
Aspects for Improvement of Performance in Fault-Tolerant Software

Diana Szentiványi
Department of Computer and Information

Science, Linköping University, Sweden
 diasz@ida.liu.se

Simin Nadjm-Tehrani
Department of Computer and Information

Science, Linköping University, Sweden
simin@ida.liu.se

Abstract

This paper* describes the use of aspect-oriented
programming to improve performance of fault-tolerant
(FT) servers built with middleware support. Its contribution
is to shift method call logging from middleware to
application level in primary-backup replication. The
novelty consists in no burden being placed on application
writers, except for a simple component description aiding
automatic generation of aspect code. The approach is
illustrated by describing how synchronization aspects are
weaved in an application, and modifications of an FT-
CORBA platform to avoid middleware level logging.
Evaluation is performed using a telecom application
enriched with aspects, running on top of the aspect-
supporting platform. We compare overheads with earlier
results from runs on the base-line platform. Experiments
show a drop of around 40% of original overheads. This is
due to methods starting execution before previous ones end,
in contrast to ordering enforced at middleware level where
methods are executed sequentially, not adapting to
application knowledge.

1. Introduction

The price of making a system fault-tolerant (FT) in
terms of performance, flexibility, and other attributes is
seldom quantified in a research environment with non-
trivial industrial applications. To build up such analyses
one needs a systematic study of different ways for
improving fault tolerance in the same application. A basic
premise is that providing support in middleware makes the
task of building fault-tolerant services simpler, as
application writers then mainly concentrate on the
functional aspects of their code. At the other extreme is the
opposite premise that each application writer should make
his/her application as fault-tolerant as needed, having full

*Copyright © 2004 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

control on performance penalties. Thus, a central issue in
making any quantitative comparison is the
performance/availability trade-off. For an application that
is not time-critical, choosing the middleware support may
be quite appropriate, providing flexibility, low cost of
maintenance, and a high code quality with full
transparency. However, making this very decision has been
hampered by lack of systematic studies of the above-
mentioned trade-offs. This paper studies a variation that is
in between the above two extremes and compares it with
an instance of the middleware-supported fault tolerance.

In earlier work we have quantitatively studied the price
for obtaining high availability through building fault
tolerance capabilities as part of a middleware[8]. Our
experiments were performed with the code of a service
extracted from the Operation and Management (O&M)
layer of a mobile radio network, provided by Ericsson
Radio Systems AB. These studies showed comparative
measures of the timeliness penalty (roundtrip time
overheads) for a range of FT mechanisms built within our
FT-CORBA infrastructure. Other authors have also studied
CORBA-based FT infrastructures and evaluated them
(typically on non-industrial applications), e.g. Felber et
al.[2],Narasimhan et al.[6]. Based on these studies, as well
as the O&M based study, one can pinpoint what caused the
major performance penalty: the call ordering needed in
connection with logging method call information ([7],[8]).

In the context of primary-backup replication, to be able
to restore the state of the backup to the state of the primary
replica upon failure, periodic object state reading and
storing is combined with update method1 call information
logging. A call record consists of method name and
parameter list, thus enough information for replay.

Considering a worst case scenario where update
operations performed on the server object are not
commutative, the order of execution of those operations on
the primary replica has to be the same as that of the logged
call information. The reason is that when a failure occurs
and a backup becomes primary, restoration of state

1 Update methods (operations) are those which change the state of the

server object, when executed

involves transfer of the latest recorded state as well as
replaying methods from the call log arrived since the state
recording took place. Otherwise, if the order of method call
records in the log is different from the order in which those
methods were actually executed on the primary, the state of
the new primary will be inconsistent with that of the old
one at the moment of its failure.

Although the FT-CORBA standard does not mandate a
serialization of update operations on the primary, an
ordered execution of the calls and preservation of this order
in the log is needed. This is due to the fact that logging is
performed at the middleware level and execution of the
operations is performed in an independent manner at
application level.

In this paper we provide a solution that is in between the
FT-CORBA based support by middleware and the support
for FT at individual application level. More specifically,
we show how recent techniques for building adaptable
components, specifically aspect orientation [5], can be used
to shift some of the code generation to the application level
(thus gaining performance by utilising application-specific
knowledge). The contributions of the paper are twofold.
First, the paper shows a description of how to use aspect-
oriented programming for building FT applications on top
of an FT supporting middleware. Second, it presents a
quantitative evaluation of the performance gains by
studying the decrease in overheads, when running the same
O&M application, in comparison with earlier baselines.
The experimental platform is still FT-CORBA, but the
application code modifications are made so that the
granularity of unit on which thread synchronisation is
performed is shifted from method level (the earlier FT-
CORBA solution) to statement level. We believe that the
methodology is general enough for application on any FT
middleware, other than CORBA, since the basic primitives
of logging are inherent in all FT solutions. Our base FT
infrastructure is a collection of service object on top of our
extension of an existing Java implemented ORB [1].
Similarly, when adding aspects to support the application
writer we chose the Java-based AspectJ2. The choice of
AspectJ was motivated by its richness of pointcut
designators and its generality. Again, we believe that the
same principles can be used when using a different
programming language, e.g. C++.

The paper is organised as follows: section 2 presents the
motivation for the work, section 3 describes aspect-
oriented programming concepts, section 4 describes our
approach, and section 5 describes the implementation of
the approach. Section 6 presents evaluation results, while
section 7 presents our conclusions and discussions.

2 AspectJ is a trademark of Xerox Corporation. AspectJ web page:

http://www.eclipse.org/aspectj

2. Motivation

Figure 1 presents a scenario in which a client
communicates with a replicated server in a primary-backup
setting, in a typical FT-CORBA implementation. Consider
the serialization of update method call dispatches needed in
the server side interceptor. Of course, if the underlying
platform does not support multithreaded dispatch and
execution of operations on the server object, the
requirement of order preservation is satisfied with no
additional intervention. On the other hand, for a
multithreaded dispatch policy, method calls on the server
object have to be “manually” stopped from performing
changes on the object state in a different order than that
reflected in the log. If stopping is done at the middleware
level (as illustrated in Figure 1), then the granularity of
thread synchronization is the whole method. In particular,
in typical FT-CORBA implementations (see [7]), the
logging of method call information is done at an
interceptor level where an update method call is stopped
until all preceding ones sent their reply to the client. This
can lead to large average queuing (and thus roundtrip)
times that may be unacceptable in some applications -
especially if method calls come with a high arrival rate.

FT-ORB

Server
Interceptor

Logging&
Recovery

Mechanism

log_call_info(…) {
 * wait for previous
 update methods to finish
 execution on the server;
 * log call info ...
}

Server
Object

FT-ORB

1

2

1 - call log_call_info(…) on the logging object
2 - after log_call_info returns, let the method call
(method_a) reach the server object

Primary

call method_a(…)

Client
Object

Figure 1 Client-server communication in a FT-
CORBA primary-backup setting

This paper presents the following alternative approach.

We perform the logging of method call information in the
method code itself (i.e. at application level). Method calls
still must inflict their changes on the object state in the
same order that they were logged. The difference now is
that, synchronization is not done at whole method level,
but at state variable access level.

Let us take an example Java class ExampleClass
containing methods method_a, and method_b as in
Figure 2. Consider the scenario where method_a is
logged before method_b. When logging is performed at a
platform (interceptor) level, the call to method_b is
delayed until execution of method_a is ended. On the
other hand, with application level logging and field level
synchronization, the call to method_b is delayed only by
the execution time of the first line in method_a (the
assignment v1=v2/3).

void method_a(Str[] val){
 StructureC loc;
 v1=v2/3;
 v2=17;
 v3=v4 || v3;
 loc=v5.field2;
 loc.set_a(3);
 v5.meth_(v6,4);
 for(int i=0;i<val.length;i++)

System.out.println(val[i].the_v);
}

void method_b(){
 v1=v7-v1
}

Figure 2 Two methods that have to be
synchronized

3. Background

Aspect-oriented programming [5] is a very elegant way
to cope with the introduction of non-functional concerns in
a program, separate from functional ones. Besides, this is
possible, at least theoretically, on top of any programming
language. Non-functional properties can be fault tolerance
([3],[4]), synchronization, security, etc. An overall picture
of a component modified by aspects, by so-called aspect
weaving, is shown in Figure 3.

...

weaver

Application code
Aspects

Application code with aspects

Aspect weaving

Figure 3 Aspect weaving

3.1. Aspects, join points, pointcuts and advices

Throughout the rest of the paper we will refer to aspect
as a piece of code that is designed and implemented
separate from the application code. The aspect code is
meant to change the application code with regard to some
non-functional property. It is “weaved” in the application
code and thus parts of it (the advices) are executed at the
specified join points.

A join point is a well-defined point in the execution of a
program. For example, join points defined by AspectJ are,
among others, start of execution of a certain method, call to
a certain method, read/write (get/set) access to a field of a
class. The code of an aspect consists of pointcut and advice
definitions.

A pointcut is a program element that picks out join
points, as well as data from the execution context of the
join points. Pointcuts are used primarily by advices.

An advice contains the code that will be executed when
the application program execution reaches a join point
present in the set defined by the pointcut. The advice code
can be executed before, after or around (instead) of the
application code at the join point. These three keywords
are used when defining the respective advices inside the
aspect. The example in Figure 4 illustrates a before advice.
Thus, if the aspect code is weaved in the application code,
the new application object will print out the given text
whenever it starts executing method_a. The italic words
are keywords in AspectJ. The code is written using the
AspectJ syntax for defining aspects, pointcuts and advices.

 before():execmethod_aPointcut(Str[]){
 System.out.println(”before execution of method_a”);
 }

pointcut execmethod_aPointcut(Str[] val):
 execution(method_a(Str[]));

public aspect ExampleAspect {

}

Aspect definition

Pointcut definition

Advice definition (to be executed
before the join point, i.e. before

method_a starts executing)

Figure 4 A “ before” advice

3.2. Enriching by “Introduction”

Besides enriching existing methods of a class
(component) by adding pieces of code that execute at join
points, it is possible to enrich the component itself by
adding new methods and fields. This way of enriching is
called introduction in AspectJ.

For example, our aspect (ExampleAspect) can be
extended to introduce a new method method_c in the
class ExampleClass (see Figure 5). Of course, it is
possible to define pointcuts (and thus, advices) related to
the new method, as well.

 before():execmethod_aPointcut(Str[]){
 System.out.println(”before execution of method_a”);
 }

pointcut execmethod_aPointcut(Str[] val):
 execution(method_a(Str[]));

public aspect ExampleAspect {

}

Introduction (of a new method)
in class ExampleClass

ExampleClass.method_c(int i, boolean b){
 v1=i/7+20;
 v3=b or v4;
 v7=v1-v2;
}

Body of the new method

Figure 5 Enriching by “introduction”

3.3. Aspects defined per control flow

In section 5.1, the notion of aspect defined percflow will
be used. Therefore, an explanation of this AspectJ defined
notion is needed here.

If aspect AspectForMethod_A is defined with the
attribute percflow(Pointcut_p), where
Pointcut_p is defined inside the body of the aspect
(exec_method_a_p in Figure 6) then one object of type
AspectForMethod_A is created each time the flow of
control reaches a join point from the set defined by
exec_method_a_p. The difference as compared with a
non-percflow aspect AspectForMethod_A is as
follows: the variables defined inside the body of the aspect
(is_first and counter in Figure 6), do not become
instance variables of the aspect-woven class (here,
ExampleClass), initialized at the aspect instance
creation, but they are defined as local variables within the
scope of exec_method_a_p, each time an instance of
AspectForMethod_A is created, i.e. each time
method_a executes; also, the code of advices (before
and after in Figure 6) described in the body of the
aspect, is executed at join points selected by pointcuts
defined inside AspectForMethod_A (get_field in
Figure 6), but only those reached while in the scope of
exec_method_a_p.

public aspect AspectForMethod_A percflow(exec_method_a_p(Str[])){

 int counter;
 boolean is_first;

 public AspectForMethod_A(){
 counter=0;
 is_first=true;
 }

 pointcut exec_method_a_p(Str[] val):execution(method_a(Str[]))
&& args(val);

 pointcut get_field():get(int v1);

 before(): get_field(){
 if(is_first){
 ...
 }
 }
 after(): get_field(){
 counter++;
 }
}

Figure 6 Percflow aspect example

4. Aspects for fault-tolerant applications

In our approach, the application writer will be provided

with aspects incorporating method logging clauses, as well
as variable level synchronization clauses. The aspect code
will be automatically generated from a simple component
description provided by the application writer. Aspects can
easily be weaved in the application code, to provide better

performance of the application on top of an FT-CORBA
middleware that uses a separate method information
logging mechanism, and a different synchronization
mechanism.

To illustrate this approach, we have used an existing
FT-CORBA platform [7], and performed some
modifications to support aspect-oriented application
extensions. The modifications to the middleware were
mainly within the interceptors that now forward the
method logging operation execution to the application
level. The application code is automatically modified using
corresponding aspects.

The exact changes in the FT-CORBA infrastructure that
are concerned with the logging mechanism (in order to
perform method logging at the application level) are as
follows:

(a) Interceptors used in primary-backup replication, were

adapted to throw an exception containing the call
information that has to be logged from the application
level. Throwing an exception is needed, because the
method call (in the form it comes from the client) has
to be stopped from reaching the application object.
After the exception is thrown from the interceptor,
other middleware levels are informed to take the
necessary steps so that the application receives the call
to the right (pseudo) method (the one that incorporates
logging clauses and whose signature has an extended
set of parameters - see section 5). These changes solely
affect the server side interceptor in the FT-CORBA
infrastructure. Thus, an application may choose to use
the standard (FT-CORBA) mechanisms (i.e. those that
do not throw the mentioned exception), or the version
supporting aspects. This is simply done by using
different interceptors when deploying the enhanced
infrastructure. Applications with different performance
requirements can thus exist side-by-side using different
interceptors.

(b) The original logging mechanism was extended with an
operation for storing call information, without waiting
for previous calls to finish execution. Of course, if the
application writer wants to use the regular FT-CORBA
platform, he/she can choose to use the new logging
object, and calling the (old) logging operation that
includes waiting, or the old implementation of the
logging object.

In Figure 7 we illustrate the extension of our FT-

CORBA infrastructure with the addition of support for
aspects, and logging performed from application level.

An application writer that will use the support from a
regular FT-CORBA infrastructure has to add a couple of
small extensions to the application: methods for getting
and setting the object state. Logging of information about
method calls in the right order is entirely taken care of by

the infrastructure. Similar additions to the application code
are also necessary when the application writer chooses to
use our FT-CORBA infrastructure with support for aspect
orientation.

Client
Object

FT-ORB

Server
Interceptor

Logging &
Recovery

Mechanism

log_call_info_appl(…) {
 * log call info ...
}

Server
Object

FT-ORB

1

1 - throw exception with call info, followed by call
of pseudo_method_a on server
2 - call log_call_info_appl (...) on the logging
object, from the application server object

Primary

call method_a(…)

2

Aspect

 log_call_info_appl(...)

Figure 7 Client-server communication using the
aspect and FT supporting middleware

To aid the automatic generation of the aspect code, the

application writer has to provide a component description
that we proceed to explain below.

4.1. Context

Synchronization and method logging aspects will be
weaved in the code of update methods. Synchronization at
variable level involves the fields of the object/component
that are accessed inside an update method. With respect to
taking and releasing the lock corresponding to a variable,
the first and last access to that variable inside the method
are important.

To simplify the implementation, we make no distinction
between read/get and write/set accesses to a variable. Also,
the accesses are counted in terms of number of appearances
of that variable in an instruction (for example: in the
assignment a=a/2+a, the number of accesses to a is
three, although to compute the right hand side expression a
has to be read only once).

4.2. Component description

The component description provided by the application
writer has to contain the following:

• A table (TypeConv) of Java type to IDL type
mappings; the table is used when method call information
is logged; thus, the mappings have to be given only for
types of parameters or results of the update methods;
• A list (Interface) with update methods, in terms of
method signatures, with parameter types and names;
• A list (State) with the types and names of object
fields, that are accessed in update methods, as well as the
types for state elements that are accessed via local
variables;
• A table (FieldAccess) of method names and
corresponding accessed fields (with names), or types of

local variables, followed by number of accesses in that
method.

Note that all of this information can, in principle, be
automatically deduced by static analysis of the program.
However, for the purpose of this study, we assume these as
given.

For our class ExampleClass the description is
presented in Figure 8; the methods in which aspects have
to be weaved are method_a and method_b. Method
method_a accesses the fields v1, v2, v3, v4, v5,
v6, v7, and a local variable of type StructureC,
which when being modified changes the state of the object
(via field v5). The description is written according to
syntax that we impose: the italic words in the figure are
keywords; also the use of ”:” in the FieldAccess
section is our choice.

#BTypeConv
Str[] StrList
#ETypeConv

#Binterface
void method_a(Str[] val);
void method_b();
#EInterface

#BState
int v1,int v2, boolean v3, boolean v4, StructureA v5,
StructureB v6, int v7, StructureC
#EState

#BFieldAccess
method_a v1:1, v2:2, v3:2, v4:1, v5:1, v6:1, StructureC:1
method_b v1:2, v7:1
#EFieldAccess

Figure 8 Component description

5. Implementation issues

The FT-CORBA infrastructure requires the application
writer to indicate which replication style they wish to use
in their application (primary backup with cold or warm
passive replication, or active replication). In this section we
explain how the support for the two primary-backup
mechanisms is implemented within the aspect-orientation
framework. Support for active replication can also be
provided with little effort. However, queuing time not
being the largest part of the overhead in that case, no big
performance improvement is expected.

For warm/cold passive replication, method call
information that is logged consists of the name of the
method (e.g. method_a), the list of call parameters
encapsulated in a list of middleware specific types3, and the
unique request identification information (retention
identifier, client identifier). When logging is done at the
infrastructure level, the latter piece of information is easy

3 In our example the argument val of type Str[] is encapsulated in the

single element of an array of elements of type Parameter.

to obtain. On the other hand, at the application level, this
information is not available unless the method is called
with these extra parameters as well.

Our approach is to generate one separate aspect code
file for each method in the list Interface. Each aspect
so generated, combines the introduction of a new pseudo
method in the application code, with the definition of
advices that contain code for method logging, and the
definition of advices for variable level synchronization.
The advices will be executed as the specified join points
are reached. The new (pseudo) method is introduced in the
class, in order to be able to extend the parameter list of the
original method, without the application writer being
obliged to write a new method with an extended signature.
The body of the pseudo method is simply a call to the
original method with the original set of parameters.

5.1. Method execution related advices

To illustrate how an aspect file looks like, let us take the
example of method_a from our ExampleClass. There
will be one pseudo method introduced in the class, that is
pseudo_method_a. The parameters of
pseudo_method_a are the parameters of method_a,
plus the extra parameters needed, as mentioned before in
case of primary-backup replication. The join point for
which the method related advice is defined is the execution
of the pseudo method. The aspect code is defined to
activate its advices at the given join points, whenever the
method pseudo_method_a is executed, i.e. the control
flow reaches any join point defined by pointcut
exec_pseudo_method_a. To achieve this we need an
aspect defined with the attribute percflow, which is
written as follows:

public aspect Asp_METHOD_A
 percflow(exec_pseudo_method_a_p(Str[],int,String)){
 …
}

The reason for defining all aspects to be of type

percflow is the need to introduce some extra local
counter variables in the methods, used as explained below.

The advice code that will be executed at the method
execution join point is of type around. This means that
the code written inside the advice is run instead of the code
of the method. The new execution starts with logging the
method call information obtained from the parameters of
the call. Further, the numbers of threads currently
accessing fields that will be read/written by this method
(thread) are assigned to the extra local counter variables.
The global variables containing the numbers are
incremented. These global variables are static fields in an
aspect class (not detailed here) specially defined to contain
them. Finally, the (pseudo) method itself is called (by using

the AspectJ keyword proceed). A fragment of the
aspect code used for the extension of method_a is shown
in Figure 9.

pointcut exec_pseudo_method_a_p(Str[] val,int r_id,String cl_id):
 execution(pseudo_method_a(Str[],int,String))&& args(val,r_id,cl_id);

void around(Str[],int,String):exec_pseudo_method_a_p(val,r_id,cl_id){
 ...
 logging_obj.log_call_info_appl(val,r_id,cl_id);
 ...
 proceed(val,r_id,cl_id);
}

pointcut associated with execution of pseudo_method_a

around advice

call pseudo_method_a

Figure 9 An “ around” advice

The reason for the somehow strange combination of

introducing a new method in the application class and then
replacing it with an around advice is that the local variables
defined inside the percflow aspect cannot be accessed in
the pseudo method itself as method (only introduced) in the
application class.

Of course, the server side ORB has to know to call the
pseudo method instead of the original one, since the client
will transparently call the latter. The code of the skeleton
generated at the server side is augmented with calls to
pseudo methods, according to the component description
provided by the application writer. At runtime, the skeleton
object is directly provided with the name of the pseudo
method to be called: in the point immediately over the
server interceptor, the method name is simply changed
from the original (as called by the client) to the pseudo
method’s name. The server interceptor is responsible for
throwing the exception that will inform other ORB levels
about the name change, and of course about the extra
parameters4.

Note that e.g. method_a still exists in the class
ExampleClass. However, it will not be called when the
aspect-supporting infrastructure is used. Instead,
pseudo_method_a is called with the functionality of
method_a preserved inside it.

5.2. Field level synchronization advices

Other join points used to define advices are the get/set
accesses to object fields and local variables that can modify
the state. To select get/set accesses to e.g. a field called v1
of type int, the following pointcut is written in AspectJ:

pointcut get_set_v1_p():get(int v1)||set(int v1);

4 The IDL compiler was changed to cope with the addition of pseudo

method calls to the skeleton’s code.

To select get/set accesses to e.g. the type StructureC
the pointcut looks as follows:

pointcut access_StructureC_p():target(StrcutureC);

The variable level synchronization takes place as

follows. Before the first access to a field in a method, the
current thread gains the semaphore corresponding to that
variable, after all previous accesses by other methods
(threads) are finished. It is known when this happens,
because the local counter variables are decreased whenever
the semaphore corresponding to that field is signalled. The
semaphore is signalled in a method, after the last access to
the field in that method. The first access to a variable in a
method is detected in the advice code that is always
executed before the variable access. To detect the final
access, counting of all get/sets is done and the number
compared with the value specified in the component
description file. The semaphore variables are also static
fields in the same aspect class that contains the global
counter variables.

6. Evaluation of the approach

We performed experiments in a replicated setting by
using the aspect-supporting FT-CORBA platform built as
described above. The O&M service is a so-called “Activity
Manager” whose role is to create activities and jobs to be
scheduled at later times. The update operations performed
on the activity manager server object by client requests
modify its state by mainly creating jobs and activities,
starting and terminating those, as well as reporting status
changes in activity executions. The application has defined
fifteen update operations, out of which we experimented
with six.

The O&M service was augmented by the aspects
generated based on the component description. Our goal
was to compare average roundtrip time overheads obtained
in this setting with the average overheads measured using
the baseline FT-CORBA platform. Overhead values were
computed by subtracting the roundtrip time obtained in a
non-replicated scenario from the time taken in the
replicated one.

Six update methods (called m_1, m_2, etc. in our result
tables, and referred also as method 1, 2, etc.) were used in
the tests and average overhead percentages were computed
for each.

We performed our experiments on a set of SUN Ultra
SPARC workstations running SunOS 5.8. The machines
were connected in a LAN. We did not have control over
the link traffic or the load on the machines. The reason for
not performing measurements in a controlled host
environment was to mimic the realistic setting in which the
service will eventually run.

The parameters we varied during the experiments were:
the replication style (warm or cold), the number of replicas,
the checkpointing interval, and the number of times the
client called the methods on the server, i.e. the number of
iterations of the loop which the client used. The
measurements obtained after each varied parameter will be
referred to as one experiment. Thus, in case of cold passive
replication, for each server method called by the client, and
for each infrastructure, we obtained 12 numbers5
designating average roundtrip time overheads,
corresponding to 12 combinations of parameters:

− number of replicas: 2 (1 value)
− checkpointing intervals: 1, 5, and 10 seconds
respectively (3 values)
− number of iterations: 100, 200, 400 and 800
respectively (4 values)

In case of warm passive replication, for each method

called by the client, and for each infrastructure we obtained
36 numbers6 designating average roundtrip time overheads,
corresponding to 36 combinations of parameters:

− number of replicas: 2, 3 , and 8 respectively (3
values)
− checkpointing intervals: 1, 5, and 10 seconds
respectively (3 values)
− number of iterations: 100, 200, 400 and 800
respectively (4 values).

Choosing only one value for the number of replicas

parameter, in cold passive replication, was due to the fact
that the parameter is expected not to influence at all the
overheads. In case of warm passive replication, the
overhead does not change much either with the number of
replicas, but more than in case of cold passive.

 The two charts (Figure 10 and Figure 11) present the
average roundtrip overhead computed over the above
averages obtained in each experiment. That is, for each of
methods 1 to 6, and each platform, a comparison is
presented between:

− cold passive: the average of the 12 numbers
obtained, and
− warm passive: the average of the 36 numbers
obtained.

The charts show a general drop in the presented average

values. This is especially true for cold passive replication

5 This means a total of 12×6=72 numbers for the original FT-CORBA and

72 numbers for the aspect supporting FT-CORBA
6 This means a total of 36×6=216 numbers for the original FT-CORBA

and 216 numbers for the aspect supporting FT-CORBA

where the drop is sometimes over 50%. Due to the fact that
the call to m_1 does not interfere with so many other
method calls, it shouldn’t be a surprise that in case of
method 1 the results do not show an improvement. In fact,
the synchronization clauses in the application code can
themselves be causing an overhead. In addition, there is a
further explanation for the phenomenon: when a method
call arrives in the server’s synchronization-induced wait
queue, it is possible that a call to get_state (method
called from time to time to save the state of the object
during the checkpoint operation) is there somewhere in the
front. Now, get_state cannot start executing until all
previous methods in the wait queue finish their execution;
this is valid in both platforms (the FT-CORBA and the
aspect-supporting FT-CORBA). Therefore, the method call
that arrives after the call to get_state (e.g. m_1), but
before get_state finished execution, has to wait until
all methods arrived before get_state (those for which
get_state is itself waiting) finish execution. In such a
situation our variable level synchronization does not
improve performance.

0
50

100
150
200
250
300
350
400
450

m_1 m_2 m_3 m_4 m_5 m_6

aspect supporting FT-CORBA original FT-CORBA

Figure 10 Average over average overhead
percentages for cold passive replication

0
50

100
150
200
250
300
350
400
450
500

m_1 m_2 m_3 m_4 m_5 m_6

aspect supporting FT-CORBA original FT-CORBA

Figure 11 Average over average overhead
percentages for warm passive replication

The figures confirm our hypothesis, indicating: in a

setting with multithreaded server call dispatching, with a

minimal specification of application level knowledge, the
average overhead percentages in primary-backup
replication is generally improved – with around 40%.

7. Conclusion and discussion

In this paper we presented the results of the successful
merging of two areas: middleware supporting fault
tolerance with aspect oriented programming for weaving of
fault tolerance aspects in the application. Aspects are
shown to be a powerful tool for adaptive development of
non-functional requirements (e.g. real-time properties[9]).
To our knowledge this is the first work that uses aspects for
improving performance of a fault-tolerant application on
top of a standard middleware. Of course, the improvement
is most significant when considering the worst-case
scenario, i.e. high degree of importance of update method
execution order. However, when the middleware builder
and the application writer do not have the chance to
communicate, and the middleware has to be built general
enough to be able to accommodate many different
applications, the worst case scenario assumption is not
unreasonable. What we proposed in this work does not
remove the worst-case scenario assumption, but aids the
application writer to adjust his/her application to deliver
better performance and still keep ordering (serialization)
requirements. The success of using aspects should be seen
in the modification of the application code with no
programmer intervention leading to a gain in performance
of server request processing. In some cases, the overhead
percentage dropped to half of the overhead rate in a regular
FT-CORBA implementation.

As mentioned before, there is a potential for reducing
the application writer input to only writing application
code (i.e. no added effort due to FT and aspect-orientation
support requirements). This could be implemented if
standard techniques for static analysis are used to deduce
the variable usage in methods instead of the programmer
writing the component description.

Although the same-order requirement described before
is imposed in order to avoid state inconsistencies when a
backup is instated as new primary, there is no change in
failover time as compared with the original FT-CORBA
setting. The failover time mainly consists of the time taken
to install the latest state on the new primary, plus the time
for replaying the methods from the call log. Both of these
times are independent of the application being weaved with
aspects or not.

As expected, there are also some drawbacks to the
approach. Of course, the gain in performance applies when
the field accesses inside methods are organized such that
the extra synchronization code execution time can be
neglected. In particular, there are cases where even by
synchronizing at variable level a method cannot start
executing before a previous one has completely finished.

Imagine the case where method_a in our example is
changed so that the line v1=v2/3 is moved from the
beginning to the end of the method body (Figure 12).

void method_a(Str[] val){
 StructureC loc;
 v1=v2/3;
 v2=17;
 v3=v4 or v3;
 loc=v5.field2;
 loc.set_a(3);
 v5.meth_(v6,4);
 for(int i=0;i<val.length;i++)

System.out.println(val[i].the_v);
 v1=v2/3;
}

void method_b(){
 v1=v7-v1;
}

Figure 12 Changed method_a

In a scenario in which the call to method_a is logged

first, method_b cannot start execution, until method_a
releases the lock on v1, i.e. finishes its execution.

If we think about code maintenance, as soon as the
component description changes, new aspects have to be
generated and weaved in the code. Of course, it is possible
that the server class was only extended with new methods,
and perhaps new state variables. In this case, the new
aspects can be weaved directly in the already “aspected”
code. The worst-case happens when the functional code
has to be modified by weaving in totally new aspects. This
can be solved by “putting together” the non aspect weaved
code and the new aspect files.

In the context of modifying the application code by
weaving aspect code, security problems can be considered.
However, in the present setting, we assume that the
middleware together with the aspect generating software is
provided by a trusted party. Also, the application writer
who augments his/her code with the aspects generated
based on the component description does not impair
security more than he/she would if no external code would
be weaved in the application. Thus, the new usage of the
(aspect-supporting) FT-CORBA middleware will
presumably not impair the security of the application more
than the original FT-CORBA infrastructure.

Future works include the study of other method
structures (creating different synchronization scenarios)
and extensions of the technique to other non-functional
properties.

8. Acknowledgements

This work was supported by the Project TRANSORG,
part of the European Commission IST initiative and is
included in the cluster of projects EUTIST-AMI on Agents
and Middleware Technologies applied in real industrial
environments (www.eutist-ami.org). It was also supported
by the European project Safeguard (IST-2001-32685).

The authors also wish to WKDQN�& OLQ�&XUHVFX� DQG� WKH�
anonymous reviewers for their valuable comments.

References

[1] J. Daniel, M. Daniel, O. Modica, and C. Wood. Exolab
OpenORB. Webpage http://www.openorb.com/.

[2] P. Felber, R. Guerraoui, and A. Schiper: Replication of
CORBA Objects. Volume 1752 of Lecture Notes in Computer
Science, Springer Verlag, Berlin, 2000, pp. 254-276.

[3] A. Gal, O. Spinczyk, and W. Schröder Preikschat: On
Aspect-Orientation in Distributed Real-Time Dependable
Systems. In Proceedings of the Seventh IEEE International
Workshop on Object-oriented Real-time Dependable Systems, San
Diego, CA, January 7-9, 2002, pp. 261-270.

[4] J. Herrero, F. Sanchez, and M. Toro: Fault Tolerance AOP
Approach. In Proceedings of the International Workshop on
Aspect-Oriented Programming and Separation of Concerns,
Lancaster University, UK, 24 August, 2001, pp.44-52

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin: Aspect-Oriented
Programming. Invited talk in Proceedings of the European
Conference on Object-Oriented Programming (ECOOP),
Finland, Springer-Verlag LNCS 1241, June 1997, pp.220-242 .

[6] P. Narasimhan, L.E. Moser, and P.M. Melliar-Smith Using
Interceptors to Enhance CORBA. IEEE Computer, 32(7), 1999,
pp. 62-68.

[7] D. Szentiványi and S. Nadjm-Tehrani: Building and
Evaluating a Fault-Tolerant CORBA Infrastructure. In
Proceedings of the DSN Workshop on Dependable Middleware-
Based Systems, June 23-26, 2002,Washington, DC, pp. G-31—G-
38.

[8] D. Szentiványi and S. Nadjm-Tehrani: Middleware Support
for Fault Tolerance. To appear as a chapter in the book
“Middleware for Communications” edited by Qusay H.
Mahmoud, published by Wiley and sons.

[9] A. Tesanovic, D. Nyström, J. Hansson, and C. Norström:
Towards Aspectual Component-Based Development of Real-
Time Systems. In Proceeding of the 9th International Conference
on Real-Time and Embedded Computing Systems and
Applications (RTCSA 2003), Springer-Verlag, Feb. 2003.

