
Error-Driven QoS Management in Imprecise Real-Time Databases�

Mehdi Amirijoo, Jörgen Hansson
Dept. of Computer and Information Science

Linköping University, Sweden
{meham,jorha}@ida.liu.se

Sang H. Son
Dept. of Computer Science

University of Virginia, Virginia, USA
son@cs.virginia.edu

Abstract

In applications such as web-applications, e-commerce,
and engine control, the demand for real-time data services
has increased. In these applications, requests have to be
processed within their deadlines using fresh data. Since
the workload of these systems cannot be precisely predicted,
they can become overloaded and as a result, deadline and
freshness violations may occur. To address this problem we
propose a QoS-sensitive approach based on imprecise com-
putation, applied on transactions and data objects. We pro-
pose two algorithms FCS-HEF and FCS-HEDF that give a
robust and controlled behavior of RTDBs in terms of trans-
action and data preciseness, even for transient overloads
and with inaccurate run-time estimates of the transactions.
Further, performance experiments show that the proposed
algorithms outperform a set of baseline algorithms includ-
ing FCS-EDF, which schedules the transactions using EDF.

1 Introduction

In applications providing real-time data service it is de-
sirable to process user requests within their deadlines us-
ing fresh data. In dynamic systems, such as web servers
and sensor networks with non-uniform access patterns, the
workload of the databases cannot be precisely predicted
and, hence, the databases can become overloaded. As a
result, deadline misses and freshness violations may oc-
cur during the transient overloads. To address this problem
we propose a quality of service (QoS) sensitive approach
to guarantee a set of requirements on the behavior of the
database, even in the presence of unpredictable workloads.
Further, for some applications (e.g. web service) it is desir-
able that the quality of service does not vary significantly
from one transaction to another. Here, it is emphasized that

�This work was funded, in part by CUGS (the National Graduate
School in Computer Science, Sweden), CENIIT (Center for Industrial In-
formation Technology) under contract 01.07, and NSF grant IIS-0208758.

the individual QoS needs requested by clients and transac-
tions are enforced and, hence, any deviations from the QoS
needs should be uniformly distributed among the clients to
ensure QoS fairness.

We employ the notion of imprecise computation [11],
where it is possible to trade resource needs for quality of
requested service. Imprecise computation has successfully
been applied to applications where timeliness is empha-
sized, e.g. avionics, engine control, image processing, net-
working, and approximation algorithms for NP-complete
problems. We believe that our approach is important to ap-
plications that require timely execution of transactions, but
where certain degree of imprecision can be tolerated.

In our previous work [3] we presented two algorithms,
FCS-IC-1 and FCS-IC-2, for managing QoS using im-
precise computation [11, 15, 7, 5] and feedback control
scheduling [12, 13, 4]. In this paper we extend our previous
work by defining a general model of transaction imprecise-
ness, and we present two new scheduling algorithms, FCS-
HEF and FCS-HEDF that, in addition to managing QoS,
enhance QoS fairness (i.e. decrease the deviation in qual-
ity of service among admitted transactions) and provide an
improved transient state performance.

We have carried out a set of experiments to evaluate the
performance of the proposed algorithms. The studies show
that the suggested algorithms give a robust and controlled
behavior of RTDBs, in terms of transaction and data pre-
ciseness, even for transient overloads and with inaccurate
execution time estimates of the transactions. We say that a
system is robust if it has good regulation or adaptation in the
face of changes in system parameters (e.g. execution time
estimation error and applied load), and also has good distur-
bance rejection, i.e., eliminating the impact of disturbances
(in RTDBs disturbances occur due to e.g. concurrency con-
trol, resulting in restart or termination of transactions).

The rest of this paper is organized as follows. A problem
formulation is given in Section 2. In Section 3, the assumed
database model is given. In Section 4, we present our ap-
proach and in Section 5, the results of performance evalu-
ations are presented. In Section 6, we give an overview on

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

related work, followed by Section 7, where conclusions and
future work are discussed.

2 Problem Formulation

In our model, data objects in a RTDB are updated by up-
date transactions, e.g. sensor values, while user transactions
represent user requests, e.g. complex read-write operations.
The notion of imprecision may be applied at data object
and/or user transaction level. The data quality increases as
the imprecision of the data objects decreases. Similarly, the
quality of user transactions (for brevity referred to as trans-
action quality) increases as the imprecision of the results
produced by user transactions decreases. Hence, we model
transaction quality and data quality as orthogonal entities.

Starting with data impreciseness, for a data object stored
in the RTDB and representing a real-world variable, we can
allow a certain degree of deviation compared to the real-
world value. If such deviation can be tolerated, arriving up-
dates may be discarded during transient overloads. In order
to measure data quality we introduce the notion of data er-
ror (denoted DEi), which gives an indication of how much
the value of a data object di stored in the RTDB deviates
from the corresponding real-world value, given by the latest
arrived transaction updating di.1

The quality of user transactions is adjusted by manip-
ulating data error, which is done by considering an upper
bound for the data error given by the maximum data error
(denoted MDE). An update transaction Tj is discarded if
the data error of a data object di to be updated by Tj is less
or equal to MDE (i.e. DEi � MDE). Increasing MDE

implies that more update transactions are discarded, degrad-
ing the quality of data. Similarly, decreasingMDE implies
that fewer update transactions are discarded, resulting in a
greater data quality.

Moreover, we introduce the notion of transaction error
(denoted TEi), inherited from the imprecise computation
model [11], to measure the quality of a transaction, Ti.
Here, the quality of the result given by a transaction depends
on the processing time allocated to the transaction. The
transaction returns more precise results (i.e. lower TEi)
as it receives more processing time.

The goal of our work is to derive algorithms for manipu-
lating MDE, such that the data quality and the transaction
quality satisfy a given QoS specification and the deviation
of transaction quality among admitted transactions is mini-
mized (i.e. QoS fairness is enforced).

1Note that the latest arrived transaction updating di may have been dis-
carded and, hence, di may hold the value of an earlier update transaction.

3 Data and Transaction Model

We consider a main memory database model, where
there is one CPU as the main processing element. In our
data model, data objects can be classified into two classes,
temporal and non-temporal [14]. For temporal data we
only consider base data, i.e. data that hold the view of
the real-world and are updated by sensors. A base data
object di is considered temporally inconsistent or stale if
the current time is later than the timestamp of di followed
by the absolute validity interval of di (denoted AV Ii), i.e.
CurrentT ime � TimeStampi �AV Ii.

For a base data object di, let data error be defined as,
DEi � ��� �

jCurrentV aluei�Vj j
jCurrentV alueij

���, where Vj is the
value of the latest arrived transaction updating di, and
CurrentV aluei is the current value of di. Note that we
apply the notion of impreciseness on base data objects only
and, hence, data errors do not propagate, i.e., they cannot
affect the accuracy of other data objects and transactions.

Transactions are classified either as update transactions
or user transactions. Update transactions arrive periodically
and may only write to base data objects. User transac-
tions arrive aperiodically and may read temporal and read-
/write non-temporal data. A user or update transaction
Ti is composed of one mandatory subtransaction (denoted
Mi) and�Oi optional subtransactions (denotedOi�j , where
� � j � �Oi). For the remainder of the paper, we let
ti � fMi� Oi��� � � � � Oi��Oi

g denote a subtransaction of Ti.
We use the milestone approach [11] to transaction im-

preciseness. Thus, we have divided transactions into sub-
transactions according to milestones. A mandatory sub-
transaction is completed when it is completed in a tradi-
tional sense. The mandatory subtransaction is necessary for
an acceptable result and must be computed to completion
before the transaction deadline. Optional subtransactions
are processed if there is enough time or resources available.
While it is assumed that all subtransactions of a transaction
Ti arrive at the same time, the first optional subtransaction,
i.e. Oi��, becomes ready for execution when the mandatory
subtransaction is completed. In general, an optional sub-
transaction Oi�j becomes ready for execution when Oi�j��

(where � � j � �Oi) completes. Hence, there is a prece-
dence relation given by Mi � Oi�� � Oi�� � � � � �
Oi��Oi

.
We set the deadline of all subtransactions ti to the dead-

line of Ti. A subtransaction is terminated if it is completed
or has missed its deadline. A transaction is terminated when
its last optional subtransaction completes or one of its sub-
transactions misses its deadline. In the latter case, all sub-
transactions that are not yet completed are terminated as
well. If a user transaction is terminated when its last op-
tional subtransaction is complete, then the corresponding
transaction error is zero and we say that the transaction is

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

#COS
i

T
E

i

n=2

n=1
n=0.5

Figure 1. Contribution of �COSi to TEi

precisely scheduled.
For update transactions we assume that there are no op-

tional subtransactions (i.e. �Oi � �). Each update trans-
action consists only of a single mandatory subtransaction,
since updates do not use complex logical or numerical op-
erations and, hence, normally have a lower execution time
than user transactions.

For a transaction Ti, we use an error function to ap-
proximate its corresponding transaction error given by,

TEi��COSi� �
�
�� �COSi

�Oi

�ni
, where ni is the order

of the error function and �COSi denotes the number of
completed optional subtransactions. This error function is
similar to the one presented in [5]. By choosing ni we can
model and support multiple classes of transactions showing
different error characteristics (see Figure 1). For example, it
has been shown that anytime algorithms used in AI exhibit
error characteristics where ni is greater than one [17].

A summary of transaction model attributes and their ab-
breviations is given in Table 1.

Table 1. Abbreviation of transaction attributes

Attribute Description
AETi average execution time of Ti
AITi average inter-arrival time of Ti
AUi average utilization of Ti
ATi arrival time of Ti
Di relative deadline of Ti
EETi estimated average execution time of Ti
EITi estimated inter-arrival time of Ti
EUi estimated utilization of Ti
Pi period of Ti
TEi transaction error of Ti
Vi update value

4 Approach

Below we describe our approach for managing the per-
formance of a RTDB in terms of transaction and data qual-

M p

Ts -+2%

time

va
lu

e

reference

Figure 2. Definition of settling time (Ts) and
overshoot (Mp)

ity. First, we start by defining QoS and how it can be spec-
ified. An overview of the feedback control scheduling ar-
chitecture is given, followed by issues related to modeling
of the architecture and design of controllers. Finally, we
present the algorithms FCS-HEF and FCS-HEDF.

4.1 Performance Metrics and QoS specification

In our approach, the database administrator (DBA) can
explicitly specify the required database QoS, defining the
desired behavior of the database. In this work we adapt both
steady-state and transient-state performance metrics [12] as
follows:
� Average Transaction Error, denoted ATE�k�. A DBA

can specify the desired average transaction error of ad-
mitted user transactions. The average transaction error
gives the preciseness of the results of user transactions,

and defined as, ATE�k� �

P
i�Terminated�k�

TEi

jTerminated�k�j , dur-
ing period k and where Terminated�k� denotes the
set of terminated transactions and jTerminated�k�j
the number of terminated transactions.2

� Maximum Data Error, denoted MDE�k�, gives the
maximum data error tolerated for the data objects (as
described in Section 2) during period k.

� Overshoot, denoted Mp, is the worst-case system per-
formance in the transient system state (see Figure 2)
and it is given in percentage. The overshoot is applied
to ATE and MDE.

� Settling time, denoted Ts, is the time for the transient
overshoot to decay and reach the steady state perfor-
mance (see Figure 2) and, hence, it is a measure of
system adaptability.

We define Quality of Data (denoted QoD) in terms of
MDE. An increase in QoD refers to a decrease in MDE.
In contrast, a decrease in QoD refers to an increase in
MDE. Similarly, we define Quality of Transaction (de-
noted QoT) in terms of ATE. QoT increases as ATE de-
creases, while QoT decreases as ATE increases.

2For the rest of this paper, we sometimes drop k where the notion of
time is not important.

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

Control
Precision

Control
Admission

∆Unew

Manager
QoD

∆U

Ready Queue

Abort / Restart / Preempt

Dispatched

Monitor

Block

Transaction Handler

FM CC BS

MDE

Block Queue

Source

Sourcem

1
....

User Transactions MDE

Controller

Update Transactions
Stream

Stream

....
1

n

ATE

ATE

ATE

Figure 3. Feedback control scheduling archi-
tecture

The DBA can specify a set of target levels or references
for ATE and MDE. A QoS requirement can be specified
as follows: ATEr � ��� (i.e. reference ATE, mean-
ing that we wish ATE�k� to equal ATEr for all k � �),
MDEr � �� (i.e. reference MDE), Ts � ��s, and
Mp � ���. This gives the following transient performance
specifications: ATE � ATEr � �Mp 	
��� � ���, and
MDE �MDEr � �Mp 	
��� � ����.

4.2 Feedback Control Scheduling Architecture

In this section we give an overview of the feedback con-
trol scheduling architecture. Further, we identify a set of
control related variables, i.e. performance references, ma-
nipulated variables, and controlled variables.

The general outline of the feedback control scheduling
architecture is given in Figure 3. Admitted transactions are
placed in the ready queue. The transaction handler man-
ages the execution of the transactions. At each sampling in-
stant, the controlled variableATE is monitored and fed into
the average transaction error controller, which compares the
performance reference,ATEr, withATE to get the current
performance error. Based on the current error the controller
computes a change, denoted �U , to the total estimated re-
quested utilization. We refer to�U as the manipulated vari-
able. Based on �U , the QoD manager changes the total es-
timated requested utilization by adapting the QoD (i.e. ad-
justingMDE). The precision controller then schedules the
update transactions based on MDE. The portion of �U
not accommodated by the QoD manager, denoted �Unew ,
is enforced by admission control.

The transaction handler provides a platform for manag-
ing transactions. It consists of a freshness manager (FM),
a unit managing the concurrency control (CC), and a ba-
sic scheduler (BS). The FM checks the freshness before
accessing a data object, using the timestamp and the ab-
solute validity interval of the data. We employ two-phase

locking with highest priority (2PL-HP) [1] for concurrency
control. 2PL-HP is chosen since it is free from prior-
ity inversion and has well-known behavior. We consider
three different scheduling algorithms as basic schedulers:
(1) Earliest Deadline First (EDF), where transactions are
processed in the order determined by increasing absolute
deadlines (2) Highest Error First (HEF), where transac-
tions are processed in the order determined by decreas-
ing transaction error, and (3) Highest Error Density First
(HEDF), where transactions are processed in the order de-
termined by decreasing transaction error density given by,
TEDi �

TEi
ATi�Di�CurrentT ime

, where ATi and Di denote
the arrival time and relative deadline of the transaction Ti,
respectively. For all three basic schedulers (EDF, HEF, and
HEDF) the mandatory subtransactions have higher priority
than the optional subtransactions and, hence, scheduled be-
fore them.

The precision controller discards an update transaction
writing to a data object di having an error less or equal to the
maximum data error allowed, i.e. DEi �MDE. However,
the update transaction is executed if the data error of di is
greater than MDE. In both cases the time-stamp of di is
updated.

4.3 System Modeling and Controller Design

We have modeled the controlled system, i.e. RTDB, ac-
cording to the analytical approach proposed in [12]. The ap-
proach has been adapted such that it supports average trans-
action error. The transfer function of the model describing
ATE in terms of �U , is given by, P �z� � ATE�z�

�U�z� �
GAGATE

z�� , where GA represents the extent of worst case
actual workload variation in terms of estimated requested
workload, andGATE denote the ATE variation in terms of
actual workload. The ATE controller is implemented using
PI controllers tuned with root locus [6]. For a more elabo-
rate description, tuning of the model and the ATE controller
we refer to [2].

4.4 Algorithms for Data and Transaction Error
Management

We use the same QoS management algorithm for FCS-
HEF and FCS-HEDF, but use different basic schedulers,
e.g. FCS-HEF schedules the transactions with HEF. The
following scheme for managing the data and transaction
quality is common for FCS-HEF and FCS-HEDF.

Given a certain �U�k�, we need to set MDE�k 	
�
such that the change in utilization due to discarding up-
date transactions correspond to�U�k�. Remember that set-
ting MDE�k 	
� greater than MDE�k� results in more
discarded update transactions and, hence, an increase in
gained utilization. Similarly, setting MDE�k 	
� less

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

than MDE�k� results in fewer discarded update transac-
tions and, hence, a decrease in gained utilization. In order
to compute MDE�k � �� given a certain �U�k�, we use a
function f��U�k�� that returns, based on �U�k�, the cor-
respondingMDE�k���. The function f holds the follow-
ing property. If�U�k� is less than zero, thenMDE�k���
is set such that MDE�k��� is greater than MDE�k� (i.e.
QoD is degraded). Similarly, if �U�k� is greater than zero,
thenMDE�k��� is set such thatMDE�k��� is less than
MDE�k� (i.e. QoD is upgraded). We will return to the con-
cepts around f in Section 4.5, but the detailed derivation of
f can be found in [2].

One of the characteristics of the average transaction er-
ror controller is that as long as the average transaction error
is below its reference (i.e. ATE � ATEr), the controller
output�U will be positive.3 Due to the characteristics of f
(i.e. �U�k� � � � MDE�k � �� � MDE�k�), a pos-
itive �U is interpreted as a QoD upgrade. Consequently,
even if the average transaction error is just below its refer-
ence, QoD remains high. However, it is desired that the
average transaction error, which corresponds to QoT, in-
creases and decreases together with QoD. For this reason,
MDE is set not only by considering �U , but also accord-
ing to the current ATE. When �U is less than zero (i.e.
at an ATE overshoot), MDE is set according to f . How-
ever, when �U is greater or equal to zero, MDE is set
according to the moving average of ATE, computed by
ATEMA�k� � �ATE�k�������ATEMA�k���, where
� (� � � � �) is the forgetting factor. Setting � close to
1 results in a fast adaptation, but will also capture the high-
frequency changes of ATE, whereas setting � close to 0,
results in a slow but smooth adaptation. When ATEMA is
relatively low compared to ATEr, MDE is set to a low
value relative to MDEr. As ATEMA increases, MDE is
increased but not more than MDEr � �Mp � ����, since
a further increase violates the given QoS specification. The
outline of FCS-HEF and FCS-HEDF is given in Figure 4.

4.5 QoD Management

The preciseness of the data is controlled by the QoD
manager setting MDE depending on the system behavior.
When f is used to computeMDE�k��� based on �U�k�
the following scheme is used.

Rejecting an update results in a decrease in CPU uti-
lization. We define gained utilization, GU�k�, as the uti-
lization gained due to the result of rejecting one or more
updates during period k. GU�k� is formally defined as,

3If we have transient oscillations, �U may temporally stay positive
(negative) even though the ATE has changed from being below (above)
the reference to be above (below) the reference value. This is due to the
integral operation, i.e., due to earlier summation of errors, which represents
the history and therefore cause a delay before a change to the utilization is
requested and has effect.

Monitor ATE�k�
Compute �U�k�
if (�U�k� � �) then
MDE�k � �� �

min�ATEMA�k�
ATEr

MDEr�MDEr � �Mp � �����
if (MDE�k� � MDE�k � ��) then

Add the utilization gained after QoD degrade to
�U�k�

else
Subtract the utilization lost after QoD upgrade from
�U�k�

end if
Inform AC of the new �U�k�

else if (�U�k� � � and
MDE�k� � MDEr � �Mp � ����) then

Downgrade QoD according to
MDE�k � �� � f��U�k��

Inform AC about the portion of �U�k� not accommo-
dated by QoD downgrade

else
{i.e. �U�k� � � and

MDE�k� �MDEr � �Mp � ����}
Reject any incoming transactions

end if

Figure 4. QoS management algorithm of FCS-
HEF and FCS-HEDF

GU�k� �
P

i
�RUi�k�
�AUi�k�

�EUi, where �RUi�k� is the
number of rejected update transactions Ti generated by
Streami, �AUi�k� the number of arrived update transac-
tions Ti, and EUi is the estimated utilization of the update
transactions Ti.

In our approach, we profile the system and measure GU
for different MDEs and linearize the relationship between
these two, i.e. MDE � ��GU . Further, since RTDBs are
dynamic systems in that the behavior of the system and en-
vironment is changing, the relation betweenGU andMDE

is adjusted on-line. This is done by measuring GU�k� for
a given MDE�k� during each sampling period and updat-
ing �. Having the relationship between GU and MDE, we
introduce the help function

h��U�k�� � min

�
�� �GU�k���U�k���
MDEr � �Mp � ����

�
�

Since MDE is not allowed to overshoot more than
MDEr � �Mp � ���� we use the min operator to enforce
this requirement. Further, since MDE by definition cannot
be less than 0, we apply the max operator on h and obtain,

MDE�k � �� � f��U�k�� � max�h��U�k��� ���

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

5 Performance Evaluation

5.1 Experimental Goals

The main objective of the experiments is to show
whether the presented algorithms can provide QoS guar-
antees according to a QoS specification. We have for this
reason studied and evaluated the behavior of the algorithms
according to a set of performance metrics:
� Load (Load). Computational systems may show dif-

ferent behaviors for different loads, especially when
the system is overloaded. For this reason, we measure
the performance when applying different loads to the
system.

� Execution Time Estimation Error (EstErr). Often
exact execution time estimates of transactions are not
known. To study how runtime error affects the algo-
rithms, we measure the performance considering dif-
ferent execution time estimation errors.

5.2 Simulation Setup

The simulated workload consists of update and user
transactions that access data and perform virtual arith-
metic/logical operations on the data. Update transactions
occupy approximately 50� of the workload.

In our experiments, one simulation run lasts for 10 min-
utes of simulated time. For all the performance data, we
have taken the average of 10 simulation runs and derived
95% confidence intervals. We assume the following QoS
specification: ATEr � ���, MDEr � ��, Ts � ��s,
and Mp � ���. The workload model of the update and
user transactions are described as follows. We use the fol-
lowing notation where the attribute Xi refers to the trans-
action Ti, and Xi�ti� is associated with the subtransaction
ti.

Data and Update Transactions. The DB holds 1000
temporal data objects (di) where each data object is up-
dated by a stream (Streami, 	 � i � 	���). The period
(Pi) is uniformly distributed in the range
	��ms� ��s� (i.e.
U �
	��ms� ��s�) and estimated execution time (EETi)
is given by U �
	ms�
ms�. The average update value
(AVi) of each Streami is given by U �
�� 	���. Upon
a periodic generation of an update, Streami gives the up-
date an actual execution time given by the normal distribu-
tion N �
EETi�

p
EETi� and a value (Vi) according to

N �
AVi� AVi � V arFactor�, where V arFactor is uni-
formly distributed in (0,1). The deadline is set to ATi � Pi.

User Transactions. Each Sourcei generates a transac-
tion Ti, consisting of one mandatory subtransaction, Mi,
and �Oi (� �Oi � 	�) optional subtransaction(s),
Oi�j (� j � �Oi). �Oi is uniformly distributed be-
tween 1 and 10. The estimated (average) execution time of

subtransactions (EETi�ti�) is given by U �
�ms� 	�ms�.
The estimation error EstErr is used to introduce execu-
tion time estimation error in the average execution time
given by AETi�ti� �
	 � EstErr� � EETi�ti�. Fur-
ther, upon generation of a transaction, Sourcei associates
an actual execution time to each subtransaction ti, which
is given by N �
AETi�ti��

p
AETi�ti��. The deadline is

set to ATi � EETi � SlackFactor. The slack factor is
uniformly distributed according to U �
��� ���. Trans-
actions are evenly distributed in four classes representing
error function orders of 0.5, 1, 2, and 5 (e.g. ��� of the
transactions have an error order of 1).

5.3 Baselines

To the best of our knowledge, there has been no earlier
work on techniques for both managing data impreciseness
and transaction impreciseness, satisfying QoS or QoD re-
quirements. For this reason, we have developed two base-
line algorithms, Baseline-1 and Baseline-2, to study the im-
pact of the workload on the system. We also compare the
behavior of FCS-HEF and FCS-HEDF with FCS-EDF since
EDF is optimal (in minimizing deadline misses) and has
well-known behavior. The baselines are given below.

Baseline-1. If ATE is greater than its reference, the uti-
lization is lowered by increasing MDE. Here, the precise-
ness of the data is adjusted based on the relative average
transaction error. MDE is set according toMDE
k�	� �

min
ATE�k�
ATEr

MDEr�MDEr�
Mp�	����. A simple ad-
mission control is applied, where a transaction (Ti) is admit-
ted if the estimated utilization of admitted subtransactions
and EETi is less or equal to
��.

Baseline-2. In order to prevent a potential overshoot, we
increase MDE as soon as ATE is greater than zero. If
ATE
k� becomes greater than zero, we increase MDE
k�
stepwise until MDEr �
Mp � 	��� is reached (i.e.
MDE
k � 	� � min
MDE
k� �MDEstep�MDEr �

Mp � 	����). If ATE
k� is equal to zero, we decrease
MDE
k� stepwise until zero is reached (i.e. MDE
k �
	� � max
MDE
k� �MDEstep� ��). The same admis-
sion control as in Baseline-1 is used.

FCS-EDF. FCS-EDF is similar to FCS-HEF and FCS-
HEDF in that it is based on the algorithm given in Figure 4,
but where EDF is used as a basic scheduler whereas FCS-
HEF and FCS-HEDF use HEF and HEDF, respectively.
We compare the performance of FCS-HEF and FCS-HEDF
with FCS-EDF, since the behavior of EDF is well-known.

5.4 Performance Metrics

To measure QoS fairness among transactions, we
introduce Standard Deviation of Transaction Error,
SDTE
k�, which gives a measure of how much the

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

50 100 150 200
0

5

10

15

20

Load (%)

A
T

E
 (

%
) FCS−EDF

FCS−HEF
FCS−HEDF
Baseline−1
Baseline−2
Reference

50 100 150 200
0

10

20

30

Load (%)

S
D

T
E

 (
%

) FCS−EDF
FCS−HEF
FCS−HEDF
Baseline−1
Baseline−2

50 100 150 200
0

2

4

6

Load (%)

M
D

E
 (

%
)

FCS−EDF
FCS−HEF
FCS−HEDF
Baseline−1
Baseline−2
Reference

Figure 5. Average Performance: EstErr � �

transaction error of terminated transactions deviates
from the average transaction error. SDTE�k� in
the kth sampling instant is given by, SDTE�k� �q

�
jTerminated�k�j��

P
i�Terminated�k� �TEi �ATE�k��

�.

In our simulations we analyze ATE, MDE, utilization
(denoted U), and SDTE.

5.5 Experiment 1: Results of Varying Load

The setup of the experiment is given below, followed
by the presentation of the results. Figure 5 shows ATE,
SDTE, and MDE.

Experimental setup. We apply loads from 50� to
200�. The execution time estimation error is set to zero
(i.e. EstErr � �).

Tardy Mandatory Subtransactions. We have not ob-
served any deadline misses for any of the five algorithms,
which is consistent with our requirement of completing all
mandatory subtransactions.

Average Transaction Error. The confidence intervals
for all algorithms are within �����. For Baseline-1 and
Baseline-2, the average transaction error (ATE) increases
as the load increases, violating the reference, ATEr, at
loads exceeding ����. Baseline-2 produces low ATE for
loads 100-175�. This is due to the high MDE, and since
many update transactions are discarded more resources can
be allocated to user transactions. In the case of FCS-EDF,
ATE reaches the reference at ���� applied load. For
FCS-HEF and FCS-HEDF, ATE reaches the reference at
����. All FCS algorithms provide a robust performance
since ATE is kept at the specified reference during over-
loads. It is worth mentioning that ATE for FCS-EDF is
higher than the other algorithms. As given by our simula-
tion setup for user transactions (Section 5.2), we can see that
about 50� of the transactions apply error functions where
the order of the error functions are greater than one (i.e.

ni � �). Hence, for a great portion of the transactions
the error decays significantly at the completion of the initial
optional subtransactions and less as more subtransactions
are completed. During overloads where transactions can-
not be precisely scheduled, it is more feasible to distribute
the resources to transactions such that only the first optional
subtransactions are completed, as completing the last sub-
transactions does not decrease the transaction error as much.
This is done under HEF scheduling since resources are al-
located to transactions with the highest error and given that
approximately ��� of the transactions have error functions
with ni greater than one, the average transaction error is
minimized. EDF, however, allocates resources to transac-
tions with no regard to the actual decrease in error when
completing a subtransaction.

Standard Deviation of Transaction Error. The con-
fidence intervals for all algorithms are within ���	��.
SDTE is higher for FCS-HEF than the other algorithms
when the system is underutilized (load less than ����).
This is due to the relatively high ATE for loads less than
100�. For all algorithms, SDTE increases as load and
ATE increase. At 200� load, the corresponding SDTE
for FCS-EDF, FCS-HEF, and FCS-HEDF is
����, �����
and �����, respectively. Consequently, deviation of trans-
action error is minimized when HEF scheduling is used.
It is worth mentioning that under HEF scheduling SDTE
is less as resources are allocated with regards to transac-
tion errors, while under EDF scheduling resources are dis-
tributed with regards to deadlines. Under EDF scheduling,
two transactions with deadlines near each other may receive
different amounts of resources and, hence, they may termi-
nate with a significant deviation in transaction error, while
in the same case, under HEF scheduling the resources are
divided such that both transactions terminate with transac-
tion errors close to each other. We would like to point out
that there is a lower bound for SDTE as transaction er-
ror functions are discrete and, hence, transaction errors de-
crease in steps. This becomes more evident the fewer sub-
transactions a transaction has as the steps become greater.

Average MDE. The confidence intervals for all algo-
rithms are within �����. The averageMDE for Baseline-
1 and Baseline-2 violates the reference MDE set to �� at
applied loads of ���� and �
��, respectively. In contrast,
in the case of FCS-EDF, FCS-HEF, and FCS-HEDF,MDE

is at the reference during overloads.

Average Utilization. For all approaches, the utilization
is above 	�� for loads between 100-200� showing the high
performance of the algorithms.

The experiments shown that FCS-HEF, FCS-HEDF, and
FCS-EDF are robust against varying applied loads. More-
over, FCS-HEF outperforms the other algorithms with re-
gards to QoS fairness of admitted transactions.

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

EstErr

A
T

E
 (

%
)

FCS−EDF
FCS−HEF
FCS−HEDF
Baseline−1
Baseline−2
Reference

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

EstErr

S
D

T
E

 (
%

)

FCS−EDF
FCS−HEF
FCS−HEDF
Baseline−1
Baseline−2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

EstErr

M
D

E
 (

%
)

FCS−EDF
FCS−HEF
FCS−HEDF
Baseline−1
Baseline−2
Reference

Figure 6. Average Performance: Load � ����

5.6 Experiment 2: Results of Varying EstErr

The setup of the experiment is given below, followed
by the presentation of the results. Figure 6 shows ATE,
SDTE, and MDE.

Experimental setup. We apply 200� load. The execu-
tion time estimation error is varied according to EstErr =
0.00, 0.25, 0.50, 0.75, and 1.00.

Tardy Mandatory Subtransactions. As in Experiment
1, no mandatory subtransactions have missed their deadline.

Average Transaction Error. The confidence intervals
for all algorithms are within�����. As expected, Baseline-
1 and Baseline-2 do not satisfy the QoS specification. In
fact, ATE increases as EstErr increases, reaching a value
close to ��� for both algorithms. As we can see, FCS-EDF,
FCS-HEF, and FCS-HEDF are insensitive against varying
EstErr.

Standard Deviation of Transaction Error. The con-
fidence intervals for all algorithms are within �����. For
Baseline-1 and Baseline-2 SDTE increases as ATE and
EstErr increase, reaching ����� at EstErr equals 0.5. In
the case of FCS-EDF, FCS-HEF, and FCS-HEDF, SDTE
does not change since the correspondingATE is invariant.

Average MDE. The confidence intervals for all algo-
rithms are within�����. Baseline-1 and Baseline-2 violate
the specified MDE reference. For FCS-EDF, FCS-HEF,
and FCS-HEDF, average MDE does not change consider-
ably for differentEstErr, peaking ����� whenEstErr is
set to one.

From these results we observe that FCS-HEF, FCS-
HEDF, and FCS-EDF are insensitive to changes to execu-
tion time estimation errors as they manage to satisfy the
given QoS specification for varying EstErr.

0 100 200 300 400 500
0

50

100

Time

A
T

E
 a

nd
 U

 (
%

) ATE
Reference ATE
Maximum ATE overshoot
Utilization

0 100 200 300 400 500
0

10

20

30

40

50

Time

S
D

T
E

 (
%

)

SDTE

0 100 200 300 400 500
0

2

4

6

8

Time

M
D

E
 (

%
)

MDE
Reference MDE
Maximum MDE overshoot

Figure 7. Transient Performance for FCS-EDF.
EstErr � ���, Load � ����

5.7 Experiment 3: Transient Performance

Studying the average performance is often not enough
when dealing with dynamic systems. Therefore we study
the transient performance of the proposed algorithms. Fig-
ures 7, 8, and 9 show the transient behavior of FCS-EDF,
FCS-HEF, and FCS-HEDF. The dash-dotted line indicates
maximum overshoot, whereas the dashed lines represent the
reference.

Experimental setup. Load is set to ���� and EstErr
set to one.

Results. For all algorithms ATE overshoots decay
faster than 60s, which are less than the settling time require-
ment given in the QoS specification.

The highest overshoot for FCS-EDF has been noted to
���	� at time 40. For FCS-HEF, the highest overshoot
was noted to ���
� at time 40 (the second highest over-
shoot was noted to ����� at time 555) and finally, the high-
est overshoot for FCS-HEDF was observed to be ����� at
time 45. As we can see, the algorithms do not satisfy the
overshoot requirements given in the QoS specification (i.e.
ATE � ���). It is worth mentioning that data conflicts,
aborts or restarts of transactions and inaccurate run-time es-
timates contribute to disturbances in a RTDB, complicating
the control of ATE (note that we have set EstErr to one).

As we can see from Figures 7-9, FCS-HEF produces
less oscillations in ATE and consequently SDTE and
MDE. Further, FCS-HEF is less prone to overshoot. Un-
der EDF scheduling, newly admitted transactions are placed
further down in the ready queue, since they are less likely
to have earlier deadlines than transaction admitted earlier.
This means that an actual change to the controlled variable,
i.e. ATE, is not noticed until the newly admitted trans-
actions are executing. However, this delay is removed un-

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

0 100 200 300 400 500
0

50

100

Time

A
T

E
 a

nd
 U

 (
%

) ATE
Reference ATE
Maximum ATE overshoot
Utilization

0 100 200 300 400 500
0

10

20

30

40

50

Time

S
D

T
E

 (
%

)

SDTE

0 100 200 300 400 500
0

2

4

6

8

Time

M
D

E
 (

%
)

MDE
Reference MDE
Maximum MDE overshoot

Figure 8. Transient Performance for FCS-HEF.
EstErr � ���, Load � ����

0 100 200 300 400 500
0

50

100

Time

A
T

E
 a

nd
 U

 (
%

) ATE
Reference ATE
Maximum ATE overshoot
Utilization

0 100 200 300 400 500
0

10

20

30

40

50

Time

S
D

T
E

 (
%

)

SDTE

0 100 200 300 400 500
0

2

4

6

8

Time

M
D

E
 (

%
)

MDE
Reference MDE
Maximum MDE overshoot

Figure 9. Transient Performance for FCS-
HEDF. EstErr � ���, Load � ����

der HEF scheduling, since newly arrived transactions are
more likely to have higher priority than the old transactions
(since they have greater TE) and, consequently, a tran-
sient overload/underload is observed earlier. Hence, under
HEF scheduling the controlled variable is more responsive
to changes in the manipulated variable. Now, from feedback
control theory we know that delays in systems (low respon-
siveness of controlled variables) promote oscillations and
may even introduce instability [6]. Given this, we can con-
clude that under EDF scheduling we should observe more
oscillations in ATE than compared with HEF scheduling.

5.8 Summary of Results and Discussions

Our experiments show that the algorithms FCS-HEF and
FCS-HEDF are robust against load variations and inaccu-

rate execution time estimations as ATE and MDE have
been consistent with their references for varying load and
varying execution time estimation error. The proposed al-
gorithms outperform the baseline algorithms and FCS-EDF
and can manage the given QoS specifications well. We have
carried out other types of experiments [2], but have not pre-
sented them due to space limitation (e.g. performance eval-
uation of the algorithms for transactions sets having differ-
ent transaction error characteristics and evaluation of the al-
gorithms with respect to different QoS specifications). The
results of the additional experiments are consistent with the
results presented in this paper, i.e., they show the robustness
and feasibility of FCS-HEF and FCS-HEDF.

It was shown that FCS-HEDF produces a lower ATE
compared to the other algorithms. Also, it was observed that
FCS-HEF provides a lower SDTE compared to other al-
gorithms, lowering the deviation of transaction error among
terminated transactions. This property is feasible in appli-
cations where QoS fairness among transactions is empha-
sized. Finally, FCS-HEF showed a better transient behav-
ior compared to FCS-EDF and FCS-HEDF, as it produced
fewer and smaller ATE overshoots.

We conclude that FCS-HEF should be used in appli-
cations where QoS fairness among transactions is impor-
tant, but also where overshoots must be prevented, i.e. the
worst-case performance has to comply with the specifica-
tion. However, FCS-HEDF is particularly feasible in cases
where low ATE is desired since under HEDF scheduling,
ATE is smaller compared to HEF and EDF scheduling.

6 Related Work

There has been several algorithms proposed addressing
imprecise scheduling problems [11, 15, 7, 5]. These algo-
rithms require the knowledge of accurate processing times
of the tasks, which is often not available in RTDBs. Further,
they focus on maximizing or minimizing a performance
metric (e.g. total error). The latter cannot be applied to
our problem, since in our case we want to control a set of
performance metrics such that they converge towards a set
of references given by a QoS specification.

Feedback control scheduling has been receiving special
attention in the past few years [12, 13, 4]. Lu et al. have pre-
sented a feedback control scheduling framework where they
propose three algorithms for managing the miss percentage
and/or utilization [12]. In comparison to the proposed ap-
proaches here, they do not address the problem of maxi-
mizing QoS fairness among admitted tasks. In the work
by Parekh et al., the length of a queue of remote procedure
calls (RPCs) arriving at a server is controlled [13]. Chang-
ing the periodicity of a set of tasks in response to load vari-
ations has been suggested in [4]. In contrast to FCS-HEF
and FCS-HEDF, aperiodic tasks are not considered in their

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

model.
Labrinidis et al. introduced the notion of QoD in the con-

text of web servers [10]. Their proposed update scheduling
policy of cached web pages can significantly improve data
freshness compared to FIFO scheduling. Kang et al., used a
feedback control scheduling architecture to balance the load
of user and update transactions [9]. In our previous work,
we presented two algorithms for managing QoS based on
feedback control scheduling and imprecise computation [3],
where QoS was defined in terms of deadline miss percent-
age of subtransactions.

The correctness of answers to databases queries can be
traded off to enhance timeliness. The query processors,
APPROXIMATE [16] and CASE-DB [8] are examples of
such databases where approximate answers to queries can
be produced within certain deadlines. However, in both
approaches, impreciseness has been applied to only trans-
actions and, hence, data impreciseness has not been ad-
dressed. Further, they have not addressed the notion of QoS.
In our work, we have introduced impreciseness at data ob-
ject level and considered QoS in terms of transactions and
data impreciseness.

7 Conclusions and Future Work

In this paper we have argued for the need of increased
adaptability of applications providing real-time data ser-
vices. To address this problem we have proposed a QoS-
sensitive approach based on feedback control scheduling
and imprecise computation applied on transactions and data
objects. Imprecise computation techniques have shown to
be useful in many areas where timely processing of tasks or
services is emphasized. In this work, we combine the ad-
vantages from feedback control scheduling and imprecise
computation techniques, forming a framework consisting of
a model for expressing QoS requirements, an architecture,
and a set of algorithms. We have developed two algorithms
FCS-HEF and FCS-HEDF that give a robust and controlled
behavior of RTDBs in terms of transaction and data precise-
ness, even for transient overloads and with inaccurate run-
time estimates of the transactions. The proposed algorithms
outperform the baseline algorithms and FCS-EDF and can
manage the given QoS specifications well.

For our future work, we will model the relationship be-
tween data error and transaction error and extend our model
to support service differentiation.

References

[1] R. Abbott and H. Garcia-Molina. Scheduling real-time trans-
actions: A performance evaluation. ACM Transactions on
Database System, 17:513–560, 1992.

[2] M. Amirijoo, J. Hansson, and S. H. Son. Error-driven
QoS managment in imprecise real-time databases. Techni-
cal report, Department of Computer Science, University of
Linköping, 2002. www.ida.liu.se/�rtslab/publications.

[3] M. Amirijoo, J. Hansson, and S. H. Son. Algorithms for man-
aging QoS for real-time data services using imprecise com-
putation. In Proceedings of the 9th International Conference
on Real-Time and Embedded Computing Systems and Appli-
cations, 2003.

[4] G. C. Buttazzo and L. Abeni. Adaptive workload managment
through elastic scheduling. Journal of Real-time Systems,
23(1/2), July/September 2002. Special Issue on Control-
Theoretical Approaches to Real-Time Computing.

[5] J. Chung and J. W. S. Liu. Algorithms for scheduling peri-
odic jobs to minimize average error. In Real-Time Systems
Symposium, pages 142–151, 1988.

[6] G. F. Franklin, J. D. Powell, and M. Workman. Feedback
Control of Dynamic Systems. Addison-Wesley, third edition,
1998.

[7] J. Hansson, M. Thuresson, and S. H. Son. Imprecise task
scheduling and overload managment using OR-ULD. In
Proceedings of the 7th Conference in Real-Time Computing
Systems and Applications, pages 307–314. IEEE Computer
Press, 2000.

[8] W. Hou, G. Ozsoyoglu, and B. K. Taneja. Processing aggre-
gate relational queries with hard time constraints. In Proceed-
ings of the 1989 ACM SIGMOD International Conference on
Management of Data, pages 68–77. ACM Press, 1989.

[9] K. Kang, S. H. Son, J. A. Stankovic, and T. F. Abdelzaher. A
QoS-sensitive approach for timeliness and freshness guaran-
tees in real-time databases. 14th Euromicro Conference on
Real-time Systems, June 19-21 2002.

[10] A. Labrinidis and N. Roussopoulos. Update propagation
strategies for improving the quality of data on the web. The
VLDB Journal, pages 391–400, 2001.

[11] J. W. S. Liu, K. Lin, W. Shin, and A. C.-S. Yu. Algorithms for
scheduling imprecise computations. IEEE Computer, 24(5),
May 1991.

[12] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Feed-
back control real-time scheduling: Framework, modeling
and algorithms. Journal of Real-time Systems, 23(1/2),
July/September 2002. Special Issue on Control-Theoretical
Approaches to Real-Time Computing.

[13] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram,
and J. Bigus. Using control theory to achieve service level
objectives in performance managment. Journal of Real-time
Systems, 23(1/2), July/September 2002. Special Issue on
Control-Theoretical Approaches to Real-Time Computing.

[14] K. Ramamritham. Real-time databases. International Jour-
nal of Distributed and Parallel Databases, (1), 1993.

[15] W. K. Shih and J. W. S. Liu. Algorithms for schedul-
ing imprecise computations with timing constraints to min-
imize maximum error. IEEE Transactions on Computers,
44(3):466–471, 1995.

[16] S. V. Vrbsky and J. W. S. Liu. APPROXIMATE - a query
processor that produces monotonically improving approxi-
mate answers. IEEE Transactions on Knowledge and Data
Engineering, 5(6):1056–1068, December 1993.

[17] S. Zilberstein and S. J. Russell. Optimal composition of real-
time systems. Artificial Intelligence, 82(1–2):181–213, 1996.

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

