
Application-Tailored Database Systems: a Case of Aspects in an Embedded
Database∗

Aleksandra Tešanović Ke Sheng Jörgen Hansson
Department of Computer Science

Linköping University, Linköping, Sweden
{alete,jorha}@ida.liu.se

Abstract

Current techniques used to design and implement
database systems do not provide support for efficient im-
plementation of crosscutting concerns in the database soft-
ware, e.g., failure detection, database policies such as
concurrency control and scheduling, and synchroniza-
tion. Aspect-oriented software development (AOSD) is a
new technique that provides an efficient way of modulariz-
ing crosscutting concerns in software systems. In this pa-
per we evaluate the effectiveness of applying AOSD to
database systems thereby paving way for successful appli-
cation of aspect languages to the database domain. Our
focus is on embedded database systems, as a represen-
tative for a class of database systems. We show, by an-
alyzing and re-engineering one commercial well-known
embedded database system (Berkeley database), that
aspect-orientation has promise, especially in enabling de-
velopment of tailorable, maintainable, and evolvable
database systems.

1. Introduction

Current techniques used to design and implement
database systems do not provide support for efficient im-
plementation of crosscutting concerns in the database soft-
ware. Crosscutting concerns are features of the system that
cannot cleanly be encapsulated into functions, modules, ob-
jects, and components. Typical examples of crosscutting
concerns in database systems are synchronization, er-
ror handling, and logging and recovery.

Aspect-oriented software development (AOSD) has
emerged as a new principle for software development that

∗ This work is supported by the Swedish Foundation for Strategic Re-
search (SSF) via the SAVE project and the ARTES network, and the
Center for Industrial Information Technology (CENIIT) under con-
tract 01.07.

provides an efficient way of modularizing crosscutting con-
cerns in software systems [9]. AOSD enables encapsula-
tion of crosscutting concerns of a system in “modules”,
called aspects. The application of AOSD to separate con-
cerns in database systems has promise as the use of
aspects in a database system development would al-
low high reusability, tailorability and maintenance of the
database software.

In this paper we address the problem of designing tai-
lorable and maintainable databases by investigating the
impact of using AOSD for database system develop-
ment. Component-based databases [5, 16, 3, 8, 13, 7, 1],
which can be partially or completely assembled from a
pre-defined set of components with well-defined inter-
faces, are suited for tailoring a database system towards
an application. However, there are aspects of database sys-
tems that cannot be encapsulated into components with
well-defined interfaces, e.g., failure detection, synchroniza-
tion, and database policies such as concurrency control.
A database component is typically developed indepen-
dently of other components and, therefore, each developed
component has its crosscutting concerns independently im-
plemented by the component developer. This can lead
to code that is complex, inefficient, and difficult to de-
velop and maintain, hence, making the process of chang-
ing and upgrading the database software difficult and
error-prone.

The contribution of this paper is a case study that identi-
fies benefits and drawbacks of applying aspect-orientation
and aspect programming languages to the design and im-
plementation of database systems. We show, by analyzing
and re-engineering one commercial well-known embed-
ded database system1 (Berkeley database), that aspect-
orientation has promise. We found that re-engineering the
Berkeley database to support aspects improves maintain-

1 In contrast to an application-embedded database hidden inside an ap-
plication, an embedded database is device-embedded and resides in an
embedded system.

ability, independent development of crosscutting concerns,
and testability of the database software. Furthermore, tai-
lorability and evolvability of the database are also im-
proved. In the re-engineered database changes to the
database software are localized into aspects, which im-
proves comprehensibility by allowing to reason about
different parts of the database software and their interac-
tion separately.

The paper is organized as follows. Background informa-
tion on AOSD with a focus on aspect language constructs is
given in section 2. In section 3 we outline the problem ad-
dressed in the paper, i.e., limited experience when it comes
to the impact of applying aspect languages to database soft-
ware. We then introduce the case study of the Berkeley
database in section 4, and provide the re-engineered solu-
tion of the database that supports aspects in section 5. Re-
lated work is discussed in section 6. The paper finishes with
the main conclusions and directions for our future work in
section 7.

2. Aspect-oriented software development

Typically, AOSD implementation of a software system
has the following constituents: (i) components, written ina
component language, e.g., C, C++, and Java; (ii) aspects,
written in a corresponding aspect language, e.g., AspectC
[4], AspectC++ [20], and AspectJ [2] developed for Java;
and (iii) an aspect weaver, which is a special compiler that
combines components and aspects.

Components used for system composition in AOSD are
white boxcomponents. A white box component is a piece of
code, e.g., traditional program, function, and method, com-
pletely accessible by the component user. In AOSD one can
modify the internal behavior of a component by weaving
different aspects into the code of the component. Aspects
are commonly considered to be properties of a system that
affect its performance or semantics, and that crosscut the
functionality of the system [9].

In existing aspect languages, each aspect declaration
consists of advices and pointcuts (see figure 1). Apointcut
in an aspect language consists of one or more join points,
and is described by a pointcut expression. Ajoin pointrefers
to a point in the component code where aspects should be
woven, e.g., a method or a type (struct or union). Figure 1
shows the definition of a named pointcutgetLockCall .
This pointcut refers to all calls to the functiongetLock()
and exposes a single integer argument to that call (this ex-
ample is written in AspectC++.). Hence,getLock() is
the join point in the program code. The syntax of the point-
cut is illustrated in figure 2. The first two pointcuts (call
andexecute) match join points (i.e., places in the code
of the program) that have the same signature as the join
pointm. While thecall pointcut refers to the point in code

 advice getLockCall(lockId):
 void after (int lockId){
 cout<<”Lock requested is”<<lockId<<endl;}
}

aspect printID{
 pointcut getLockCall(int lockId)=
 call(”void getLock(int)”)&&args(lockId);

Figure 1. An example of the aspect definition

∈p {pointcuts}

∈m {function|method_signatures}

p::=call(m)|execute(m)|target(v)|args(v)|p&&p|p||p| !p
∈v {identifiers_with_types}

Figure 2. A typical pointcut syntax

where some function/method is called, theexecute point-
cut refers to the execution of the join point (i.e., after thecall
has been made and a function started to execute). The point-
cutstarget andargs match any join point that has val-
ues of a specified type; in this casev. Operators &&,||, and
! logically combine or negate pointcuts.

An adviceis a declaration used to specify the code that
should run when the join points, specified by a pointcut ex-
pression, are reached. Different kinds of advices can be de-
clared, such as: (i)before advice, which is executed before
the join point, (ii) after advice, which is executed imme-
diately after the join point, and (iii)around advice, which
is executed in place of the join point. In figure 1 an exam-
ple of an after advice is shown. With this advice each call
to getLock() is followed by the execution of the advice
code, i.e., printing of the lock id.

3. Crosscutting concerns in databases

In this section we show that there is limited experi-
ence about benefits and drawbacks of using aspects in the
database domain (section 3.1). This is followed by a dis-
cussion on different types of aspects in the database domain
in section 3.2. Finally (in section 3.3) we give the overall
goal of the paper and discuss the methodology we employ
to reach the goal.

3.1. Problem description

Modularizing crosscutting concerns in software systems
using aspects is an open research challenge. The impact of
applying AOSD to different application domains has been
investigated intensively in recent years; for example, case
studies on applying AOSD to operating systems [12, 4]
and distributed real-time dependable systems [6] have been
made, and benefits and drawbacks in these domains have
been identified.

We summarize the main benefits of using aspect lan-
guages for developing software systems as follows:

(B1) independent development, implying that aspects of a
software system can be developed independently with
clear interfaces towards the software with which as-
pects should be woven;

(B2) localized changes, implying that a software system can
easily be modified by simply modifying the code of the
aspect that is maintained in a separate module;

(B3) extensibility, implying that a software system can be
extended with new functional and non-functional fea-
tures by defining and weaving new aspects;

(B4) improved comprehensibility, implying that having dif-
ferent features of a software system encapsulated into
aspects allows reasoning about different parts of the
software and their interaction separately;

(B5) tailorability, allowing software to be tailored towards
systems with which the software is embedded;

(B6) improved testability, implying that the software de-
veloped independently of additional, typically non-
functional, features introduced by aspects can be more
efficiently tested (as less software should be tested);
and

(B7) improved maintainability of software, implying that
aspects encapsulated into modules and separated from
the main software functionality enable more efficient
maintainability of software as less software needs to
be maintained. This combined with B2 allows the en-
tire software systems (with aspects) to be more effi-
ciently maintained.

In the area of database systems there is limited expe-
rience about impacts of AOSD to database development.
An overview over few existing approaches that use sepa-
ration of concerns in databases, developed by theaspect-
orienteddatabase (AOD) initiative, is given in [19]. How-
ever, a quantitative study on how aspects impact the devel-
opment of database systems as compared to traditional ap-
proaches to development of database software has not been
studied; in AOD it is assumed that aspects are beneficial for
databases based on the studies performed of the general-
purpose software.

However, it is essential to identify benefits and poten-
tial drawbacks of a novel technique, such as AOSD, before
it can efficiently be applied in the domain of database sys-
tems. For example, a study [10] shows that crosscutting con-
cerns such as concurrency and failures, which have been
successfully modularized into aspects in general-purpose
software, cannot easily be aspectualized, and are not as ben-
eficial in a real-world distributed system. Therefore, a study
that addresses the impact of AOSD to database system de-
velopment, i.e., study of database system software to show

whether benefits B1-B7 can be identified and confirmed, is
needed.

3.2. Aspects in database systems

Aspects in a database system can be classified in two lev-
els [19, 21]:

• databasemanagementsystem (DBMS) level aspects,
which provide features affecting the software architec-
ture of the database system and allowing the tailoring
of a database system architecture and features towards
a specific system with which the database is going to
work, and

• database level aspects, which relate to the data main-
tained by the database and their relationship, i.e., the
database schema.

We have identified a number of aspects in database sys-
tems on DBMS level by considering a feature as a crosscut-
ting concern if it is spread over multiple subsystems, func-
tions, and/or code modules of the database system, but per-
forms the same function, or a part of the function, in the
system. Based on these criteria, we have identified the fol-
lowing aspects that provide tailoring on the DBMS level:

• synchronization, e.g., in a DBMS there exist many data
areas spread over the entire DBMS that should be pro-
tected by semaphores, which can be encapsulated into
aspects and automatically woven into the DBMS;

• failure detection, e.g., keeping data consistent in the
database requires employing failure detection, which is
typically spread over the entire DBMS in order to cap-
ture failures that can occur, and therefore can be con-
sidered as an aspect;

• logging and recovery, e.g., in order to recover from
a failure, logging is performed whenever database
changes occur, and this often require logging rou-
tines to be spread out the entire software, and, thus,
easily classified as an aspect;

• error handling, e.g., different errors that can occur in
the execution of the database software could be de-
tected by monitoring the execution of a program by
an error handling aspect;

• transaction model, e.g., in real-time and embedded
systems transactions are associated with different tem-
poral properties such as deadlines and/or periods and
these can be woven by means of aspects into a transac-
tion model (hence, tailoring it to suit the needs of the
underlying application);

• database policies such as scheduling policy and con-
currency control policy, e.g., real-time and embedded
systems require different real-time scheduling policies
that can be plugged-in by means of aspects; and

• security, e.g., different encryption algorithms could be
suitable for different database applications and these
could be encapsulated into aspects and woven into the
database to tailor it for a specific application.

Additionally, databases can make use of so-called
development-type aspects such as debugging, which can
also be classified as a DBMS level aspect.

Aspects on the database level are identified in [19],
where they are applied to development of database schema
in the SADES database. In SADES the following features
are considered database level aspects: (i) changes to links
among entities, such as predecessor/successor links be-
tween object versions or class versions, inheritance links
between classes, etc.; (ii) changes to version strategy for
object and class versioning; (iii) extending the system with
new meta classes; and (iv) data object persistence. Database
level aspects are specific to a particular implementation ofa
database schema, and for each database system these could
differ, i.e., different parts of database schema could be more
applicable to represent as aspects.

3.3. Goals and methodology

The goal of the work presented in this paper is to identify
and study benefits and drawbacks of using aspect languages
for development of DBMS software. For that purpose we
have chosen to perform the case study on one well-known
commercial and open source embedded database, namely
BerkeleyDatabase (DB) [1]. The reason for choosing an
embedded database lies in the fact that designing a database
customized for a particular application is essential for an
embedded database system and therefore bears even greater
importance than for the traditional database systems. Thisis
true since the main objectives for an embedded database are
low memory usage, portability to different operating sys-
tem platforms, efficient resource management, e.g., mini-
mization of the CPU usage, and ability to run for long peri-
ods of time without administration [14].

Given the broad range of aspects that can be identified
and used in a database system, for the purpose of our study,
we have chosen a subset of DBMS level aspects most likely
to be found in every database system: failure detection, syn-
chronization and error handling. Thereby we are able to il-
lustrate benefits and drawbacks of AOSD on an embedded
database and further generalize results to other database do-
mains.

Our aim is to investigate whether the benefits B1-B7 hold
when aspect languages are used for database software, and
we do that by showing the impact of re-engineering Berke-
ley DB to support aspects. We investigate B1-B5 based on
our implementation of aspects in the database, while B6-
B7 are investigated based both on the implementation of
aspects and on the number of lines of code that are de-

creased when aspects are used (as compared to the origi-
nal implementation of the database). For providing quanti-
tative support of our findings with respect to B6 and B7 we
use the measurements in terms ofnumberof lines (NoL) of
the source code in DBMS software, since reducing the NoL
of the code enables more efficient testing and maintaining
of the database software as less code should be tested and
maintained.

4. Berkeley database: a case study

Here we first present a brief overview of the Berkeley DB
in section 4.1, while in the remaining sections we focus on a
detailed description and analysis of the following crosscut-
ting database features: failure detection (section 4.2), syn-
chronization (section 4.3), and error handling (section 4.4).

4.1. Berkeley DB: an overview

Berkeley DB is an embedded database system, im-
plemented as a classical C-library toolkit that can be
linked directly into an application. The database pro-
videsapplicationprogramminginterfaces (APIs) for appli-
cations written in other programming languages, such as
C++ and Java. Berkeley DB consists of the following sub-
systems [1]: access methods, memory pool, transaction,
and locking.

Theaccess methods subsystemprovides support for cre-
ating and accessing database files. The files are accessed
using key/data pairs to identify desired elements within the
database. Thememory pool subsystemis a general-purpose
memory buffer pool that allows multiple processes and
threads within the process, to share access to the database.
The transaction subsystemimplements the Berkeley DB
transaction model. It enforces strict ACID transaction se-
mantics. Thelocking subsystemuses two-phase locking to
provide interprocess (multiple threads within process) and
intraprocess (multiple processes) concurrency control. It
uses page-level locking by default. Thelogging subsystem
ensures that committed changes to the database survive fail-
ures in an application, system, or hardware. It uses write-
ahead logging, thus, logging the information about changes
in the database before the change actually occurs.

Berkeley DB provides separate interfaces for each sub-
system. This implies that each subsystem is implemented
as an independent module, and can even be used outside the
context of Berkeley DB. Hence, an application developer,
when using the database, can specify which subsystems
his/her Berkeley DB configuration should contain based
on the database services required by a particular applica-
tion. For example, if the application needs fast, single-user,
and non-transactional B-tree data storage, the locking and
transaction subsystems do not have to be included in the

database configuration, i.e., they can be disabled, thus, re-
ducing the overhead of locking and logging. In contrast, if
an application needs to support multiple concurrent users,
but does not require transactions, the locking subsystem
can be included in the configuration without the transac-
tion subsystem. Moreover, applications that need concur-
rent, transaction-protected database access can configure
the database such that all subsystems are enabled, i.e., all
subsystems exist in the configuration. Hence, Berkeley DB
is an embedded reconfigurable database that makes the case
study even more interesting as it allows investigation of im-
pact of applying AOSD on a reconfigurable database.

All database management functions provided by Berke-
ley DB can be accessed via operations defined in the inter-
faces of the subsystems. When using the database, an appli-
cation should first create a structure, referred to as an object
handle, and then call the functions of that structure (repre-
senting the methods of that handle). One of the most im-
portant data structures in Berkeley DB is the database envi-
ronment, which represents an encapsulation of all database
states and holds the information about the current status
and the configuration of the database. The database envi-
ronment is accessed using its handle (db env), which is
created by passing parameters from the application to the
functiondb env create .

4.2. Failure detection

Failure detection in Berkeley DB consists of recovery de-
tection and run-time configuration detection.

Recovery detectionroutines in Berkeley DB detect, in ev-
ery subsystem interface and its operations, if there is a need
for performing the recovery. Since applications can tailor
the database to suit their requirements, Berkeley DB it-
self cannot determine whether recovery is required as it is
not aware of the current database configuration. The appli-
cation, thus, should determine when recovery is required
based on the results from the recovery detection routines
run by the Berkeley DB.

A recovery detection routine is implemented through the
panic check function. To detect failures, e.g., when log
files are physically destroyed or when the underlying file
system is corrupted,panic check probes the state of the
existing database environment. If the state of the environ-
ment indicates that the failure happened,panic check
returns an error value (db runrecovery) to the caller,
i.e., an application or an internal database function that
propagates the recovery information to the application. Typ-
ically, panic check is invoked at the beginning of the
functions implementing database functionality within each
of the subsystem, and immediately after variable initializa-
tion.

Analysis of the Berkeley DB source code resulted in the
observation that 55 different functions call recovery detec-
tion routinepanic check . The calls are spread over all
five database subsystems, hence, making the recovery de-
tection a crosscutting concern in the Berkeley DB.

Run-time configuration detectiondetects whether a call to
the database from the application is made using a method
or a function within the current database configuration. Due
to the configurability feature of the Berkeley DB, it is im-
portant to detect if an application makes a call within the
right configuration. If the function or method call is made
to one of the subsystems that are not in the current database
configuration, a warning message is displayed and an error
value (einval) returned to the application. The run-time
configuration checks are performed by invoking the config-
uration detection routineenv requires config within
the functional modules of Berkeley DB subsystems.

Analysis of the source code exposed 26 different func-
tion calls to theenv requires config routine spread
over four database subsystems, namely locking subsystem,
logging subsystem, memory pool subsystem, and transac-
tion subsystem. Hence, it can be observed that run-time con-
figuration detection is a crosscutting concern as it affectsa
number of functions in different subsystems.

Failure detectionin, e.g., the memory pool subsys-
tem, is performed in the following manner. When an
application invokesmempregister method in the mem-
ory pool subsystem, it first invokespanic check to
check whether the environment is not damaged. After in-
voking the panic check , if everything is correct and
an error is not detected,env requires config is
called to check whether the application has set up a mem-
ory pool subsystem in its environment. If the memory
pool subsystem has not been set up in the current config-
uration, a warning message is printed and an error value
(einval) is returned to the application.

4.3. Synchronization

Berkeley DB synchronizes access to shared memory data
structures, such as the lock table, in-memory buffer pool, in-
memory log buffer, etc. Each independent subsystem uses
mutexes2 to protect its shared data structures, denoted re-
gions. There are four types of operations used for imple-
menting synchronization in Berkeley DB:

• mutex lock/unlock , which is a lock/unlock oper-
ation on the memory buffer,

• mutex thread lock/unlock , which is a
lock/unlock operation on a thread,

2 A mutex in this context denotes a mutual exclusion semaphore.

• r lock/unlock , which is a lock/unlock operation
on a region, and

• lockregion/unlockregion , which is a
lock/unlock operation on regions that are related to
locking operations.

mutex lock/unlock are the basic synchronization op-
erations, while all other operations are realized by call-
ing mutex lock/unlock to acquire/release the desired
locks. Synchronization operations do not have a fixed po-
sition in the functional code of each subsystem, rather
they are subsystem-dependent, i.e., depend on the func-
tional behavior of a particular subsystem. For example, in
memppgread function within the memory pool subsys-
tem, when an application wants to read a page in memory,
it invokesmutex lock to block other threads from updat-
ing the page that the application is operating on. After the
reading is done,mutex unlock is invoked to release the
buffer.

The analysis of the Berkeley DB source code indicated
116 different functions within all the five subsystems that
use the synchronization operations in various places within
their code. Given the number of functions crosscut by
the synchronization operations, the synchronization can be
viewed as a crosscutting concern of the Berkeley DB.

4.4. Error handling

Error handling in Berkeley DB is implemented using if-
statements in the functional code of the database. The place-
ment of if-statements throughout the code is done ad hoc as
it only depends on the desired functionality of the code and
undesired conditions that may occur. When the error is de-
tected (within the if-statement), an output message is dis-
played3, and an error value is returned to the caller, e.g., ap-
plication or other database functions. The return values for
an error can be grouped into the following three categories:
(i) ret=0 , indicating the successful completion of an op-
eration; (ii) ret>0 , indicating a system error, e.g., unable
to allocate memory; and (iii)ret<0 , indication a condition
that is not a system failure, but is not an unqualified suc-
cess either, e.g., a routine to retrieve a key/data pair fromthe
database may returndb notfound when the key/data pair
does not appear in the database as opposed to the value of
0, which would be returned if the key/data pair were found
in the database.

Analysis of the source code exposed 194 different func-
tions calls to the error handling routine spread out over all
five major subsystems of Berkeley DB. Hence, we view er-
ror handling as a crosscutting concern in Berkeley DB.

3 The output message depends on the content of the environment con-
figuration.

5. Modularizing crosscutting concerns

This section shows how aspects encapsulate the cross-
cutting concerns we identified and discussed in the previ-
ous section. We show the aspect-oriented implementation
of failure detection, synchronization and error handling,and
provide analysis of the impact of the aspectualization of the
Berkeley DB in terms of the expected benefits B1-B7.

id id_free vec get put downgr.stat detect
Function names:

recovery
detection

run-time conf.
detection

synchronization

error handling

LEGEND:

the entire
function

Visual
representation of
source code:

code
length

placement of
crosscutting code

Figure 3. Illustration of crosscutting

Figure 3 represents the visualization of crosscutting in
the locking subsystem in Berkeley DB. We observed simi-
lar crosscutting effects in each subsystem of Berkeley DB
and, therefore, found that it is enough to show the effects
of crosscutting on one of the subsystems in order to illus-
trate code entanglement. As can be seen from figure 3, the
code of each function within the locking subsystem is cross-
cut with several crosscutting concerns. Furthermore, each
function has its own set of crosscutting features, e.g., the
function downgrade is crosscut with code for recovery
detection, synchronization, and error handling, while within
stat function there is the code for recovery detection and
run-time configuration detection. Hence, even with only a
subset of possible crosscutting concerns of the database sys-
tem, their effects to the database code entanglement are eas-
ily noticeable.

5.1. Failure detection aspect

As mentioned, failure detection consists of recovery de-
tection and run-time configuration detection. Hence, the
aspect-oriented implementation of the failure detection can
be done in two variants. In the first variant, the code for re-
covery detection and run-time configuration detection are
implemented as separate aspects, i.e., recovery detectionas-
pect and run-time configuration detection aspect. In the sec-
ond variant, recovery detection and run-time configuration
detection are implemented as one aspect, called the failure
detection aspect.

�� ������ �	
��	���	�	
������� �������� �����	�� ��	��� !� "
#$$"%&��'����&�(�#�")))*%* ++)))�,� "�#�-	�"��'��* ++�#�-	�"��
* ++)))��� �./���0�"��	��* � /��.1�2�3�"*4�!� �5"67�899':""��	��*; ���'<=�<>?@<8A* BB�C� "��	��*DE�	-��5� 6 <FGGBB""0'H'<= I*�J� ""0'H8<7>I*"��	��*DE�	-��5�*DEK��L#�*DE	��K#��
 6 M*�N� �	�O��"���0F<0'A>='0P*Q�R� S�T� S
Figure 4. The recovery detection aspect

First variant: recovery detection aspect and run-time con-
figuration aspectFigure 4 shows therecovery detectionim-
plemented as an aspect. As can be seen from the figure, the
recovery detection aspect consists of one pointcut and one
advice. The pointcut syntax corresponds the syntax given in
figure 2, with the subset of pointcuts,call andtarget .
In thecall pointcut all functions that are using the recov-
ery detection routine are listed. An example of a pointcut is
shown in figure 4 (lines 2-3) where the wildcard % indicates
that the pointcut namedRDrefers to all calls to the functions
with signatures containingDbEnv. The body of the advice
in lines 23-26 is the same as the original implementation of
thepanic check . Note that having the body of the advice
implemented and formatted as in the original implementa-
tion of panic check allows us to make a fair compari-
son of the number of lines of code reduced by aspect weav-
ing. The advice is executed before the call is made to any
of the functions with the specified signature in the pointcut
RD. The implementation of the recovery detection aspect
does not change the architecture or the functionality of the
Berkeley DB. This is true since the same recovery detection
code that was encapsulated by the routinepanic check
is now executed within the advice, before the call to any of
the functions that need to perform the recovery detection is
made. This flow of execution also corresponds to the orig-
inal implementation sincepanic check was always exe-
cuted first in the function in which it exists.

Run-time configuration detection aspectis illustrated in
figure 5. This aspect has four named pointcuts:lock CD,
log CD, memCD, andtxn CD, each consisting of a num-
ber ofexecution pointcuts. Theexecution pointcuts
describe the execution of the function with the signature
given in the pointcut. Four named pointcuts are required to
identify the executions of functions in each of the four dif-
ferent subsystems: locking, logging, memory, and transac-
tion subsystem. The aspect also contains four advices each
corresponding to one of the named pointcuts. The shaded

UV WXYZ[\ []̂ _̀ abcW\`]̂ deZ\Z[\`]̂ fgV hijklmnl oimpqrstuvdwxyezẐ {|}~V Z�Z[b\̀]̂ t��uzŵ {VV�][�d{Z[t���|�| ������V Z�Z[b\̀]̂ t��uzŵ {VV�][�daZ\t���|�|������V Z�Z[b\̀]̂ t��uzŵ {VV�][�deZ\Z[\t���|�|���V \WcaZ\tezẐ {|��V hijklmnl oi�qrstuvdwxyezẐ {|}tZ�Z[b\`]̂ t�dd�]ad�cZà X\Zc�tezẐ {� ���|�| �����UgV hijklmnl���qrstuvdwxyezẐ {|}tZ�Z[b\`]̂ t��uzŵ {VV�Z�YdcZà X\Zct���|�|�����U�V hijklmnl l�kqrstuvdwxyezẐ {|}tZ�Z[b\̀]̂ t��uzŵ {VV\�̂ d[�Z[�Y]̀ \̂t���|�|�����U�V ���jm�oimpqrstezẐ {| V�ij����i��tuvdwxyezẐ {|fg�V `_ tezẐ {����d�Ŵ e�Z}}x���|fgUV []b\��]̀ ¡̂]̀ \̂VVX̀ â W\bcZt|�� ¢`̂ \Zc_W[ZcZ£b̀ cZX¤ggV []b\�� � Ŵ Ẑ { c̀]̂ �Ẑ \ []̂ _̀ abcZe_]c \�Z �][�̀^aXbzX¥X\Z���g~V cZ\bĉ tw¦xy§�|� ¨g�V ¨g�V ���jm�oi�qrstezẐ {| V�ij����i��tuvdwxyezẐ {|f���̈���~UV ���jm����qrstezẐ {| V�ij����i��tuvdwxyezẐ {|f���̈���~�V ���jm�l�kqrstezẐ {| V�ij����i��tuvdwxyezẐ {|f���̈����~V ¨
Figure 5. The run-time configuration detec-
tion aspect

parts in figure 5 give the pointcut/advice pair for the lock-
ing subsystem. The pointcutlock CDrefers to the execu-
tions of each of the functions within the locking system that
require run-time configuration detection. The before advice
lock CD identifies whether a join point described by the
pointcutlock CD, in which the advice is currently execut-
ing, is part of the current database configuration (described
by lines 20-23;JoinPoint::Signature in line 21
identifies the current join point).

Given the original implementation of recovery de-
tection and run-time configuration detection, and their
aspectual implementation, we conclude the follow-
ing about benefits B1-B7. Considering that recovery
detection and run-time configuration detection are both im-
plemented only within one routine (panic check and
env requires config) the positive effects of aspec-
tualization to these routines with respect to independent
development (B1) and localized changes (B2) can be ob-
served only in the introduction of pointcuts. The pointcuts
allow localized changes in the sense that all the im-
pact of using this functionality to the overall database is
localized. When using the aspectual solution, extensibil-
ity (B3) and tailorability (B5) of the database are further
improved. Namely, new modules of the database can be de-
veloped and added to the database independently of the
failure detection, and this feature can easily be added
to the parts of the new modules by defining new point-
cuts in the aspects. Comprehensibility (B4) with respect to
the implementation of the recovery and run-time configura-
tion detection is not significantly improved (due to the fact
that these are implemented with only one routine). How-

Invocations[NoL] Implementation[NoL] Total[NoL] Change
Feature original aspect original aspect original aspect [%]

Failure detection 114 0 41 66 155 66 -57
Recovery detection 64 0 6 40 70 40 -43
Configuration detec. 50 0 35 43 85 43 -49

Synchronization 436 0 425 503 861 503 -42

Error handling 650 0 142 1201 792 1201 +65

Table 1. Comparison of the number of lines (NoL) used in the or iginal and aspectual implementation
of the Berkeley DB.

ever, the overall comprehensibility of the database code
and the effects of these two features to the database are in-
deed improved as all the functionality of failure detectionis
localized in aspects and described in terms of advices and
pointcuts (which are straightforward to understand). Fur-
thermore, as shown in the table 1, the use of aspects signif-
icantly reduces the amount of code that deals with recovery
detection. In the original implementation of the Berke-
ley DB, the number of invocations ofpanic check
for performing recovery detection is 64, while the num-
ber of lines implementing thepanic check routine itself
is six. After encapsulating recovery detection into an as-
pect, panic check is not invoked in the code of the
database, i.e., the number of invocations is zero, and the
number of lines of code used to implement the recovery de-
tection aspect is 40. Hence, this results in 43% reduction
of the code that handles recovery detection, which im-
proves testability (B6) and maintainability (B7) of the code.
Similarly, we obtained 49% reduction of the code that han-
dles run-time configuration detection, implying that bene-
fits B6 and B7 hold.

Second variant: failure detection aspect that encapsulates
both recovery detection and run-time configurationIf fail-
ure detection is implemented using only one aspect that en-
capsulates recovery and run-time configuration detection,
the code reduction increases to 57% as compared to the in-
dependently implemented aspects. The decrease is due to
a large number of pointcuts shared by the recovery detec-
tion and run-time configuration detection. Therefore, testa-
bility and maintainability (B6 and B7) of the code are fur-
ther improved (as compared to the first variant). Of course,
encapsulating the failure detection into an aspect enables
better comprehensibility of the failure detection in general
(B4). Also, encapsulating the overall failure detection into
an aspect, without disturbing the original architecture ofthe
database, allows development of the failure detection code
independently of the overall database software (B1). How-
ever, knowledge of the functions that require failure detec-
tion, i.e., pointcuts, is required. Changes to the overall fail-
ure detection code can be done in a localized manner, within

aspect synchronization{
 int lock(db_env dbenv, db_mutex mutexp){..}

 int unlock(db_env dbenv, db_mutex mutexp){..}

 pointcut mutex_lock
 pointcut mutex_unlock
 pointcut mutex_thread_lock
 pointcut mutex_thread_unlock

advice mutex_lock(dbenv) :

 void before(DB_ENV dbenv){
 lock(dbenv, &((dbenv->lk_handle)->
 reginfo.primary)->rp->mutex);)}
}

Figure 6. The synchronization aspect

the failure detection aspect, i.e., B2 holds. The implementa-
tion of failure detection as one aspect reduces the tailorabil-
ity (B5) of database features, as recovery detection and run-
time configuration detection are not independent and can-
not be exchanged and modified independently. Hence, there
is a tradeoff between B5 and B7, as improving tailorability
could result in decreased maintainability of the software.

5.2. Synchronization aspect

We have encapsulated synchronization operations
into the synchronization aspect. The synchronization as-
pect consists of the internal methodslock/unlock
that implement the core synchronization operations
mutex lock and mutex unlock , providing the same
functionality as the original implementation of operations
mutex lock/unlock . The advices, corresponding to
other synchronization operations, e.g.,r lock/unlock ,
mutex thread lock/unlock , call the aspect meth-
odslock/unlock to perform required locking/unlocking
(see figure 6).

Based on the implementation of the synchronization as-
pect we can conclude the following. We are able to de-
velop the synchronization aspect (B1) independently of the
database code, given the knowledge about join points in the
database software where synchronization operations need

to be performed. Furthermore, the comprehensibility (B4)
of the aspect, and the database in general, improves sig-
nificantly as the extensive lock/unlock operations of differ-
ent types are removed from the code. Changes to the syn-
chronization routines are localized within the aspect (B2
holds). Moreover, due to the nature of synchronization op-
erations we achieved significantly better localization than in
the case of the failure detection aspect. The introduction of
a new functionality into the database (B3) is also improved
as the only change to the synchronization aspect needs to be
done in the pointcut declaration. The database can now be
tailored further (B5) by simply including or excluding the
functions that require synchronization in the pointcut decla-
ration. From table 1 we observe that the total number of in-
vocations of synchronization operations in Berkeley DB is
436, while the number of lines that implement synchroniza-
tion operations is 425. Hence, the total number of lines used
for the synchronization operations in the Berkeley DB origi-
nal code is 861. When implementing the synchronization as
an aspect, 70% of the lines of code used to implement the
aspects are the lines used for defining the pointcuts in the
code. This results in total aspect code of 503 lines, and sig-
nificant reduction of code of 42% as compared to the origi-
nal, non-aspectual, implementation. Hence, the code of the
overall database decreases making it easier to maintain and
test database software (B6 and B7 hold).

5.3. Error handling aspect

The structure of error handling aspect follows the typi-
cal structure of an aspect. However, when error handling is
encapsulated into aspects, the number of pointcuts is signif-
icant (total of 1072 lines). This is partly due to that error
handling is done using if-statements, which are not directly
supported in the pointcut syntax (see figure 2), and partly
due to a variety of different conditions that are used to de-
tect errors in the code.

Hence, the aspect solution of error handling resulted in
a (surprising) 65% increase of the code as compared to the
original database code, as can be seen from table 1. The
cause of this increase is the tangled if-statement context-
dependent error handling style that induced great number of
pointcuts in the aspectual implementation of the error han-
dling, increasing the total volume of the code. The signifi-
cant increase of the amount of the code decreases maintain-
ability and testability of the overall system (i.e., B6 and B7
do not hold). Although the implementation of error handling
as an aspect increases comprehensibility (B4) of the over-
all database code, the comprehensibility of the error han-
dling aspect has not been increased as the pointcut decla-
rations showed to be overly complex and difficult to under-
stand. Based on the error handling aspect and the intricate
pointcut definition it is difficult to claim that the error han-

dling could be developed independently (B1) if the archi-
tecture of the system is not modified to a large extent. How-
ever, changes to the error handling routine are localized in
the case of aspects, i.e., benefit B2 holds, but the code is not
easily extensible when it comes to the code of the aspect and
the overall database due to the error handling technique em-
ployed in the original implementation of the Berkeley DB.

5.4. Lessons learned

The study we performed on the Berkeley DB provided
a valuable insight how a database system could be pro-
grammed to enhance its tailorability, maintainability, testa-
bility, and comprehensibility. Aspect-oriented approachin
designing and implementing databases improves the main-
tainability of the system and allows efficient changes in
the database software as the crosscutting concerns in the
system, e.g., failure detection and synchronization, can be
maintained separately, localized in aspects, and then auto-
matically woven into the overall system. By re-engineering
the original Berkeley DB code, we showed that the imple-
mentation of failure detection and synchronization aspects,
provides a way of reducing (up to 57%) the code needed for
implementing these crosscutting concerns in the database
system. We have identified that there is a trade-off between
requirements for configurability and maintainability of the
system when aspects are used, namely, recovery detection
and run-time configuration detection implemented in sepa-
rate aspects allow greater flexibility and tailorability ofthe
database, but they also require maintenance of the two sep-
arate aspects. In contrast, implementing the two detection
routines as one failure detection aspect reduces the code
further and allows for easier maintenance as the designer
should only maintain one aspect.

Encapsulating error detection into an aspect in Berkeley
DB produced a significant increase of code needed for er-
ror detection (65% increase), and exposed the drawbacks in
the way error handling is currently implemented in Berke-
ley DB. This result is different from [11] where it is shown
that the code reduction by factor four can be made in the
best-case scenario when using aspects for error handling.
The system studied in [11] is a Java-based object-oriented
framework for interactive business applications. The system
detects and handles errors by throwing exception and using
a catch-statement to handle exception. In contrast, Berkeley
DB is a C library and uses if-statement to detect and handle
errors. Hence, defining the pointcuts without changing the
original architecture of the database system requires a sig-
nificant amount of code to describe conditions under which
errors may occur. However, if an error detection and han-
dling model is implemented using AOSD from scratch the
result could improve significantly. Hence, not only would
the re-engineering the existing database using aspects to en-

- not supported

+ supported in a limited form

++ fully supported

B1 B2 B3 B4 B5 B6 B7

+++
- - - -

++ ++ +++++
original

Supported characteristics

re-engineered

Implementation

+ + +

B1- independent development of aspects
B2- localized changes in database software
B3- extensibility of database
B4 - comprehensibility of database functionality
B5- tailorability of database towards a particular system
B6 - improved testability
B7 - improved maintainability of database software

Figure 7. The overall effect of re-engineering Berkeley DB t o support aspects

capsulate crosscutting concerns provide benefits for an ex-
iting system; the beneficial impact would be even more no-
ticeable if the database system is designed with aspects in
mind. Given that the constructs provided by the aspect lan-
guages (pointcuts and advices) are powerful and yet simple
enough to capture most of the crosscutting concerns, when
developing the database software the programmers should
only focus on the core functionality of the database system,
while all other crosscutting issues, such as logging, recov-
ery and synchronization can be implemented using aspects.

Figure 7 shows an overview of the types of benefits
that could be observed generally for the database software,
when comparing the original Berkeley DB implementation
with the re-engineered one that supports aspects. As can
be seen from figure 7 we could identify that most of the
benefits B1-B7 are true for the re-engineered database, and
that we obtained in overall significant improvements over
the original implementation, e.g., localized changes in the
database software, comprehensibility, and maintainability.
Issues such as tailorability of the database were also im-
proved with aspects. This is an interesting observation for
this type of a configurable database as it implies that if
the already configurable database could be improved fur-
ther with respect to enabling tailorability, then tailorabil-
ity in a monolithic database could be significantly improved
by introducing aspects. Finally, the impact of aspectualizing
the database does not reflect negatively on the functionality
or performance of the database, i.e., database re-engineered
with aspects exposes the same functionality as the original
database.

6. Related work

In the area of database systems, the aspect-oriented
databases initiative aims at bringing the notion of sepa-
ration of concerns to databases [19]. Asemi-autonomous
database evolution system (SADES) [18], a prod-
uct of the initiative, uses aspects to allow customization
of the database system. The main focus of SADES is as-
pect support on the database level, e.g., aspects are used to
denote changes to links among entities, such as predeces-
sor/successor links between object versions or class ver-
sions, and inheritance links between classes. In contrast,in

this paper we investigated the impact of using aspect lan-
guages for customization of the database management
software, thus, using aspects on the level of database soft-
ware.

Component-based database management systems
(CDBMSs), which can be partially or completely as-
sembled from a pre-defined set of components, allow
tailoring of the database system towards a specific ap-
plication. Different component-based databases enable
different degrees of tailoring the database system for a par-
ticular application. Four different categories of CDBMSs
have been identified [5]: (i)extensible DBMSsextend exist-
ing DBMS with non-standard functionality, e.g., Oracle8i
[16], Informix Universal Server with its DataBlade technol-
ogy [8], Sybase Adaptive Server [15], and DB2 Universal
Database [3]; (ii)database middlewareintegrates exist-
ing data stores into a database system and provides users
and applications with a uniform view of the entire sys-
tem, e.g., OLE DB [13]; (iii) DBMS serviceprovides
database functionality in a standardized form unbun-
dled into services, e.g., CORBAService [17]; (iv)con-
figurable DBMSenables composition of a non-standard
DBMS out of reusable components, e.g., KIDS [7]. Berke-
ley DB can also be viewed as a configurable CDBMS as
it allows configuring the database depending on the ap-
plication requirements. Common to all CDBMSs is that
they are assembled out of components that encapsu-
late certain functionality. However, support for crosscutting
concerns in CDBMSs is not provided. Database compo-
nents are developed independently, and therefore each
developed component has its crosscutting concerns im-
plemented by the component developer independently of
other components. This can lead to the code that is com-
plex and difficult to maintain and develop.

7. Summary

Increasing complexity in development of database sys-
tems accompanied by the demand for enabling their tai-
lorability requires the integration of aspect-oriented soft-
ware development (AOSD) with database system develop-
ment. However, it is essential to identify benefits and poten-
tial drawbacks of a novel technique, such as AOSD, before

it can efficiently be applied in the domain of database sys-
tems.

We have presented a case study, using the well-known
embedded database system, Berkeley database, that iden-
tifies benefits and drawbacks of applying aspect-orientation
and aspect programming languages to the design and imple-
mentation of database systems. The reason for choosing an
embedded database lies in the fact that designing a database
customized for a particular application is essential for an
embedded database system and therefore has even greater
importance than for the traditional database systems.

Our study shows that using the aspect-oriented approach
when designing and implementing a database improves
maintainability of the system and allows efficient changes
in the database software as crosscutting concerns in the sys-
tem can be maintained separately, localized in aspects, and
then automatically woven into the overall system, e.g., fail-
ure detection and synchronization. The study also reveals
that implementing error handling in the form of an aspect
could result in an increase of the code size and thereby in
degraded testability and maintainability of the system. Fur-
thermore, we identified that there is a trade-off between re-
quirements for tailorability and maintainability of the sys-
tem when aspects are used.

Our on-going work focuses on implementation of
a highly reconfigurable embedded real-time database,
called COMET [21], which is being built using both
aspect-oriented and component-based software engineer-
ing techniques.

References

[1] Berkeley DB, http://www.sleepycat.com. Sleepycat Soft-
ware Inc.

[2] The AspectJ Programming Guide, September 2002. Avail-
able at: http://aspectj.org/doc/dist/progguide/index.html.

[3] M. J. Carey, L. M. Haas, J. Kleewein, and B. Reinwald. Data
access interoperability in the IBM database family.IEEE
Quarterly Bulletin on Data Engineering; Special Issue on
Interoperability, 21(3):4–11, 1998.

[4] Y. Coady and G. Kiczales. Back to the future: A retroactive
study of aspect evolution in operating system code. InPro-
ceedings of the Second International Conference on Aspect-
Oriented Software Development, pages 50–59. ACM Press,
2003.

[5] K. R. Dittrich and A. Geppert.Component Database Sys-
tems, chapter Component Database Systems: Introduction,
Foundations, and Overview. Morgan Kaufmann Publishers,
2000.

[6] A. Gal, W. Schröder-Preikschat, and O. Spinczyk. On aspect-
orientation in distributed real-time dependable systems.In
Proceedings of the Seventh IEEE International Workshop on
Object-oriented Real-time Dependable Systems, 2002.

[7] A. Geppert, S. Scherrer, and K. R. Dittrich. KIDS: Con-
struction of database management systems based on reuse.

Technical Report ifi-97.01, Department of Computer Sci-
ence, University of Zurich, September 1997.

[8] Developing DataBlade modules for Informix-Universal
Server. Informix Corporation, 22 March 2001. Available
at http://www.informix.com/datablades/.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented program-
ming. In Proceedings of the ECOOP, volume 1241 ofLec-
ture Notes in Computer Science, pages 220–242. Springer-
Verlag, 1997.

[10] J. Kienzle and R. Guerraoui. AOP: Does it make sense?
The case of concurrency and failures. InProceedings of
the 16th European Conference on Object-Oriented Program-
ming (ECOOP 2002), volume 2374 ofLecture Notes in
Computer Science, pages 37–61, Malaga, Spain, June 2002.
Springer-Verlag.

[11] M. Lippert and C. V. Lopes. A study on exception detection
and handling using aspect-oriented programming. Technical
Report CSL-99-1, Utah Univeristy, 1999.

[12] D. Mahrenholz, O. Spinczyk, A. Gal, and W. Schröder-
Preikschat. An aspect-orientied implementation of interrupt
synchronization in the PURE operating system family. In
Proceedings of the 5th ECOOP Workshop on Object Orien-
tation and Operating Systems, Malaga, Spain, June 2002.

[13] Universal data access through OLE DB. OLE DB Technical
Materials. OLE DB White Papers, 12 April 2001. Available
at http://www.microsoft.com/data/techmat.htm.

[14] M. A. Olson. Selecting and implementing an embedded
database system.IEEE Computers, 33(9):27–34, Sept. 2000.

[15] S. Olson, R. Pledereder, P. Shaw, and D. Yach. The Sybase
architecture for extensible data management.Data Engineer-
ing Bulletin, 21(3):12–24, 1998.

[16] All your data: The Oracle extensibility architecture.Oracle
Technical White Paper. Oracle Corporation, February 1999.

[17] M. T. Özsu and B. Yao.Component Database Systems, chap-
ter Building Component Database Systems Using CORBA.
Data Management Systems. Morgan Kaufmann Publishers,
2000.

[18] A. Rashid. A hybrid approach to separation of concerns:the
story of SADES. InProceedings of the third International
REFLECTION Conference, volume 2192 ofLecture Notes in
Computer Science, pages 231–249, Kyoto, Japan, September
2001. Springer-Verlag.

[19] A. Rashid. Aspect-Oriented Database Systems. Springer,
2004.

[20] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. As-
pectC++: an aspect-oriented extension to C++. InProceed-
ings of the 40th International Conference on Technology
of Object-Oriented Languages and Systems (TOOLS Pacific
2002), Sydney, Australia, February 2002. Australian Com-
puter Society.

[21] A. Tešanović, D. Nyström, J. Hansson, and C. Norstr¨om. As-
pects and components in real-time system development: To-
wards reconfigurable and reusable software.Journal of Em-
bedded Computing, February 2004.

