Raising Motiv ation in Real-time Laboratories:
The Soccer Scenario

Mehdi Amirijoo
Linkdping University
Linkdping, Sweden

meham@ida.liu.se

ABSTRACT

Real-time systems is a topic that one cannot overlook in an
engineer’s education. However, teaching real-time systems
in an undergraduate syllabus is a challenging experience due
to conflicting constraints placed on such a course. In this
paper we present a new setup for laboratories in the real-
time systems course that successfully meets the constraints
of mass education, stable environment management, short
time span for the labs, and still enables deep involvement of
students in the central topic of resource allocation with high
motivation.

Categoriesand Subject Descriptors

K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer Science Education

General Terms

Algorithms, Languages, Performance

Keywords

Lab Environments, Pedagogy, Curriculum Issues, Real-time
Systems

1. INTRODUCTION

Teaching real-time systems in an undergraduate syllabus
is a challenging experience. On the one hand, given the di-
versity of the courses that a major in computer science or
engineering has to cover, there is not enough room in the
curricula with a long time interval (number of credit points)
available for such a course'. On the other hand, over 90%
of today’s computing applications are in the area of embed-
ded systems, and there is a massive growth in ubiquitous
computing; many with real-time or low-power characteris-
tics. This makes the issue of resource allocation, which can

'Witnessed by the fact that the topic is not included in the
core part of ACM 2001 curriculum [1] for computer science.

Permissionto malke digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republisho poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

S GCSE' 04, March3-7,2004,Norfolk, Virginia, USA.

Copyright 2004ACM 1-58113-798-2/04/0003.$5.00.

Aleksandra TeSanovic
Link6ping University
Link6ping, Sweden

alete@ida.liu.se

Simin Nadjm-Tehrani
Linkdping University
Linkdping, Sweden

simin@ida.liu.se

be considered as the heart of real-time systems, a topic that
one cannot overlook in an engineer’s education.

The area of real-time systems is wide enough for several
courses, from theoretical analysis of scheduling algorithms
to practical design and implementation of dedicated hard-
ware, software, and middleware. This paper explains how we
provide some insight in a central aspect of real-time system
development within a very small time frame for a course.
We also provide an indication of how considering the “fun
factor” in the design of laboratories enhances the student’s
motivation and willingness to delve deeply in a lab assign-
ment by choosing optional lab assignments in the limited
time frame.

The paper further illustrates a major logistics issue in de-
signing labs for this area. To gain hands-on experience in a
topic like real-time systems one really needs to practice with
a “real” application in which the interaction between appli-
cation software, operating system, hardware, and the world
around becomes concrete. However, with over 200 students
taking our real-time systems courses we have had difficul-
ties in providing environments in which interesting hand-on
experience could be obtained. An added complexity is the
computing environment that for most of our courses (taken
by several thousands of students per year) are best adminis-
tered in Unix platforms. There are some Windows machines
available, but these have to run with certain restrictions
and the software on these cannot be freely reconfigured or
installed due to administration/security considerations. On
the other hand, ubiquity of real-time computing has resulted
in that many hardware interfaces, device drives etc. are
Windows/PC based and languages like C provide the dom-
inant programming environments due to early performance
profiles. We describe how we have overcome the seemingly
unsolvable equation that results from the following desired
criteria or imposed constraints (abbreviated with C1-C4):

C1 understanding problems in a real-world setting,

C2 getting insight in a generic (not application-specific)
topic,

C3 little time allocated for the lab assignments, hence no
low-level programming,

C4 stable and uniform computing environment for large
classes.

To the best of our knowledge, previously presented work
on lab environments, e.g., [9, 10, 11], have only considered
a subset of our constraints, as they have either addressed

courses with low student participation or low-level program-
ming.

2. SOCCERPLAYING ROBOTS

2.1 Soccergame: areal-time scheduling
problem

Typically, real-time and embedded systems can be found
in control loops tightly coupling sensors with actuators. The
task of a real-time application can be decomposed into the
following three steps: (i) the information given by the sen-
sors is read and processed, (ii) various computations are
performed, and (iii) the result of the computations are out-
puted by the actuators. Step two often involves optional
execution of non-critical parts, which may skipped if there
is not enough time or lack of resources. The modularity of
the sensor-computation-actuator loop enables the applica-
tion designer to divide the application into three tasks cor-
responding to the steps described above. Correct scheduling
of these steps (including allocating enough resources to step
two) and meeting associated deadlines is very important as
violating timing requirements may result in a catastrophe.

The labs we chose were inspired by the Robot world Cup
(RoboCup) soccer games, where a small-size soccer game
involves two teams of robots playing soccer on a green car-
peted field (see the F180 league [7]). A robot moves around
on the field using the power from two on-board motors. The
software controlling the RoboCup soccer game is distributed
between computers controlling the robots, and the robots
that are being controlled. Software located on the robots
consists of a low-level controller, which processes instruc-
tions sent to it via wireless communication. The processing
capability of the low-level controller is limited to packet pro-
cessing and motor control.

The software located on the computers consists of three
major parts, namely an image processing unit, a high-level
controller for each robot in a team, and an actuator. The
image processing unit processes images that are fed into the
computer from an overhead camera attached above the soc-
cer field. The high-level controller consists of a planner and
a reactor. For each robot a planner analyzes the output
from image processing and makes various computations, in-
cluding game analysis, strategy acquisition, multi-robot col-
laboration, and plan generation. The reactor of each robot
takes a plan given by the planner and decides on concrete
low-level actions, e.g., motor speeds, that should be taken
to achieve the planned goal. Finally, an actuator, which is
common for all robots, wraps up the decided actions into a
protocol and transmits them to the robots.

Comparing the processes involved in the RoboCup soccer
game with the description of real-time systems, given ear-
lier in this section, we see that there are many similarities.
RoboCup processes involve sensing, reacting, and carrying
out actions, resulting in the RoboCup tasks exhibiting typi-
cal control loop characteristics. Hence, our choice of lab sce-
nario is generic in the sense that many real-time scheduling
problems can be analyzed and at the same time, it provides a
setting that corresponds to many real-world scenarios. This
satisfies constraints C1 and C2 (see Section 1). Finally, the
problems are also fun to work with, which in turn enhances
the motivation of the students.

2.2 Choiceof platform and programming
language

There were several problems to solve when choosing hard-
ware and software platforms. Initially, we wanted to use
Real-time Linux as operating system and ADA [8] as pro-
gramming language. However, we found that, at the time of
the development, there were really not many device drivers
written for Real-time Linux and we were forced to focus
our attention on the Windows operating system. This was
also the only other computing environment available in our
teaching domain besides Unix.

As the focus of the labs were to teach the students how to
implement scheduling algorithms in a real environment, our
goal was to minimize the time and efforts invested by the
students to learn a new programming language. Our expe-
rience with students learning new programming languages
just for the lab exercises was that too much time was spent
on actually trying to get the syntax right, instead of solving
the actual problem. After a careful investigation we found
out that students are mostly familiar with Java, which is
also increasing in popularity in the industry. ADA on the
other hand is rarely used by the students and appears in
fewer industrial sectors. Also, we wanted to avoid the stu-
dents dealing with low-level programming details. This is
also where Java comes in nicely, since it supports high-level
programming constructs. Thus we have satisfied constraint
C3.

We saw the emergence of Real-time Java (RTJ) [8] as
a promising direction in real-time systems application de-
velopment. As the life cycle of laboratory exercises typi-
cally spans over years, we chose RTJ as the programming
language in order to keep up-to-date with the forthcoming
trends. However, at the time of the lab development,the
specification of RTJ was only recently released and it would
take several years until a stable platform would be available.
For this reason, we built an application programming inter-
face (API), on top of Java, mimicking a subset of the RTJ
programming interface. Although, the API is not complete
with regard to the RTJ specification, it allows the students
to become familiar with the most important constructs deal-
ing with scheduling of tasks in RTJ.

2.3 Replacingthe realworld with a simulator

In Section 1 it was mentioned that the number of par-
ticipants attending real-time courses typically exceeds 200
students. It is clearly unmanageable to coordinate and su-
pervise 200 students implementing scheduling algorithms
within one physical lab setup. Motors break down, batteries
discharge, and all the practical hassle of getting the setup
continuously functioning takes the resources away from the
pedagogical efforts. We have for this reason developed a
simulator, which can replace the real-world, i.e., the simu-
lator can replace the soccer field, robots, and the ball (see
Figure 1).> The simulator runs on the same machine as the
teams. Visual information is sent to the two teams, and the
result of the planner and the reactor is relayed via the ac-
tuators to the simulator. A graphical interface, called the
monitor, portrays the soccer field, the robots, and the ball.
This enables the students to follow their team during the
progress of the game. The developed physical environment

2The students do not need to modify their scheduling algo-
rithms when using the simulator.

—SimulatoF———

Information flow

Camera
)

Team 1

Team 2

Figure 1: Simulated scenario of the RoboCup lab
environment

is available as a reality reference, and acts both as a demon-
stration setup, and as a potential ground for rewarding high
scoring teams.

By using the simulator the students can develop and sim-
ulate their schedulers in parallel. They can test and evaluate
the performance of the schedulers using a variety of meth-
ods: (i) competing against a default team, where a set of
schedulers are implemented by the teachers, (ii) competing
against a team with schedulers implemented by themselves,
and (iii) competing against other students. We have in-
cluded the option (iii) to enhance the fun factor and the
motivation of the students.

By comparing the performance of the schedulers, the stu-
dents are able to draw some conclusions on the advantages
and the disadvantages of the different scheduling algorithms.
Once the students have finished implementing and testing
their schedulers using the simulator, they are allowed to
compete against another student team using the real-world
setup. The choice of Java as a programming language allows
the same resource allocation strategy to be implemented
both in the simulated (Unix-based) environment and the
physical (Windows-based) environment. Hence, constraint
C4 (see Section 1) is satisfied.

2.4 Evaluating the quality of the soccergame

It is obvious that incorrect scheduling of the involved tasks
(image processing, planner, reactor, and actuator) may re-
sult in bad robot performance. Efficient implementation of a
scheduler requires a complete understanding of the function

of the different tasks involved. For example, if the planners
are not given enough processing time, then the robots will
not be able to play sophisticated games. If the reactors are
not scheduled often enough, then the result will be low reac-
tiveness, yielding in for example collisions. The list can be
made long and the bottom line is that by studying the game,
we can obtain some information on where the actual errors
occur. Hence, testing is done by playing and observing the
game.

3. STUDENT PROGRAMMING ENVIRON-
MENT AND ASSIGNMENTS

3.1 The application programming interface

As mentioned in Section 2.2, we have built an API on
top of Java mimicking a subset of the RTJ programming
interface. Our API includes classes for handling time, task
management, and sorted lists. Students are required to im-
plement a class, called Scheduler, using the following API:

Time handling The time handling interface provides a set
of classes dealing with absolute and relative time, and
these consist of methods for accessing, comparing, add-
ing, and subtracting time.

Task management The task management interface pro-
vides an interface towards the tasks. The interface
allows the current status (e.g. whether the task is fin-
ished or not), periods, and deadlines of tasks to be ac-
cessed and modified using the classes ReleaseParam-
eters and PeriodicParameters [8]. The task manage-
ment interface also allows the scheduler to dispatch
tasks.

Sorted lists Although sorted lists are not included in the
RTJ specification, these were added to allow the stu-
dents to put their efforts on the actual scheduling and
not the implementation of data structure, which they
have learned in earlier courses.

3.2 Coding a seriesof schedulers

The students are required to implement a cyclic scheduler,
referred to as part (a), earliest deadline first (EDF), referred
to as part (b), and as an optional part they can also imple-
ment rate monotonic scheduling (RM), referred to as part
(c¢). For detailed description of the scheduling algorithms,
we refer to [8].

The scheduling algorithms must take into consideration
the precedence constraints of the tasks, i.e., the order in
which the tasks must be executed. Image processing must
precede the reactors, and the actuator must be executed af-
ter the reactor. The planners are less dependent on the data
given by the image processing, since the planners produce
long terms plans and the current status of the game does not
change considerably between each sampling point. Hence,
the planners can be executed whenever there is extra time
over. By allocating more CPU resources to the planners,
better plans are devised, but at the cost of a longer exe-
cution time and possible deadline misses of the succeeding
tasks. Hence, it is vital to schedule the tasks such that they
meet their deadlines and allocate as much CPU resources
to the planners as possible. This is something the students
need to consider as it brings forward the advantages and

the disadvantages of the scheduling algorithms, which we
describe below:

Cyclic scheduler is easy to implement and causes little or
negligible overhead. The schedule or the ordering of
the tasks is determined off-line (before running the sys-
tem), and this technique is feasible in systems where
exact worst-case execution times (WCET) are avail-
able. However, in our application, the worst-case exe-
cution time of the planners is very high and allocating
time corresponding to the WCET of the planners, may
yield in a highly inefficient soccer game. Giving the
planners less (constant) time, may yield in system un-
derutilisation if the execution time of the other tasks
is much lower than their WCETs. Hence, using the
cyclic approach an optimal resource allocation cannot
be done, resulting in poor planning.

EDF is a dynamic-priority scheduling algorithm, where the
ordering of the tasks is done on-line according to the
deadlines of the tasks. EDF is more flexible in the
sense that the planners are given execution time when-
ever resources are available (since they have longest
relative deadline), still conforming to time constraints.
However, since EDF schedules the tasks on-line the
overhead caused by the scheduler is greater, as com-
pared to the cyclic scheduler.

RM is a fixed-priority scheduling algorithm, where the or-
dering of the tasks is done on-line according to the peri-
ods of the tasks. The planners are given time whenever
resources are available, however, RM is less efficient
than EDF [8].

In our lab environment, the implementations of EDF and
RM need to (i) dispatch a task, (ii) check for deadline miss
and call a deadline miss handler once a deadline miss has
been observed, and (iii) suspend a task whenever it is fin-
ished and needs to sleep until the next period.

4. EVALUATION OF THE LABS

Development of the physical environment was essentially
the effort of a team consisting one professor, one assistant
professor, one senior PhD student, and six student assis-
tants. The student assistants invested roughly two months
each on the development (over an interval of two calendar
years).

The labs were run for the first time in the “Integrated
Theme on Real-time Process Control”, a 4 credit point course
that we run in cooperation with the automatic control de-
partment, and in which we follow the pedagogical ideas of
problem-based learning (PBL) [2, 3]. One credit point is
allocated to the real-time lab exercises. The atmosphere
in these classes makes them more amenable to testing new
ideas in course development. The student are familiar and
keen in the idea of providing regular and constructive feed-
back and give us the opportunity of testing a new idea in a
small scale (around 30 students) before we move over to the
larger courses with over 100 students.

Despite some small initial problems in the lab’s program-
ming environment we consider the experience as very suc-
cessful. The evaluation is supported by three activities: (i)
evaluation using muddy cards, (ii) study of the rate of punc-
tual completion of labs, and (iii) study of willingness to do
optional assignments.

4.1 Muddy card evaluations

Muddy cards (MC) is a technique for mid-term evaluation
of a course [6]. An evaluation consists of a data collection
phase where students are asked for comments, a summary
phase that involves clustering the comments and writing
a report that describes the result, and a conclusion phase
where the evaluator comments on the result. The data col-
lection phase consists of handing out small white cards on
which the students can write both positive and negative re-
marks about the learning environment a course provides.
While this is regular practice in evaluating the state of a
course for us, we increased the number of evaluation ses-
sions during the term that the new labs were introduced.
Typically, a muddy card evaluation takes part during one
lecture somewhere before the middle of the course. Here,
we did two additional evaluations among the first lab ses-
sions “to feel the pulse” of the laboratory work environment
specifically.

The following citations are directly taken from the student-
written cards in these lab sessions or the main course MC
evaluation:

The labs are interesting and the way to try the
strength of the scheduler by letting the team play
against another team is great!

These labs are fun! Its nice to have a high ab-
straction level so that we can concentrate on schedul-
ing.

The labs are fun but you can see it is the first
year for them since they seem a bit unpolished.
Many of the functions seem to be like C++ func-
tions and the result variable as a parameter and
returning void, for instance.

The third comment actually indicates a willingness of the
students to criticise and provide feedback on the actual lab
skeleton within which they worked; a factor that has left a
specially positive impression on us. There were of course a
few negative comments about the lab experience too. These
were caused by not having the detailed bat files that relieved
the students from having to load parts of the environment
into directories with right names, etc. While we could see
the negative impact of these initial problems we are confi-
dent that they are minor issues that can be remedied easily
in the next run of the lab course.

4.2 Completionrates

All in all 32 students took part in the lab sessions for this
course. After the deadline for delivering the lab results all
32 students had finished the compulsory part (a) and (b)
of the lab, i.e., the cyclic executive and the EDF scheduler.
This rate of completion (100%) can be compared to the rate
of completion of the labs before the deadline for our other
course in which students also learn scheduling algorithms by
writing a scheduler code without any other context. Surpris-
ingly enough, the rate of completion of these labs before the
deadline was 78%, which is lower than what we experienced
in the new lab course, despite the fact that the students
“suffered” from some initial problems due to setting up the
lab programming environment.

4.3 Optional Assignments

Another interesting metric is the number of assignments
attempted by each student. In our estimation of the time
needed for the labs, we considered part (a) and (b) (the
cyclic scheduling and EDF lab) as the two that most likely
would take the time available for the labs. We knew, how-
ever, that some ambitious students might be willing to spend
more time on the labs in exchange of some “given” points in
the written exam. It turned out that 22 students in fact com-
pleted the optional assignment, i.e., part (c), which amounts
to 69% of the students.

5. CONCLUSIONS

We have explained a way of developing a new setup for
real-time systems lab course, given the constraints of mass
education, stable environment management, short time span
for the labs, and still deep involvement in a central topic with
high motivation.

Our detailed description of the way the environment was
developed can serve as a guideline for those wanting to re-
peat the experience and we would be willing to share more
detailed documentation and code.

The evaluation of the lab series in the first attempt (spring
term in year 2003) was deemed to be successful, both in
terms of student evaluations, punctual completion rate, and
the exhibited interest for doing extra labs. We are confi-
dent that the latter can be associated with the increased
level of motivation as a result of the “fun factor”, as well as
a well-thought documentation and preparation time. The
completion rates are more difficult to relate to the added
value of these lab series. It may simply be the case that this
group of students are more willing to take own responsibility
(as also observed in an earlier study [5]). However, the new
statistics at least confirm that their desire to achieve on-time
completion was not hampered by the new lab setup.

6. ACKNOWLEDGMENT

The authors wish to thank Dr. Jorgen Hansson and the
other members of the Real-time Systems Laboratory at Lin-
koping University for their help in the development of the
lab environment. Also we would like to acknowledge Paul
Scerri, Andreas Bockert, Anders Petersson, Srikanth Koma-
rina, and Johan Eilert for their involvement in developing
the lab environment.

7. REFERENCES

[1] Association for Computing Machinery. Computing
Curricula 2001, Final report.
http://wuw.computer.org/education/cc2001,
December 2001.

[2] Web page for Swedish Council for the Renewal of
Undergraduate Education, financed projects:
http://wuw.hgur.se/activities/projects
/financed_projects/f-j/ingemarsson_ingemar.htm,
1996.

[3] L. Wilkerson and W. Gijselaers (Eds.). Bringing
Problem-Based Learning to Higher Education. Theory
and Practice. San Fransisco, Jossey Bass Publishers,
1996.

[4] S. Nadjm-Tehrani. Towards Real-Time Systems
Education with PBL. In Proc. 2nd Int. Workshop on
Real-Time Systems Education, pages 39—48. IEEE
Computer Society Press, 1997.

[5] E. Herzog and P. Loborg and S. Nadjm-Tehrani.
Real-time Systems Lab Exercises: A Teacher’s
Dilemma. In Proc. 32nd Int. conf. on Computer
Science Education (SIGCSE’01), pages 273-277.
ACM, 2001.

[6] C. Kessler and S. Nadjm-Tehrani. Mid-term Course
Evaluations with Muddy Cards. In Poster session in
the 7th Int. conf. on Innovation and Technology in
Computer Science Education (ITiCSE’02), ACM,
2002.

[7] http://www.robocup.org/

[8] A. Burns and A. Wellings. Real-Time Systems and
Programming Languages Addison Wesley, 2001, third
edition

[9] R.A. Maulucci and J. Lentz and R.H. Eckhouse
Real-time Devices at Practical Prices: Low Cost
Laboratory Projects Proceedings of Real-Time
Systems Education IIT, 1998.

[10] B. L. Kurtz and J. J. Pfeiffer A Course Project to
Design and Implement the Kernel of a Real-time
Operating System Proceedings of the SIGCSE
Technical Symposium on Computer Science
Education, 1987

[11] A Low Cost Laboratory for Teaching Embedded
Real-time Systems In Proceedings of the 27th
IFAC/IFIP/IEEE Workshop on Real-time
Programming (WRTP), 2003.

