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Abstract 
 

This paper* describes the use of aspect-oriented 
programming to improve performance of fault-tolerant 
(FT) servers built with middleware support. Its contribution 
is to shift method call logging from middleware to 
application level in primary-backup replication. The 
novelty consists in no burden being placed on application 
writers, except for a simple component description aiding 
automatic generation of aspect code. The approach is 
illustrated by describing how synchronization aspects are 
weaved in an application, and modifications of an FT-
CORBA platform to avoid middleware level logging. 
Evaluation is performed using a telecom application 
enriched with aspects, running on top of the aspect-
supporting platform. We compare overheads with earlier 
results from runs on the base-line platform. Experiments 
show a drop of around 40% of original overheads. This is 
due to methods starting execution before previous ones end, 
in contrast to ordering enforced at middleware level where 
methods are executed sequentially, not adapting to 
application knowledge.     

 
1. Introduction 
 

The price of making a system fault-tolerant (FT) in 
terms of performance, flexibility, and other attributes is 
seldom quantified in a research environment with non-
trivial industrial applications. To build up such analyses 
one needs a systematic study of different ways for 
improving fault tolerance in the same application. A basic 
premise is that providing support in middleware makes the 
task of building fault-tolerant services simpler, as 
application writers then mainly concentrate on the 
functional aspects of their code. At the other extreme is the 
opposite premise that each application writer should make 
his/her application as fault-tolerant as needed, having full 
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control on performance penalties. Thus, a central issue in 
making any quantitative comparison is the 
performance/availability trade-off.  For an application that 
is not time-critical, choosing the middleware support may 
be quite appropriate, providing flexibility, low cost of 
maintenance, and a high code quality with full 
transparency. However, making this very decision has been 
hampered by lack of systematic studies of the above-
mentioned trade-offs. This paper studies a variation that is 
in between the above two extremes and compares it with 
an instance of the middleware-supported fault tolerance.  

In earlier work we have quantitatively studied the price 
for obtaining high availability through building fault 
tolerance capabilities as part of a middleware[8]. Our 
experiments were performed with the code of a service 
extracted from the Operation and Management (O&M) 
layer of a mobile radio network, provided by Ericsson 
Radio Systems AB. These studies showed comparative 
measures of the timeliness penalty (roundtrip time 
overheads) for a range of FT mechanisms built within our 
FT-CORBA infrastructure. Other authors have also studied 
CORBA-based FT infrastructures and evaluated them 
(typically on non-industrial applications), e.g. Felber et 
al.[2],Narasimhan et al.[6]. Based on these studies, as well 
as the O&M based study, one can pinpoint what caused the 
major performance penalty: the call ordering needed in 
connection with logging method call information ([7],[8]).  

In the context of primary-backup replication, to be able 
to restore the state of the backup to the state of the primary 
replica upon failure, periodic object state reading and 
storing is combined with update method1 call information 
logging. A call record consists of method name and 
parameter list, thus enough information for replay. 

Considering a worst case scenario where update 
operations performed on the server object are not 
commutative, the order of execution of those operations on 
the primary replica has to be the same as that of the logged 
call information. The reason is that when a failure occurs 
and a backup becomes primary, restoration of state 
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involves transfer of the latest recorded state as well as 
replaying methods from the call log arrived since the state 
recording took place. Otherwise, if the order of method call 
records in the log is different from the order in which those 
methods were actually executed on the primary, the state of 
the new primary will be inconsistent with that of the old 
one at the moment of its failure.   

Although the FT-CORBA standard does not mandate a 
serialization of update operations on the primary, an 
ordered execution of the calls and preservation of this order 
in the log is needed. This is due to the fact that logging is 
performed at the middleware level and execution of the 
operations is performed in an independent manner at 
application level.  

In this paper we provide a solution that is in between the 
FT-CORBA based support by middleware and the support 
for FT at individual application level. More specifically, 
we show how recent techniques for building adaptable 
components, specifically aspect orientation [5], can be used 
to shift some of the code generation to the application level 
(thus gaining performance by utilising application-specific 
knowledge). The contributions of the paper are twofold. 
First, the paper shows a description of how to use aspect-
oriented programming for building FT applications on top 
of an FT supporting middleware. Second, it presents a 
quantitative evaluation of the performance gains by 
studying the decrease in overheads, when running the same 
O&M application, in comparison with earlier baselines. 
The experimental platform is still FT-CORBA, but the 
application code modifications are made so that the 
granularity of unit on which thread synchronisation is 
performed is shifted from method level (the earlier FT-
CORBA solution) to statement level. We believe that the 
methodology is general enough for application on any FT 
middleware, other than CORBA, since the basic primitives 
of logging are inherent in all FT solutions. Our base FT 
infrastructure is a collection of service object on top of our 
extension of an existing Java implemented ORB [1]. 
Similarly, when adding aspects to support the application 
writer we chose the Java-based AspectJ2. The choice of 
AspectJ was motivated by its richness of pointcut 
designators and its generality. Again, we believe that the 
same principles can be used when using a different 
programming language, e.g. C++.   

The paper is organised as follows: section 2 presents the 
motivation for the work, section 3 describes aspect-
oriented programming concepts, section 4 describes our 
approach, and section 5 describes the implementation of 
the approach. Section 6 presents evaluation results, while 
section 7 presents our conclusions and discussions.  
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2. Motivation 
 

Figure 1 presents a scenario in which a client 
communicates with a replicated server in a primary-backup 
setting, in a typical FT-CORBA implementation. Consider 
the serialization of update method call dispatches needed in 
the server side interceptor. Of course, if the underlying 
platform does not support multithreaded dispatch and 
execution of operations on the server object, the 
requirement of order preservation is satisfied with no 
additional intervention. On the other hand, for a 
multithreaded dispatch policy, method calls on the server 
object have to be “manually” stopped from performing 
changes on the object state in a different order than that 
reflected in the log. If stopping is done at the middleware 
level (as illustrated in Figure 1), then the granularity of 
thread synchronization is the whole method. In particular, 
in typical FT-CORBA implementations (see [7]), the 
logging of method call information is done at an 
interceptor level where an update method call is stopped 
until all preceding ones sent their reply to the client. This 
can lead to large average queuing (and thus roundtrip) 
times that may be unacceptable in some applications - 
especially if method calls come with a high arrival rate.  
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Server
Interceptor

Logging&
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Mechanism

log_call_info(…) {
    * wait for previous
    update methods to finish
    execution on the server;
    * log call info ...
}

Server
Object
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1

2

1 - call log_call_info(…) on the logging object
2 - after log_call_info returns, let the method call
(method_a) reach the server object

Primary

call method_a(…)

Client
Object

 

Figure 1 Client-server communication in a FT-
CORBA primary-backup setting 

 
This paper presents the following alternative approach. 

We perform the logging of method call information in the 
method code itself (i.e. at application level). Method calls 
still must inflict their changes on the object state in the 
same order that they were logged. The difference now is 
that, synchronization is not done at whole method level, 
but at state variable access level.  

Let us take an example Java class ExampleClass 
containing methods method_a, and method_b as in 
Figure 2. Consider the scenario where method_a is 
logged before method_b. When logging is performed at a 
platform (interceptor) level, the call to method_b is 
delayed until execution of method_a is ended. On the 
other hand, with application level logging and field level 
synchronization, the call to method_b is delayed only by 
the execution time of the first line in method_a (the 
assignment v1=v2/3). 
 



void method_a(Str[] val){
 StructureC loc;
 v1=v2/3;
 v2=17;
 v3=v4 || v3;
 loc=v5.field2;
 loc.set_a(3);
 v5.meth_(v6,4);
 for(int i=0;i<val.length;i++)

System.out.println(val[i].the_v);
}

void method_b(){
 v1=v7-v1
}

 
 

Figure 2 Two methods that have to be 
synchronized 

 
3. Background 
 

Aspect-oriented programming [5] is a very elegant way 
to cope with the introduction of non-functional concerns in 
a program, separate from functional ones. Besides, this is 
possible, at least theoretically, on top of any programming 
language. Non-functional properties can be fault tolerance 
([3],[4]), synchronization, security, etc. An overall picture 
of a component modified by aspects, by so-called aspect 
weaving, is shown in Figure 3. 
 

...

weaver

Application code
Aspects

Application code with aspects

Aspect weaving

 
 

Figure 3 Aspect weaving 
 
3.1. Aspects, join points, pointcuts and advices 
 

Throughout the rest of the paper we will refer to aspect 
as a piece of code that is designed and implemented 
separate from the application code. The aspect code is 
meant to change the application code with regard to some 
non-functional property. It is “weaved” in the application 
code and thus parts of it (the advices) are executed at the 
specified join points.  

A join point is a well-defined point in the execution of a 
program. For example, join points defined by AspectJ are, 
among others, start of execution of a certain method, call to 
a certain method, read/write (get/set) access to a field of a 
class. The code of an aspect consists of pointcut and advice 
definitions.  

A pointcut is a program element that picks out join 
points, as well as data from the execution context of the 
join points. Pointcuts are used primarily by advices.  

An advice contains the code that will be executed when 
the application program execution reaches a join point 
present in the set defined by the pointcut. The advice code 
can be executed before, after or around (instead) of the 
application code at the join point. These three keywords 
are used when defining the respective advices inside the 
aspect. The example in Figure 4 illustrates a before advice. 
Thus, if the aspect code is weaved in the application code, 
the new application object will print out the given text 
whenever it starts executing method_a. The italic words 
are keywords in AspectJ. The code is written using the 
AspectJ syntax for defining aspects, pointcuts and advices.  

 

  before():execmethod_aPointcut(Str[]){
      System.out.println(”before execution of method_a”);
  }

pointcut execmethod_aPointcut(Str[] val):
   execution(method_a(Str[]));

public aspect ExampleAspect {

}

Aspect definition

Pointcut definition

Advice definition (to be executed
before the join point, i.e. before

method_a starts executing)

 

Figure 4  A “ before”  advice 

3.2. Enriching by “Introduction”  
 

Besides enriching existing methods of a class 
(component) by adding pieces of code that execute at join 
points, it is possible to enrich the component itself by 
adding new methods and fields. This way of enriching is 
called introduction in AspectJ. 

For example, our aspect (ExampleAspect) can be 
extended to introduce a new method method_c in the 
class ExampleClass (see Figure 5). Of course, it is 
possible to define pointcuts (and thus, advices) related to 
the new method, as well.  

  before():execmethod_aPointcut(Str[]){
      System.out.println(”before execution of method_a”);
  }

pointcut execmethod_aPointcut(Str[] val):
   execution(method_a(Str[]));

public aspect ExampleAspect {

}

Introduction (of a new method)
in class ExampleClass

ExampleClass.method_c(int i, boolean b){
  v1=i/7+20;
  v3=b or v4;
  v7=v1-v2;
}

Body of the new method

 
Figure 5 Enriching by “introduction” 

 



3.3. Aspects defined per control flow 
 

In section 5.1, the notion of aspect defined percflow will 
be used. Therefore, an explanation of this AspectJ defined 
notion is needed here. 

If aspect AspectForMethod_A is defined with the 
attribute percflow(Pointcut_p), where 
Pointcut_p is defined inside the body of the aspect 
(exec_method_a_p in Figure 6) then one object of type 
AspectForMethod_A is created each time the flow of 
control reaches a join point from the set defined by 
exec_method_a_p. The difference as compared with a 
non-percflow aspect AspectForMethod_A is as 
follows: the variables defined inside the body of the aspect 
(is_first and counter in Figure 6), do not become 
instance variables of the aspect-woven class (here, 
ExampleClass), initialized at the aspect instance 
creation, but they are defined as local variables within the 
scope of exec_method_a_p, each time an instance of 
AspectForMethod_A is created, i.e. each time 
method_a executes; also, the code of advices (before 
and after in Figure 6) described in the body of the 
aspect, is executed at join points selected by pointcuts 
defined inside AspectForMethod_A (get_field in 
Figure 6), but only those reached while in the scope of 
exec_method_a_p.  

 
public aspect AspectForMethod_A percflow(exec_method_a_p(Str[])){

    int counter;
    boolean is_first;

    public AspectForMethod_A(){
        counter=0;
        is_first=true;
   }

   pointcut exec_method_a_p(Str[] val):execution(method_a(Str[]))
&& args(val);

   pointcut  get_field():get(int v1);

   before(): get_field(){
     if(is_first){
        ...
     }
   }
   after(): get_field(){
     counter++;
  }
}  

Figure 6 Percflow aspect example 
 
4. Aspects for fault-tolerant applications 

 
In our approach, the application writer will be provided 

with aspects incorporating method logging clauses, as well 
as variable level synchronization clauses. The aspect code 
will be automatically generated from a simple component 
description provided by the application writer. Aspects can 
easily be weaved in the application code, to provide better 

performance of the application on top of an FT-CORBA 
middleware that uses a separate method information 
logging mechanism, and a different synchronization 
mechanism.  

To illustrate this approach, we have used an existing 
FT-CORBA platform [7], and performed some 
modifications to support aspect-oriented application 
extensions. The modifications to the middleware were 
mainly within the interceptors that now forward the 
method logging operation execution to the application 
level. The application code is automatically modified using 
corresponding aspects.    

The exact changes in the FT-CORBA infrastructure that 
are concerned with the logging mechanism (in order to 
perform method logging at the application level) are as 
follows: 
 
(a) Interceptors used in primary-backup replication, were 

adapted to throw an exception containing the call 
information that has to be logged from the application 
level. Throwing an exception is needed, because the 
method call (in the form it comes from the client) has 
to be stopped from reaching the application object. 
After the exception is thrown from the interceptor, 
other middleware levels are informed to take the 
necessary steps so that the application receives the call 
to the right (pseudo) method (the one that incorporates 
logging clauses and whose signature has an extended 
set of parameters - see section 5). These changes solely 
affect the server side interceptor in the FT-CORBA 
infrastructure. Thus, an application may choose to use 
the standard (FT-CORBA) mechanisms (i.e. those that 
do not throw the mentioned exception), or the version 
supporting aspects. This is simply done by using 
different interceptors when deploying the enhanced 
infrastructure. Applications with different performance 
requirements can thus exist side-by-side using different 
interceptors. 

(b) The original logging mechanism was extended with an 
operation for storing call information, without waiting 
for previous calls to finish execution. Of course, if the 
application writer wants to use the regular FT-CORBA 
platform, he/she can choose to use the new logging 
object, and calling the (old) logging operation that 
includes waiting, or the old implementation of the 
logging object. 

 
In Figure 7 we illustrate the extension of our FT-

CORBA infrastructure with the addition of support for 
aspects, and logging performed from application level. 

An application writer that will use the support from a 
regular FT-CORBA infrastructure has to add a couple of 
small extensions to the application: methods for getting 
and setting the object state. Logging of information about 
method calls in the right order is entirely taken care of by 



the infrastructure. Similar additions to the application code 
are also necessary when the application writer chooses to 
use our FT-CORBA infrastructure with support for aspect 
orientation.  
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      * log call info ...
}
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 log_call_info_appl(...)

 
 

Figure 7 Client-server communication using the 
aspect and FT supporting middleware 

 
To aid the automatic generation of the aspect code, the 

application writer has to provide a component description 
that we proceed to explain below.  
 
4.1. Context 
 

Synchronization and method logging aspects will be 
weaved in the code of update methods. Synchronization at 
variable level involves the fields of the object/component 
that are accessed inside an update method. With respect to 
taking and releasing the lock corresponding to a variable, 
the first and last access to that variable inside the method 
are important.  

To simplify the implementation, we make no distinction 
between read/get and write/set accesses to a variable. Also, 
the accesses are counted in terms of number of appearances 
of that variable in an instruction (for example: in the 
assignment a=a/2+a, the number of accesses to a is 
three, although to compute the right hand side expression a 
has to be read only once).  
 
4.2. Component description 
 

The component description provided by the application 
writer has to contain the following:  
 
• A table (TypeConv) of Java type to IDL type 
mappings; the table is used when method call information 
is logged; thus, the mappings have to be given only for 
types of parameters or results of the update methods; 
• A list (Interface) with update methods, in terms of 
method signatures, with parameter types and names; 
• A list (State) with the types and names of object 
fields, that are accessed in update methods, as well as the 
types for state elements that are accessed via local 
variables; 
• A table (FieldAccess) of method names and 
corresponding accessed fields (with names), or types of 

local variables, followed by number of accesses in that 
method. 
 

Note that all of this information can, in principle, be 
automatically deduced by static analysis of the program. 
However, for the purpose of this study, we assume these as 
given. 

For our class ExampleClass the description is 
presented in Figure 8; the methods in which aspects have 
to be weaved are method_a and method_b. Method 
method_a accesses the fields v1, v2, v3, v4, v5, 
v6, v7, and a local variable of type StructureC, 
which when being modified changes the state of the object 
(via field v5). The description is written according to 
syntax that we impose: the italic words in the figure are 
keywords; also the use of ”:” in the FieldAccess 
section is our choice. 

 
#BTypeConv
Str[]  StrList
#ETypeConv

#Binterface
void method_a(Str[] val);
void method_b();
#EInterface

#BState
int v1,int v2, boolean v3, boolean v4, StructureA v5,
StructureB v6, int v7, StructureC
#EState

#BFieldAccess
method_a v1:1, v2:2, v3:2, v4:1, v5:1, v6:1, StructureC:1
method_b v1:2, v7:1
#EFieldAccess  

Figure 8 Component description 

 
5. Implementation issues 
 

The FT-CORBA infrastructure requires the application 
writer to indicate which replication style they wish to use 
in their application (primary backup with cold or warm 
passive replication, or active replication). In this section we 
explain how the support for the two primary-backup 
mechanisms is implemented within the aspect-orientation 
framework. Support for active replication can also be 
provided with little effort. However, queuing time not 
being the largest part of the overhead in that case, no big 
performance improvement is expected.  

For warm/cold passive replication, method call 
information that is logged consists of the name of the 
method (e.g. method_a), the list of call parameters 
encapsulated in a list of middleware specific types3, and the 
unique request identification information (retention 
identifier, client identifier). When logging is done at the 
infrastructure level, the latter piece of information is easy 

                                                 
3 In our example the argument val of type Str[] is encapsulated in the 

single element of an array of elements of type Parameter. 



to obtain. On the other hand, at the application level, this 
information is not available unless the method is called 
with these extra parameters as well.  

Our approach is to generate one separate aspect code 
file for each method in the list Interface. Each aspect 
so generated, combines the introduction of a new pseudo 
method in the application code, with the definition of 
advices that contain code for method logging, and the 
definition of advices for variable level synchronization. 
The advices will be executed as the specified join points 
are reached. The new (pseudo) method is introduced in the 
class, in order to be able to extend the parameter list of the 
original method, without the application writer being 
obliged to write a new method with an extended signature. 
The body of the pseudo method is simply a call to the 
original method with the original set of parameters. 
 
5.1. Method execution related advices  
 

To illustrate how an aspect file looks like, let us take the 
example of method_a from our ExampleClass. There 
will be one pseudo method introduced in the class, that is 
pseudo_method_a. The parameters of 
pseudo_method_a are the parameters of method_a, 
plus the extra parameters needed, as mentioned before in 
case of primary-backup replication. The join point for 
which the method related advice is defined is the execution 
of the pseudo method. The aspect code is defined to 
activate its advices at the given join points, whenever the 
method pseudo_method_a is executed, i.e. the control 
flow reaches any join point defined by pointcut 
exec_pseudo_method_a. To achieve this we need an 
aspect defined with the attribute percflow, which is 
written as follows: 

 
public aspect Asp_METHOD_A
   percflow(exec_pseudo_method_a_p(Str[],int,String)){
   …
}  

 
The reason for defining all aspects to be of type 

percflow is the need to introduce some extra local 
counter variables in the methods, used as explained below.   

The advice code that will be executed at the method 
execution join point is of type around. This means that 
the code written inside the advice is run instead of the code 
of the method. The new execution starts with logging the 
method call information obtained from the parameters of 
the call. Further, the numbers of threads currently 
accessing fields that will be read/written by this method 
(thread) are assigned to the extra local counter variables. 
The global variables containing the numbers are 
incremented.  These global variables are static fields in an 
aspect class (not detailed here) specially defined to contain 
them. Finally, the (pseudo) method itself is called (by using 

the AspectJ keyword proceed).   A fragment of the 
aspect code used for the extension of method_a is shown 
in Figure 9. 

 

pointcut exec_pseudo_method_a_p(Str[] val,int r_id,String cl_id):
   execution(pseudo_method_a(Str[],int,String))&& args(val,r_id,cl_id);

void around(Str[],int,String):exec_pseudo_method_a_p(val,r_id,cl_id){
    ...
    logging_obj.log_call_info_appl(val,r_id,cl_id);
    ...
    proceed(val,r_id,cl_id);
}

pointcut associated with execution of pseudo_method_a

around advice

call  pseudo_method_a  

Figure 9 An “ around”  advice 

 
The reason for the somehow strange combination of 

introducing a new method in the application class and then 
replacing it with an around advice is that the local variables 
defined inside the percflow aspect cannot be accessed in 
the pseudo method itself as method (only introduced) in the 
application class. 

Of course, the server side ORB has to know to call the 
pseudo method instead of the original one, since the client 
will transparently call the latter. The code of the skeleton 
generated at the server side is augmented with calls to 
pseudo methods, according to the component description 
provided by the application writer. At runtime, the skeleton 
object is directly provided with the name of the pseudo 
method to be called: in the point immediately over the 
server interceptor, the method name is simply changed 
from the original (as called by the client) to the pseudo 
method’s name. The server interceptor is responsible for 
throwing the exception that will inform other ORB levels 
about the name change, and of course about the extra 
parameters4. 

Note that e.g. method_a still exists in the class 
ExampleClass. However, it will not be called when the 
aspect-supporting infrastructure is used. Instead, 
pseudo_method_a is called with the functionality of 
method_a preserved inside it. 
 
5.2. Field level synchronization advices 
 

Other join points used to define advices are the get/set 
accesses to object fields and local variables that can modify 
the state. To select get/set accesses to e.g. a field called v1 
of type int, the following pointcut is written in AspectJ: 

 
pointcut get_set_v1_p():get(int v1)||set(int v1); 

 

                                                 
4 The IDL compiler was changed to cope with the addition of pseudo 

method calls to the skeleton’s code. 



To select get/set accesses to e.g. the type StructureC 
the pointcut looks as follows: 

 
pointcut access_StructureC_p():target(StrcutureC); 

 
The variable level synchronization takes place as 

follows. Before the first access to a field in a method, the 
current thread gains the semaphore corresponding to that 
variable, after all previous accesses by other methods 
(threads) are finished. It is known when this happens, 
because the local counter variables are decreased whenever 
the semaphore corresponding to that field is signalled. The 
semaphore is signalled in a method, after the last access to 
the field in that method. The first access to a variable in a 
method is detected in the advice code that is always 
executed before the variable access. To detect the final 
access, counting of all get/sets is done and the number 
compared with the value specified in the component 
description file. The semaphore variables are also static 
fields in the same aspect class that contains the global 
counter variables. 
 
6. Evaluation of the approach 
 

We performed experiments in a replicated setting by 
using the aspect-supporting FT-CORBA platform built as 
described above. The O&M service is a so-called “Activity 
Manager” whose role is to create activities and jobs to be 
scheduled at later times. The update operations performed 
on the activity manager server object by client requests 
modify its state by mainly creating jobs and activities, 
starting and terminating those, as well as reporting status 
changes in activity executions. The application has defined 
fifteen update operations, out of which we experimented 
with six.  

The O&M service was augmented by the aspects 
generated based on the component description. Our goal 
was to compare average roundtrip time overheads obtained 
in this setting with the average overheads measured using 
the baseline FT-CORBA platform. Overhead values were 
computed by subtracting the roundtrip time obtained in a 
non-replicated scenario from the time taken in the 
replicated one.  

Six update methods (called m_1, m_2, etc. in our result 
tables, and referred also as method 1, 2, etc.) were used in 
the tests and average overhead percentages were computed 
for each. 

We performed our experiments on a set of SUN Ultra 
SPARC workstations running SunOS 5.8. The machines 
were connected in a LAN. We did not have control over 
the link traffic or the load on the machines. The reason for 
not performing measurements in a controlled host 
environment was to mimic the realistic setting in which the 
service will eventually run. 

The parameters we varied during the experiments were: 
the replication style (warm or cold), the number of replicas, 
the checkpointing interval, and the number of times the 
client called the methods on the server, i.e. the number of 
iterations of the loop which the client used. The 
measurements obtained after each varied parameter will be 
referred to as one experiment. Thus, in case of cold passive 
replication, for each server method called by the client, and 
for each infrastructure, we obtained 12 numbers5 
designating average roundtrip time overheads, 
corresponding to 12 combinations of parameters: 
  

− number of replicas: 2 (1 value)   
− checkpointing intervals: 1, 5, and 10 seconds 
respectively (3 values) 
− number of iterations: 100, 200, 400 and 800 
respectively (4 values) 
 
In case of warm passive replication, for each method 

called by the client, and for each infrastructure we obtained 
36 numbers6 designating average roundtrip time overheads, 
corresponding to 36 combinations of parameters: 

 
− number of replicas: 2, 3 , and 8 respectively (3 
values)   
− checkpointing intervals: 1, 5, and 10 seconds 
respectively (3 values) 
− number of iterations: 100, 200, 400 and 800 
respectively (4 values). 
 
Choosing only one value for the number of replicas 

parameter, in cold passive replication, was due to the fact 
that the parameter is expected not to influence at all the 
overheads. In case of warm passive replication, the 
overhead does not change much either with the number of 
replicas, but more than in case of cold passive.   

 The two charts (Figure 10 and Figure 11) present the 
average roundtrip overhead computed over the above 
averages obtained in each experiment. That is, for each of 
methods 1 to 6, and each platform, a comparison is 
presented between: 
 

−  cold passive: the average of the 12 numbers 
obtained, and  
− warm passive: the average of the 36 numbers 
obtained. 

 
The charts show a general drop in the presented average 

values. This is especially true for cold passive replication 

                                                 
5 This means a total of 12×6=72 numbers for the original FT-CORBA and 

72 numbers for the aspect supporting FT-CORBA 
6 This means a total of 36×6=216 numbers for the original FT-CORBA 

and 216 numbers for the aspect supporting FT-CORBA 



where the drop is sometimes over 50%. Due to the fact that 
the call to m_1 does not interfere with so many other 
method calls, it shouldn’t be a surprise that in case of 
method 1 the results do not show an improvement. In fact, 
the synchronization clauses in the application code can 
themselves be causing an overhead. In addition, there is a 
further explanation for the phenomenon: when a method 
call arrives in the server’s synchronization-induced wait 
queue, it is possible that a call to get_state (method 
called from time to time to save the state of the object 
during the checkpoint operation) is there somewhere in the 
front. Now, get_state cannot start executing until all 
previous methods in the wait queue finish their execution; 
this is valid in both platforms (the FT-CORBA and the 
aspect-supporting FT-CORBA). Therefore, the method call 
that arrives after the call to get_state (e.g. m_1), but 
before get_state finished execution, has to wait until 
all methods arrived before get_state (those for which 
get_state is itself waiting) finish execution. In such a 
situation our variable level synchronization does not 
improve performance.   
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Figure 10 Average over average overhead 
percentages for cold passive replication 
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Figure 11 Average over average overhead 
percentages for warm passive replication 

 
The figures confirm our hypothesis, indicating: in a 

setting with multithreaded server call dispatching, with a 

minimal specification of application level knowledge, the 
average overhead percentages in primary-backup 
replication is generally improved – with around 40%. 
 
7. Conclusion and discussion 
 

In this paper we presented the results of the successful 
merging of two areas: middleware supporting fault 
tolerance with aspect oriented programming for weaving of 
fault tolerance aspects in the application. Aspects are 
shown to be a powerful tool for adaptive development of 
non-functional requirements (e.g. real-time properties[9]). 
To our knowledge this is the first work that uses aspects for 
improving performance of a fault-tolerant application on 
top of a standard middleware. Of course, the improvement 
is most significant when considering the worst-case 
scenario, i.e. high degree of importance of update method 
execution order. However, when the middleware builder 
and the application writer do not have the chance to 
communicate, and the middleware has to be built general 
enough to be able to accommodate many different 
applications, the worst case scenario assumption is not 
unreasonable. What we proposed in this work does not 
remove the worst-case scenario assumption, but aids the 
application writer to adjust his/her application to deliver 
better performance and still keep ordering (serialization) 
requirements. The success of using aspects should be seen 
in the modification of the application code with no 
programmer intervention leading to a gain in performance 
of server request processing. In some cases,  the overhead 
percentage dropped to half of the overhead rate in a regular 
FT-CORBA implementation.  

As mentioned before, there is a potential for reducing 
the application writer input to only writing application 
code (i.e. no added effort due to FT and aspect-orientation 
support requirements). This could be implemented if 
standard techniques for static analysis are used to deduce 
the variable usage in methods instead of the programmer 
writing the component description.  

Although the same-order requirement described before 
is imposed in order to avoid state inconsistencies when a 
backup is instated as new primary, there is no change in 
failover time as compared with the original FT-CORBA 
setting. The failover time mainly consists of the time taken 
to install the latest state on the new primary, plus the time 
for replaying the methods from the call log. Both of these 
times are independent of the application being weaved with 
aspects or not.     

As expected, there are also some drawbacks to the 
approach. Of course, the gain in performance applies when 
the field accesses inside methods are organized such that 
the extra synchronization code execution time can be 
neglected. In particular, there are cases where even by 
synchronizing at variable level a method cannot start 
executing before a previous one has completely finished. 



Imagine the case where method_a in our example is 
changed so that the line v1=v2/3 is moved from the 
beginning to the end of the method body (Figure 12). 

 
void method_a(Str[] val){
 StructureC loc;
 v1=v2/3;
 v2=17;
 v3=v4 or v3;
 loc=v5.field2;
 loc.set_a(3);
 v5.meth_(v6,4);
 for(int i=0;i<val.length;i++)

System.out.println(val[i].the_v);
 v1=v2/3;
}

void method_b(){
 v1=v7-v1;
}

 

Figure 12 Changed method_a 

 
In a scenario in which the call to method_a is logged 

first, method_b cannot start execution, until method_a 
releases the lock on v1, i.e. finishes its execution.  

If we think about code maintenance, as soon as the 
component description changes, new aspects have to be 
generated and weaved in the code. Of course, it is possible 
that the server class was only extended with new methods, 
and perhaps new state variables. In this case, the new 
aspects can be weaved directly in the already “aspected” 
code. The worst-case happens when the functional code 
has to be modified by weaving in totally new aspects. This 
can be solved by “putting together” the non aspect weaved 
code and the new aspect files. 

In the context of modifying the application code by 
weaving aspect code, security problems can be considered. 
However, in the present setting, we assume that the 
middleware together with the aspect generating software is 
provided by a trusted party. Also, the application writer 
who augments his/her code with the aspects generated 
based on the component description does not impair 
security more than he/she would if no external code would 
be weaved in the application. Thus, the new usage of the 
(aspect-supporting) FT-CORBA middleware will 
presumably not impair the security of the application more 
than the original FT-CORBA infrastructure.   

Future works include the study of other method 
structures (creating different synchronization scenarios) 
and extensions of the technique to other non-functional 
properties. 

 
8. Acknowledgements 
 

This work was supported by the Project TRANSORG, 
part of the European Commission IST initiative and is 
included in the cluster of projects EUTIST-AMI on Agents 
and Middleware Technologies applied in real industrial 
environments (www.eutist-ami.org). It was also supported 
by the European project Safeguard (IST-2001-32685).  

The authors also wish to WKDQN�& OLQ�&XUHVFX� DQG� WKH�
anonymous reviewers for their valuable comments. 

 

References 
 
[1] J. Daniel, M. Daniel, O. Modica, and C. Wood. Exolab 
OpenORB. Webpage http://www.openorb.com/. 
 
[2] P. Felber, R. Guerraoui, and A. Schiper: Replication of 
CORBA Objects. Volume 1752 of Lecture Notes in Computer 
Science, Springer Verlag, Berlin, 2000, pp. 254-276. 
 
[3] A. Gal, O. Spinczyk, and W. Schröder Preikschat: On 
Aspect-Orientation in Distributed Real-Time Dependable 
Systems. In Proceedings of the Seventh IEEE International 
Workshop on Object-oriented Real-time Dependable Systems, San 
Diego, CA, January 7-9, 2002, pp. 261-270. 
 
[4] J. Herrero, F. Sanchez, and M. Toro: Fault Tolerance AOP 
Approach. In Proceedings of the International Workshop on 
Aspect-Oriented Programming and Separation of Concerns, 
Lancaster University, UK, 24 August, 2001, pp.44-52 
 
[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. 
Lopes, J.-M. Loingtier, and J. Irwin: Aspect-Oriented 
Programming. Invited talk in Proceedings of the European 
Conference on Object-Oriented Programming (ECOOP), 
Finland, Springer-Verlag LNCS 1241, June 1997, pp.220-242 . 
 
[6] P. Narasimhan, L.E. Moser, and P.M. Melliar-Smith Using 
Interceptors to Enhance CORBA. IEEE Computer, 32(7), 1999, 
pp. 62-68. 
 
[7] D. Szentiványi and S. Nadjm-Tehrani: Building and 
Evaluating a Fault-Tolerant CORBA Infrastructure. In 
Proceedings of the DSN Workshop on Dependable Middleware-
Based Systems, June 23-26, 2002,Washington, DC, pp. G-31—G-
38.   
 
[8] D. Szentiványi and S. Nadjm-Tehrani: Middleware Support 
for Fault Tolerance. To appear as a chapter in the book 
“Middleware for Communications” edited by Qusay H. 
Mahmoud, published by Wiley and sons. 
 
[9] A. Tesanovic, D. Nyström, J. Hansson, and C. Norström: 
Towards Aspectual Component-Based Development of Real-
Time Systems. In Proceeding of the 9th International Conference 
on Real-Time and Embedded Computing Systems and 
Applications (RTCSA 2003), Springer-Verlag, Feb. 2003. 


