
COMET: A Component-Based Real-Time Database for Automotive Systems∗

Dag Nyström†, Aleksandra Tešanović?, Mikael Nolin†, Christer Norström†, and Jörgen Hansson?

†Mälardalen University ?Linköping University
Mälardalen Real-Time Research Centre Dept. of Computer Science

Västerås, Sweden Linköping, Sweden
{dag.nystrom, mikael.nolin, {alete,jorha}@ida.liu.se
christer.norstrom}@mdh.se

Abstract

With the increase of complexity in automotive control
systems, the amount of data that needs to be managed
is also increasing. Using a real-time database manage-
ment system (RTDBMS) as a tightly integrated part of the
software development process can give significant bene-
fits with respect to data management. However, the vari-
ability of data management requirements in different sys-
tems, and the heterogeneousness of the nodes within a sys-
tem may require a distinct database configuration for each
node. In this paper we introduce a software engineering ap-
proach for generating RTDBMS configurations suitable for
resource-constrained automotive control systems, denoted
the COMET development suit. Using software engineer-
ing tools to assist developers with design and analysis of
the system under development, different database configu-
rations can be generated from pre-fabricated components.
Each generated COMET database contains only function-
ality required by the node it is executing on.

1. Introduction

In recent years, automotive control systems have evolved
from simple single processor systems to complex dis-
tributed systems. At the same time, the amount of data that
needs to be managed by these systems is increasing dramat-
ically; data volume managed by automotive systems is pre-
dicted to increase 7-10% per year [5]. Current techniques
for storing and manipulating data objects in automotive sys-
tems are ad hoc in the sense that they normally manipulate
data objects as internal data structures. This lack of a struc-
tured approach to data management results in a costly devel-

∗This work is supported by SSF within the SAVE project, SAfetycriti-
cal components for VEhicular systems.

opment process with respect to design, implementation, and
verification of the system [17]. It also makes the system dif-
ficult to maintain and develop while preserving consistency
with the environment, e.g., maintaining temporal properties
of data. As data complexity is growing the need for a uni-
form, efficient, and persistent way to store data is becoming
increasingly important. Using a real-time database manage-
ment system (RTDBMS) as a tightly integrated part of an
automotive control system has the potential to solve many
of the problems that application designers have to consider
with respect to data management, e.g., locking of the data,
persistency and deadlock situations. More importantly, in-
corporating an RTDBMS into an automotive control system
can reduce development costs, result in higher quality of the
design of the systems, and consequently yield higher relia-
bility [9].

The variability of data management requirements in
different automotive control systems requires distinct RT-
DBMS configurations specially suited for the particular sys-
tem [27]. Since an automotive control system is heteroge-
neous, consisting of several nodes (called electronic con-
trol units, ECUs), see figure 1, the ability to configure the
RTDBMS to suit the requirements of an individual node is
crucial. For instance, an automotive system could consist
of a small number of resource adequate ECUs responsible
for the overall performance of the vehicle, e.g., 32bit CPUs
with a few Mb of RAM, and a large number of ECUs re-
sponsible for controlling specific subsystems in the vehi-
cle, which are significantly resource-constrained, e.g., an
8bit micro-controller and a few kb of RAM [17]. ECUs
with greater amount of resources usually have real-time op-
erating systems support, which is not affordable in small
resource-constrained ECUs. Although different in their
characteristics and available resources, all nodes in an au-
tomotive control system are exchanging, sharing and ma-
nipulating data, thereby requiring a uniform way of data



management, e.g., via a RTDBMS.

The heterogeneous characteristics of nodes in an auto-
motive control system result in a need to have distinct RT-
DBMS configurations suited for a particular node [17]. In
safety-critical nodes, tasks are often non-preemptive and
scheduled off-line, implying that a RTDBMS configuration
for that node could be made small in size and provided
functionality, since the majority of the RTDBMS’s func-
tionality, such as synchronization and concurrency-control,
could be handled off-line. Less critical and larger nodes
have preemptable tasks, requiring a RTDBMS configuration
with run-time concurrency control mechanisms, and sup-
port for database queries formulated during run-time (ad-
hock queries). A configurable RTDBMS supporting differ-
ent types of nodes would, from the application’s point of
view, provide uniform access to the data regardless of the
size and characteristics of an ECU.

Today, there exists a number of commercial databases
suitable for embedded systems, e.g., Pervasive.SQL [19],
Polyhedra [20], Berkeley DB [22], and TimesTen [32]. Al-
though small in size and therefore suitable for resource-
constrained automotive control systems, these databases do
not incorporate real-time behavior. This in turn implies
that their behavior cannot be analyzed, which makes them
unsuitable for deployment in an automotive system. Re-
search projects that are building real-time database plat-
forms, such as DeeDS [2], RODAIN [12], STRIP [1], and
BeeHIVE [24], mainly address real-time requirements, are
monolithic, and targeted towards a larger-scale real-timeap-
plication, which makes them unsuitable for use in embed-
ded resource-constrained environments.

In this paper we propose a software engineering ap-
proach for generating RTDBMS configurations suitable for
resource-constrained automotive control systems. This ap-
proach is supported by theCOMET development suit.
The suit consists of a set of data management, analysis and
configuration tools, as well as a library of pre-defined soft-
ware artifacts providing specific RTDBMS functionality.
The library of artifacts and the possible configurations of
the RTDBMS are referred to as the COMET RTDBMS plat-
form. With the COMET development suit we aim at provid-
ing software developers an automated way of tailoring and
analyzing the data management for a particular automotive
control system, or a node in the system. The COMET RT-
DBMS platform, a part of the COMET development suit,
is developed using an approach to aspectual component-
based software development (ACCORD) [30]. ACCORD
enables us to utilize the benefits of component-based soft-
ware development (CBSD) [25] by developing components
that encapsulate specific real-time database functionalities.
ACCORD also enables us to exploit the benefits of aspect-
oriented software development (AOSD) [11] by providing a
way of encapsulating, managing, and implementing cross-

Engine
Control
ECU

Vehicle
Control
ECU

Transmission
Control ECU

CAN

Service tool

ECU

ECU

ECU ECU

ECU ECU

CAN

Figure 1. An heterogeneous automotive con-
trol system

cutting concerns in a RTDBMS in a predictable manner;
crosscutting concerns include concurrency control, logging,
and recovery. In AOSD, a crosscutting concern is a func-
tionality or non-functional feature that cannot cleanly be
encapsulated in a procedure, function, object or a class [11].

The paper is organized as follows. In section 2 we
present the COMET development suit. We present the key
concepts used in the COMET development suit in section
3, including COMET aspects and components and possible
COMET RTDBMS configurations. We conclude the paper
and discuss our future work in section 4.

2. The COMET development suit

To successfully and efficiently generate systems from
a library of pre-defined artifacts, the development process
should be supported by appropriate tools. In this section
we present our view of the overall development process to
obtain system-specific RTDBMS configurations. Figure 2
shows the constituents of this process.

As shown in figure 2, the development of a RTDBMS
configuration starts with specifying the requirements of an
automotive control system, which are then used as input for
making a model of the system. This model consists of the
nodes, their interconnections and the individual run-time
properties, e.g., the scheduling policy of the node, if the
tasks are preemptive or not, available memory, and CPU
resources. The goal of making the model of the underly-
ing system is to derive required database functionality for
each of the node in the system. Examples of functionality
are support for ad-hoc queries (queries dynamically created
during run-time), and to enable the data organization to be
changed during run-time (i.e., provide a dynamic database
schema). Next, a model of the database, i.e., the actual data,
and any precompiled queries are derived with the help of



Requirements

Data engineering tool Configuration tool

ECU 1 ECU 3

ECU 2
Analysis tools
- WCET
- Schedulability analysis
- Resource utilization
  analysis
...

COMET
Configuration

3
COMET

Configura
tion 2

COMET
Configuration

1

COMET
Components

COMET
Aspects

Figure 2. The COMET development suit

the data engineering tool. This step also involves speci-
fying which parts of the database should be available on
which node, and the temporal properties of the data, such
as temporal consistency [21]. This information, i.e., de-
sired database functionality for each node, data model, and
database schema, is then used by the configuration tool to
select a set of aspects and components from the library to
form a database configuration suitable for each of the nodes
(see figure 2). The overall decomposition of the database
functionality into aspects and components, and the devel-
opment of components and aspects, is done according to
the ACCORD design principle (see section 3.1). The ob-
tained COMET configurations can then be analyzed with
respect to run-time properties, e.g., worst case execution
time, memory requirements, and response time analysis, by
the analysis tools. If the analysis indicates that the con-
figuration is unfeasible, the configuration step and analysis
step could be further iterated until an acceptable solutionis
found.

The resulting RTDBMSs are configured to contain no
more than the needed functionality, thus reducing both com-
putational costs and memory requirements.

3. The COMET key concepts

As mentioned, different nodes in the automotive con-
trol system may require distinct RTDBMS configurations.
Component-based databases [4, 7, 8, 10, 13, 18, 22] using
the component-based software development paradigm [25]
can be partially or completely assembled from a pre-defined
set of components with well-defined interfaces. Therefore,

these are suited for tailoring a database system towards an
application. However, there are aspects of database sys-
tems that are difficult to encapsulate into components with
well-defined interfaces; typical examples include synchro-
nization, transaction models, and database policies such
as concurrency control [3]. These aspects are crosscut-
ting concerns that permeate the whole system and affect
multiple components. Hence, using traditional component-
based approach is necessary but not sufficient to enable ef-
ficient development of configurable RTDBMSs. Therefore,
in COMET we use an approach to aspectual component-
based real-time system development (ACCORD) [30, 31]
(discussed in section 3.1) that provides a notion of a recon-
figurable component, and thereby enables both encapsula-
tion of RTDBMS functionality into components and effi-
cient handling and implementation of crosscutting concerns
via aspects.

Using the ACCORD approach, different COMET com-
ponents and aspects can be developed, and then used for
assembling COMET configurations suitable for a specific
automotive control system. Existing COMET components
and aspects are discussed in section 3.2. We illustrate the
COMET concepts introduced in this section with an exam-
ple of the COMET configuration suitable for a particular
node in the automotive control system in section 3.3.

3.1. Aspects and components in RTDBMSs

ACCORD utilizes notions from both component-based
and aspect-oriented software development, integrating them
into real-time system development. While CBSD tradi-
tionally use black box as an abstraction metaphor for the
components, AOSD utilizes the white box metaphor to em-
phasize that all details of the implementation should be re-
vealed. ACCORD supports the notion of a reconfigurable
real-time component model (RTCOM) [26, 30, 31]. Com-
ponents built using RTCOM are grey boxes as they are en-
capsulated in interfaces but changes to their behavior can
be performed in a predictable way using aspects. Aspects
are allowed to modify the code of the components in pre-
defined, explicitly declared, reconfiguration points. In this
section we briefly review RTCOM and its configurability
via aspects, while detailed descriptions of ACCORD and
RTCOM can be found in [26, 30, 31].

Aspects are programming-language level constructs en-
capsulating crosscutting concerns that invasively changethe
code of the component and correspond to the traditional as-
pects in existing aspect languages. The main constituents
of aspects are: (i) components, written in a component lan-
guage, e.g., C, C++, and Java; (ii) aspects, written in a cor-
responding aspect language, e.g., AspectC [6], AspectC++
[23], and AspectJ [33]; and (iii) an aspect weaver, which
is a preprocessor that inserts code from the aspects into the



User
Interface

Component

Index
Management
Component

Transaction
Management
Component

Memory
Management
Component

Legend:

Provided
Interface

Required
Interface

Component
connection

Figure 3. The basic architecture of COMET

reconfiguration points of the components.
An aspect in an aspect language consists of pointcuts and

advices. Next we give a brief review of a typical syntax
and semantics used in an aspect language; figure 5 shows a
concrete example of an aspect woven into a component. A
pointcutin an aspect language consists of one or more join
points, and it is described by a pointcut expression. Ajoin
point refers to a point in the component code where aspects
should be woven, e.g., a method, a type (struct or union). In
RTCOM join points are explicitly declared in the compo-
nent interfaces as reconfiguration points, and these are de-
clared such that temporally predictable weaving in the com-
ponent code can be done. Anadviceis a declaration used to
specify the code that should run when the join points, spec-
ified by a pointcut expression, are reached. Different kinds
of advices can be declared, such as: (i)before advicecode
is executed before the join point, (ii)after advicecode is
executed immediately after the join point, and (iii)around
advicecode is executed in place of the join point.

3.2. The COMET RTDBMS platform

A central goal with COMET is to enable configura-
bility so that it can handle a variety of different applica-
tion requirements; COMET has an architecture that allows
this [14]. Following the ACCORD design method described
in section 3.1, the architecture of COMET consists of a
number of components and a number of aspects. Each com-
ponent provides a well-defined service through operations
that are defined in a component’s interface. Aspects and
components that together provide a specific functionality
are denoted as aspect packages.

The foundation of COMET consists of a basic architec-
ture in which components can be instantiated (see figure
3). A fully instantiated basic architecture is referred to as
a basic configuration. The basic configuration builds a fully
functional RTDBMS capable of storing, manipulating and

querying data using some high level database query lan-
guage. Even though a basic configuration is considered to
be a RTDBMS, it has limited functionality, e.g., it cannot
handle concurrent transactions, and it has no database crash
recovery mechanisms. A basic COMET configuration con-
sists of the following four components:

1. The user interface component (UIC) provides a
database interface to the application. This interface
consists of a data manipulation language, in which the
user (application) can query and manipulate data el-
ements. Furthermore, the interface consists, if config-
ured so, of a data definition language which enables the
user to manipulate the database schema, e.g., creating
and dropping relations (tables). Application requests
are parsed by the UIC, and are then converted into an
execution-plan.

2. The transaction management component(TMC) is
responsible for executing incoming execution-plans,
thereby performing the actual manipulation of the data
in the database.

3. The index management component(IMC) is respon-
sible for maintaining an index of all tuples in the
database. This is normally done through hash-tables
or index-trees. The IMC is capable of transforming a
database key into the memory address of the tuple cor-
respondent to the database key. Furthermore, the IMC
maintains the database schema in its index of meta-
data.

4. The memory management component(MMC) is re-
sponsible for memory allocation of tuples, metadata,
and database indexes.

By selecting versions of these components, different ba-
sic COMET configurations can be derived.

In addition to these, mandatory, components, it is pos-
sible to add optional components to the architecture, such
as the scheduling management component (SMC), which is
responsible for scheduling transactions. This is useful when
the application is preemptive and multiple transactions can
be issued simultaneously. However, noteworthy is that a ba-
sic configuration of COMET cannot execute multiple trans-
actions concurrently. In this case the SMC maintains the
list of transactions in a ready queue and releases the next
transaction when the previous is completed.

The services described above are all well defined and
their activities are to a high degree isolated, i.e., it would
be possible to exchange each one of these services with a
different implementation, as long as they interact with other
services in the same way. This makes these services suitable
for encapsulation into components.



User
Interface

Component

Index
Management
Component

Concurency-
Control Aspect

Logging and
Recovery

Aspect

Transaction
Management
Component

Scheduler
Management
Component

Memory
Management
Component

Legend:

Provided
Interface

Required
Interface

Lock
Management
Component

Checkpointing
and Recovery
Component

Concurrency-Control aspect package

Logging and Recovery aspect package

Component
connection
Optional

Component
connection

DbP User
Interface

Component

DbP Trans.
Management
Component

Database
Pointer Aspect

Database Pointer aspect package

Figure 4. The architecture of COMET with as-
pect packages

However in a RTDBMS there are concerns which cannot
be divided into isolated activities, but rather crosscut multi-
ple components in the system. These crosscutting concerns
are, in COMET, encapsulated into aspect packages, which
can contain both aspects and components. In figure 4, three
such aspect packages can be seen, namely:

1. The concurrency control aspect package(CCA) al-
lows multiple transactions to be executed concurrently.
Managing concurrent transactions requires some form
of concurrency control. The CCA consists of a lock-
ing management component (LMC) and a concurrency
control aspect. The LMC allows transactions to obtain
read- and write-locks on data elements. The concur-
rency control aspect contains the code for obtaining
and releasing the locks, as well as a transaction con-
flict resolution method. The code of the concurrency
control aspect is woven into (i) the TMC to force trans-
actions to obtain locks before accessing data elements,
and to release them when finished, (ii) the SMC to en-
able it to handle graceful termination of aborted trans-
actions, and (iii) the LMC to adapt its behavior accord-
ing to the conflict resolution policy used.

2. The database pointer aspect package(DBPA) en-
ables the application to access individual data elements
within the database in an efficient and predictable way.
A database pointer [16] is a pointer that is first bound
to a specific data element, which then can be read and
written with a minimum overhead. Database point-
ers are used together with the relational data model,
and they do not place limitations on the RTDBMS
with respect to reorganizing the database schema dur-
ing run-time. The database pointer concept is devel-
oped with automotive control in mind and is a fun-
damental part when integrating a RTDBMS into an

automotive control system. The DBPA consists of
two components, namely the database pointer user in-
terface component that provides the application with
the database pointer user interface, and the database
pointer transaction management component that exe-
cutes the database pointer operations. Furthermore, the
DBPA consists of a database pointer aspect which is
woven into the TMC and the IMC, adapting them to
co-exist with database pointers.

3. The logging and recovery aspect package(LRA)
ensures that the database is consistent after a system
crash. Logging and recovery is performed through pe-
riodic checkpoints, where an image of the database
is saved to a persistent storage and all intermediate
changes to the database are logged. The aspect pack-
age consists of one component, the checkpointing and
recovery component (CRC), which contains methods
defining how to checkpoint and log changes to the
database, and one aspect, the logging and recovery as-
pect (LRA). The LRA is woven into the MMC, the
TMC, and the CRC.

Hence, the COMET RTDBMS platform contains a set of
components and aspect packages that are suitable for auto-
motive control systems.

COMET components discussed in this section are suit-
able for configuring RTDBMSs for use in ECUs requir-
ing the relational data model that can be manipulated us-
ing ad-hoc queries. Currently these components support
the most common database query commands, namely the
select, insert, update, delete, create table
anddrop table. However, there are also COMET com-
ponents that only allow static database schemas and pre-
compiled queries, which are suitable for nodes that cannot
afford, or do not require, ad-hoc queries. In a configuration
generated from such components most of the functionality
is handled off-line using the COMET tools.

3.3. A configuration example

To illustrate how the COMET RTDBMS can be config-
ured to suit a particular ECU we present the following ex-
ample in which we create a suitable COMET configuration
based on a number of requirements. Note that the given re-
quirements are typical data management requirements that
can be found in an engine ECU of a modern car [9, 17].
Consider the engine ECU with the following data manage-
ment requirements:

R1: The application performs computations using data ob-
tained from sensors. Sensor data should reflect the
state of the controlled environment and, hence, are
associated with hard real-time temporal requirements
and data freshness requirements.



R2: The application performs diagnostics on the system in
order to analyze the system behavior. The diagnostics
should be performed both in the steady state of the ve-
hicle and in the transient states, in order to get the full
spectrum of data and be able to analyze the vehicle be-
havior under all situations. Diagnostic operations per-
formed on the system are not critical to the operational
safety of the vehicle and, therefore, are associated with
soft real-time temporal requirements.

R3: The set of data in the system is fixed at compile time
and is never changed during run-time.

R4: The ECU uses preemptive fixed-priority scheduling,
implying that multiple tasks can execute concurrently.
This in turn implies that the same data items can be
read and written by different tasks (which could result
in inconsistent data values in the system).

R5: It should be possible to connect a service tool to re-
trieve system data.

When configuring a RTDBMS for such a system, we be-
gin by modeling the ECU based on the requirements. The
configuration tool is then used to provide a suitable basic
COMET configuration.

In this case, the basic configuration could be based on
the components providing a relational data model, since
creating views and complex queries is a required feature
of the RTDBMS configuration for this ECU (requirement
R2). Furthermore, the relational data model provides sup-
port for ad-hoc queries (requirementR5). However, since
a dynamic database schema is not necessary (requirement
R3), the MMC from the basic COMET configuration in fig-
ure 3 can be replaced with components providing static data
management and database indexing.

When a suitable basic configuration has been selected,
the configuration tool proceeds by adding suitable aspect
packages. First, the database pointer aspect package is se-
lected to provide fast access of individual data elements in
the ECU (requirementR1). Then, in order to fulfill require-
ment R4 and enable concurrent execution of transactions
such that data values in the database are kept consistent, the
concurrency control aspect package is selected. In this case,
a concurrency control algorithm 2V-DBP [15] could be se-
lected. 2V-DBP combines locking with two-versions of se-
lected parts of the database to enable hard database pointer
transactions to execute without being blocked by soft rela-
tional transactions. Using 2V-DBP enables the application
to support both hard control tasks and soft diagnostics task
in the ECU. Now, all the requirements are fulfilled and the
RTDBMS configuration is complete.

The next step is to enter the database schema into the
data engineering tool. Since we have chosen a static
database schema, the necessary data structures for the

Transaction Manager Component
...
readDataFromDB(data);
...
------
...
commit(transaction);
...

Reconfiguration
points

+
advice before "readDataFromDB(data)"{
   //Aspect code
   getReadLock(data,transaction);
}
advice after "commit(transaction)"{
   //Aspect code
   releaseAllLocks(transaction);
}

Concurrency-Control Aspect

Transaction Manager Component
...
//Aspect code
getReadLock(data,transaction);
readDataFromDB(data);
...
------
...
commit(transaction);
//Aspect code
releaseAllLocks(transaction);
...

Figure 5. A simplified example of the weaving
process

database are created. In this step, precompiled queries can
also be created and optimized.

Finally, the analysis tools are used to check if the gener-
ated configuration of the RTDBMS is feasible. The analy-
sis tool is used to determine the worst case execution time
of the RTDBMS so that schedulability analysis can be per-
formed. Furthermore, the memory requirements of the RT-
DBMS and physical storage needed for storing data in the
system are analyzed.

Given that the configuration and analysis can be done on
the models of the components, aspects, and the RTDBMS
configuration, the actual weaving and component compo-
sition process can be performed after the database config-
uration is found feasible by the tools. Figure 5 illustrates
the weaving process and its constituents for the TMC and
the concurrency control aspect. The concurrency control
aspect contains two advices: (1) an advice of type before
that defines the code that should be inserted into TMC re-
configuration pointreadDataFromDB() to ensure that a
transaction obtains the lock on a data item, and (2) an advice
of type after that defines the code to be inserted immediately
after the transaction commits to ensure that the transaction
releases all the locks it has obtained while executing in the
database. The result of the weaving is the TMC modified at
the reconfiguration points, such that every read of the data



item is now preceded by locking, while every commit of the
transaction is followed by unlocking (see figure 5). Note
that this example is simplified to show main constituents
of the aspects, components, and their possible interaction.
However, in the actual implementation, the concurrency
control aspect is more complex and contains advices that
crosscut the behavior of the SMC and LMC components as
well. Moreover, the concurrency control aspect code pro-
vides an efficient way of handling possible deadlocks in the
database. The overall benefit of having aspects for tailor-
ing database components is the ability to use reconfigura-
tion points in the syntax of the pointcuts of advices. This in
turn enables us to identify not only the places in the code of
the program that have the same signature as the reconfigu-
ration points (used in the presented example), but also de-
fine pointcuts that refer to the execution of the reconfigura-
tion points (i.e., after the call has been made and a function
started to execute), and to match any reconfiguration point
that has values of a specified type. Also, operators &&,||,
and ! can be used to logically combine or negate pointcuts.
Furthermore, separation of concerns into aspects enables us
to have both components without aspects, and reconfigured
components with aspects as aspect weaving results in a new
component weaved with aspect code, but leaving the code
of the original component unchanged and available for fu-
ture reuse, i.e., now we can also reuse already reconfigured
components or use original components with different as-
pects in other reuse contexts. For extensive discussion on
benefits of having aspects for tailoring components in the
RTDBMSs we refer interested readers to [26, 31].

Finally, if the obtained final configuration of the RT-
DBMS is found to meet the original requirements, as well
as the timing requirements, the RTDBMS is compiled and
made ready for deployment into the application.

By this simple example we have shown how a set of re-
quirements can be used when configuring a COMET RT-
DBMS in order to get a RTDBMS specially suited for a
particular ECU in an automotive control system.

4. Conclusions

In this paper we have presented a configurable real-time
database platform, called COMET, which provides support
for efficient data management in heterogeneous automotive
systems. The COMET platform consists of a library of
components and aspects, and is supported by a tool suite.
The COMET tool suit assists system designers in config-
uring and analyzing different COMET configurations based
on the specific requirements of the targeting automotive sys-
tem and its nodes. While components encapsulate distinct
functionalities of a database system, aspects allow efficient
tailoring of the components and the database system based
on the requirements of the underlying automotive system

or its node. Our approach in providing different COMET
configurations by using components in the library together
with aspects can also be viewed as efficient product-line ar-
chitectures of real-time database systems in the automotive
domain.

We have showed the differences of the provided proper-
ties of the commercially available embedded databases, as
well as real-time databases, compared with the needs of au-
tomotive control systems. To the best of our knowledge, no
previous work exists that takes a holistic approach to data
management in automotive systems. Given the increase of
data complexity in automotive systems it is our experience
that a more structured form of data management will be nec-
essary in a near future, in order to keep time to market as
well as development and maintenance costs down.

Although we have presented and discussed distinct con-
figurations of COMET suitable for different nodes in the
automotive systems, these were not developed using the full
automated support of the tool suite. Rather, the automation
done in the development process of COMET configurations
so far has been focused on the analysis tools, where we de-
veloped the tool for analyzing different configurations of
aspects and components with respect to their temporal prop-
erties [28, 29]. The remaining part of the COMET tool suit
is currently under development. Further work on integrat-
ing the database into the component framework, to allow
components to be easily distributed over multiple nodes is
also planned.

References

[1] B. Adelberg, B. Kao, and H. Garcia-Molina. Overview
of the STanford Real-time Information Processor (STRIP).
SIGMOD Record, 25(1):34–37, 1996.

[2] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndts-
son, and B. Eftring. DeeDS Towards a Distributed and Ac-
tive Real-Time Database System.ACM SIGMOD Record,
25(1):38–40, 1996.

[3] D. Batory and S. O’Malley. The design and implementation
of hierarchical software systems with reusable components.
ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), 1(4):355–398, 1992.

[4] M. J. Carey, L. M. Haas, J. Kleewein, and B. Reinwald. Data
access interoperability in the IBM database family.IEEE
Quarterly Bulletin on Data Engineering; Special Issue on
Interoperability, 21(3):4–11, 1998.

[5] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Vol-
cano - a Revolution in On-Board Communications. Techni-
cal report, Volvo Technology Report, 1998.

[6] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using As-
pectC to improve the modularity of path-specific customiza-
tion in operating system code. InProceedings of the Joint
European Software Engineering Conference (ESEC) and 9th
ACM SIGSOFT International Symposium on the Founda-
tions of Software Engineering (FSE-9), 2002.



[7] K. R. Dittrich and A. Geppert.Component Database Sys-
tems, chapter Component Database Systems: Introduction,
Foundations, and Overview. Morgan Kaufmann Publishers,
2000.

[8] A. Geppert, S. Scherrer, and K. R. Dittrich. KIDS: Con-
struction of database management systems based on reuse.
Technical Report ifi-97.01, Department of Computer Sci-
ence, University of Zurich, September 1997.

[9] T. Gustafsson and J. Hansson. Data management in real-
time systems: a case of on-demand updates in vehicle con-
trol systems. InProceedings of the Real-Time Application
Symposium (RTAS 2004). IEEE Computer Society Press,
May 2004.

[10] Developing DataBlade modules for Informix-
Universal Server. Informix DataBlade Technology.
Informix Corporation, 22 March 2001. Available at
http://www.informix.com/datablades/.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. InProceedings of the ECOOP, volume 1241
of Lecture Notes in Computer Science, pages 220–242.
Springer-Verlag, 1997.

[12] J. Lindstrom, T. Niklander, P. Porkka, and K. Raatikainen.
A Distributed Real-Time Main-Memory Database for
Telecommunication. InProceedings of the Workshop
on Databases in Telecommunications, pages 158–173.
Springer, September 1999.

[13] Universal data access through OLE DB. OLE DB Technical
Materials. OLE DB White Papers, 12 April 2001. Available
at http://www.microsoft.com/data/techmat.htm.

[14] D. Nyström. COMET: A Component-Based Real-Time
Database for Vehicle Control-Systems. Licentiate Thesis
ISBN 91-88834-46-8, Department of Computer Science and
Engineering, Mälardalen University, Sweden, May 2003.

[15] D. Nyström, A. Tešanović, M. Nolin, C. Norström, and
J. Hansson. Pessimistic Concurrency Control and Version-
ing to Support Database Pointers in Real-Time Databases.
In Proceedings of the 16th Euromicro Conference on Real-
Time Systems, June 2004.

[16] D. Nyström, A. Tešanović, C. Norström, and J. Hansson.
Database Pointers: a Predictable Way of Manipulating Hot
Data in Hard Real-Time Systems. InProceedings of the
9th International Conference on Real-Time and Embed-
ded Computing Systems and Applications, pages 623–634,
February 2003.

[17] D. Nyström, A. Tešanović, C. Norström, J. Hansson,and N.-
E. Bånkestad. Data Management Issues in Vehicle Control
Systems: a Case Study. InProceedings of the 14th Euromi-
cro Conference on Real-Time Systems, pages 249–256. IEEE
Computer Society, June 2002.

[18] All your data: The Oracle extensibility architecture.Or-
acle Technical White Paper. Oracle Corporation. Redwood
Shores, CA, February 1999.

[19] Pervasive Software Inc. http://www.pervasive.com.
[20] Polyhedra Plc. http://www.polyhedra.com.
[21] K. Ramamritham. Real-Time Databases.International Jour-

nal of distributed and Parallel Databases, 1(2):199–226,
1993.

[22] Sleepycat Software Inc. http://www.sleepycat.com.

[23] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. As-
pectC++: an aspect-oriented extension to C++. InProceed-
ings of the 40th International Conference on Technology
of Object-Oriented Languages and Systems (TOOLS Pacific
2002), Sydney, Australia, February 2002. Australian Com-
puter Society.

[24] J. A. Stankovic, S. H. Son, and J. Liebeherr.Real-
Time Databases and Information Systems, chapter BeeHive:
Global Multimedia Database Support for Dependable, Real-
Time Applications, pages 409–422. Kluwer Academic Pub-
lishers, 1997.

[25] C. Szyperski. Component Software - Beyond Object-
Oriented Programming. Addison-Wesley, 1999.

[26] A. Tešanović. Towards aspectual component-based real-
time system development. Technical report, Department of
Computer Science, Linkping University, June 2003. Licen-
tiate Thesis, ISBN 91-7373-681-3.

[27] A. Tešanović, D. Nyström, J. Hansson, and C. Norstr¨om.
Embedded Databases for Embedded Real-Time Systems:
A Component-Based Approach. Technical Report MRTC
Report ISSN 1404-3041 ISRN MDH-MRTC-43/2002-1-SE,
Dept. of Computer Engineering, Mälardalen University, Jan-
uary 2002.

[28] A. Tešanović, D. Nyström, J. Hansson, and C. Norstr¨om.
Integrating symbolic worst-case execution time analysis
into aspect-oriented software development. OOPSLA 2002
Workshop on Tools for Aspect-Oriented Software Develop-
ment, November 2002.

[29] A. Tešanović, D. Nyström, J. Hansson, and C. Norstr¨om.
Aspect-level WCET analyzer: a tool for automated WCET
analysis of a real-time software composed using aspects and
components. InProceedings of the 3rd International Work-
shop on Worst-Case Execution Time Analysis (WCET 2003),
Porto, Portugal, July 2003.

[30] A. Tešanović, D. Nyström, J. Hansson, and C. Norstr¨om.
Towards aspectual component-based real-time systems de-
velopment. InProceedings of the 9th International Confer-
ence on Real-Time and Embedded Computing Systems and
Applications (RTCSA’03), February 2003.

[31] A. Tešanović, D. Nyström, J. Hansson, and C. Norstr¨om.
Aspects and components in real-time system development:
Towards reconfigurable and reusable software.Journal of
Embedded Computing, February 2004.

[32] TimesTen Performance Software. http://www.timesten.com.
[33] Xerox Corporation. The AspectJ Program-

ming Guide, September 2002. Available at:
http://aspectj.org/doc/dist/progguide/index.html.


