercept missile. In: Proceedings of the 19th international
system safety conference, pp 618–628

15. Hutchings BL, Nelson BE (2000) Using general-purpose pro-
gramming languages for FPGA design. In: Proceedings of the
international conference on design automation. IEEE Press,
New York, pp 561–566

16. INRIA TICK project Web page (2004)
http://www.inria.fr/recherche/equipes/tick.en.html.
Accessed 30 April

17. Katz RB (2000) Faster, better, cheaper space flight electronics
– an analytical case study. In: Proceedings of the confer-
ence on Mil/Aero applications of programmable logic devices
(MAPLD), September 2000

18. Leveson NG (2001) The role of software in recent aerospace
accidents. In: Proceedings of the conference on international
system safety, September 2001

19. Le Guernic P, Gautier T, Le Borgne M, Le Maire C (1991)
Programming real-time applications with SIGNAL. Proc
IEEE 79:1321–1336

20. Manian R, Coppit D, Sullivan KJ, Dugan JB (1999) Bridg-
ing the gap between systems and dynamic fault tree models.
In: Proceedings of the annual symposium on reliability and
maintainability. IEEE Press, New York, pp 105–111

21. Manna Z, Pnueli A (1992) The temporal logic of reactive and
concurrent systems – specification. Springer, Berlin Heidel-
berg New York

22. McMillan KL (1992) Symbolic model checking – an approach
to the state explosion problem. Technical Report CMU-CS-92-
131, Carnegie Mellon University, Pittsburgh

23. Musa JD, Iannino A, Okumoto K (1987) Software reliabil-
ity – measurement, prediction, application. McGraw-Hill, New
York

24. Rauzy A (2002) Mode automata and their compilation into
fault trees. Reliabil Eng Sys Safety 78(1):1–12

25. Shivakumar P, Kistler M, Keckler SW, Burger D, Alvisi L
(2002) Modeling the effect of technology trends on the soft
error rate of combinational logic. In: Proceedings of the in-
ternational conference on dependable systems and networks,
June 2002. IEEE Press, New York, pp 389–398

26. Sheeran M, Singh S, St̊almarck G (2000) Checking safety
properties using induction and a SAT-solver. In: Proceed-
ings of the international conference on formal methods in
computer-aided design, November 2000

27. Sheeran M, St̊almarck G (2000) A tutorial on St̊almarck’s
proof procedure for propositional logic. In: Proceedings of the
international conference on formal methods in computer-aided
design, November 2000

28. Synplify Pro product Web page (2004)
http://www.synplicity.com/products/synplifypro.
Accessed 30 April

29. Åkerlund O, Nadjm-Tehrani S, St̊almarck G (1999) Integra-
tion of formal methods into system safety and reliability an-
alysis. In: Proceedings of the 17th international conference on
system safety, September 1999

