

Building and Evaluating a Fault-Tolerant CORBA Infrastructure

Diana Szentiványi and Simin Nadjm-Tehrani
Dept. of Computer and Information Science

Linköping University, Sweden
[diasz,simin]@ida.liu.se

Abstract

In this paper* we explore the trade-offs involved in
making one major middleware fault-tolerant. Our work
builds on the FT-CORBA specification (April 2000),
which is not in widespread use due to lack of quantified
knowledge about design rules and trade-offs. Recent
results show preliminary overhead and trade-off analysis
for a not entirely FT-CORBA-compliant system for
embedded applications (Eternal).

In distinction from Eternal, we have extended an
existing open source ORB and combine it with a
collection of service objects and portable request
interceptors following the FT-CORBA standard. The
paper reports on extensive studies relating the timing
aspects to different parameters such as the replication
style, the number of replicas, and the checkpointing
frequency. The experiments were conducted using a
realistic telecom application.

1. Introduction

Future data/telecom applications are built on top of
object-oriented distributed system platforms that need
high levels of dependability. Therefore these industries
stress the importance of enforcement of system-level
properties such as fault tolerance, timeliness, and security
in such platforms. Nevertheless, the ambition is to keep
the application writer efforts minimal when adding these
features to a certain application.

While there could be more elegant approaches for
supporting fault tolerance in runtime systems of a specific
language like Java, Ada or Erlang, real systems are
typically multi-language, multi-platform. Therefore,
building fault-tolerance in a generic middleware is an
interesting undertaking. CORBA is one of these types of
middleware, and one of the platforms used by our
industrial partners at Ericsson Radio Systems.

* Copyright c 2003 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE.

Although there has been a lot of research work about
extensions of CORBA towards fault tolerance, a telecom
engineer who so far built fault tolerance as part of the
application, needs more information about what are the
consequences of using a generic fault-tolerant
middleware.

Obviously there will be costs associated with support
for fault tolerance in any infrastructure. Our goal is to
provide indications about the performance trade-offs and
the added robustness as a result of the proposed
enhancement. Also, the engineer could be interested in
whether the old legacy code dealing with fault tolerance
inside the application is reusable in the new setting. This
work will answer some of these questions in the context
of fault-tolerant CORBA, using a realistic application.

Following the FT-CORBA standard specification [1],
we have built our infrastructure by combining:

• a service approach seen by the application writer
• an extension to an Object Request Broker (ORB)
• CORBA portable interceptors [2] for requests.

We have tested the infrastructure in a prototype setting to
obtain some of the above-mentioned answers. Although
we tried to follow the standard as much as possible, where
the specification is not complete we had to make our own
decisions. Our experiments provide a deeper
understanding of the decisions already made in the
specification and their consequences. The implementation
also provides an insight in how to modify a standard ORB
for supporting fault tolerance.

To start with, we have tested this infrastructure with an
artificially created server application. This experiment
gave an indication of the overhead in the absence of
failures. The measured overhead covered the cases of cold
passive, warm passive and active replication. Next, a
generic service from the telecom domain, provided by
Ericsson Radio Systems was used as a test-bed. There
were few changes in the application such as the addition
of methods for getting and setting the state of the object.
This paper explains the results of these studies so far.

The paper is structured as follows. Section 2 presents
some background information like some aspects of the
FT-CORBA standard. Section 3 will describe the main
parts of our infrastructure and some design decisions
made. Section 4 presents quantitative evaluation results

and discusses the insights gained. Section 5 concludes the
paper.

2. Background

In December 2001 the FT-CORBA specification has
been added to the latest CORBA standard (version 2.6).
Its contents have not changed in a major way since the
original introduction in April 2000. In what follows we
give an overview of the main components of the specified
infrastructure.

This standard was drawn up against the background of
several years of work in the fault tolerance research
community. In section 2.2 we refer to some of the works
which are closely related to the proposals of the standard,
and therefore to our work.

2.1. FT-CORBA

To obtain fault-tolerant applications the FT-CORBA
approach uses replication in space (replicated objects).
Temporal replication is supported by request retry, or
transparent redirection of a request to another server.
Replicated application objects are monitored in order to
detect failures. The recovery in case of failures is done
depending on the replication strategy used. Support is
provided for use of active replication, primary/backup
replication, or some variations of these. The non-active
replication styles provided are warm passive, and cold
passive (primary/backup). The choice of policy is left to
the application writer when initiating the server.

Figure 1 shows the architecture for fault tolerance
support according to the standard.

There is a Replication Manager that implements
interfaces such as Property Manager, Object Group
Manager, Generic Factory. The standard also informally
refers to the notion of Fault-Tolerance Infrastructure. This
is implicitly the collection of mechanisms added to the
basic CORBA to achieve fault-tolerance. The Property
Manager interface has methods used to set the above-
mentioned policy i.e. the replication style, the number of
replicas, the consistency style (infrastructure-controlled or
application-controlled), the group membership style
(infrastructure-controlled or application-controlled). The
Object Group Manager interface has methods that can be
invoked to support the application-controlled membership
style, at the price of losing transparency. The Generic
Factory interface has the create_object and delete_object
methods. The Replication Manager’s create_object
method is invoked when a new object group has to be
created. As a consequence, the Object Factories’
create_object methods are called. Each object in a group
has its own reference, but the published one is the inter-
operable object group reference.

Application replicas are monitored by Fault Monitors
by means of calling the is_alive method on them. Thus,
the FT-CORBA specification mostly focuses on the pull
monitoring style. Push monitoring style is also mentioned
but not specified in the standard. The fault monitors, as
mentioned by the standard, are unreliable (they cannot
decide whether an object crashed or it is just slow).
Monitoring is initiated by the Replication Manager. Fault
Monitors are given indications about the fault monitoring
granularity, such as member level, type identifier level or
host level.

The Replication Manager is involved in the recovery
process of the object group. For this, it needs to register as
a consumer at the Fault Notifier. The Fault Monitors
announce faults to the Fault Notifier that further
announces it towards its consumers.

For checkpointing purposes, application replicas must
implement the Checkpointable interface and provide two
methods in the application class. These are named
get_state and set_state. Checkpointing has to be used in
cold/warm passive replication. The standard also requires
logging of method calls and replies in those cases.

When using the active replication style the
specification strongly recommends the use of a gateway
for accessing the group members. There is also an
indication about an alternative, namely the usage of
proprietary broadcast primitives at the client, and thus,
direct access to the group.

To be able to manage large applications, the notion of
fault tolerance domain is introduced. Each fault tolerance
domain contains several hosts and object groups. There is
one Replication Manager associated with it, as well as one
Fault Notifier. Object Factories and Fault Monitors are
specified as separate entities (objects) running on every
host within the FT domain.

2.2. Related work

There have been attempts to build infrastructures to
provide application writers with the possibility to
construct fault-tolerant application in an easy way.

The Java RMI technology is, for example, used to
provide fault-tolerant distributed services in the Jgroup
toolkit [4]. Clients interact with these services by an
external group method invocation. Group members
cooperate via internal group method invocations. This
cooperation is achieved by using a group membership
service, as well as a reliable communication service.

The Horus toolkit [5] provides a platform independent
framework for building fault-tolerant applications. It
offers application writers a set of building blocks (such as
system and application protocols), to choose from in order
to fit system requirements. With Horus the virtual
synchrony runtime model is well supported.

Prior to the specification of the FT-CORBA extension
(April 2000), few works have studied alternative
augmentations of CORBA with a process (object) group
module.

Little et.al. present a way of integrating a group
communication service with transactions [6]. They start
with a system that supports transactions (CORBA), but no
process groups. Then, they consider enhancing the use of
transactions by introducing process groups.

Felber et.al. show some possible approaches for
introducing object groups in CORBA [7]. Three different
approaches are presented depending on the position of the
group communication module relative to the ORB. These
are: the interception approach, the integration approach,
and the service approach.

Narasimhan et al. implemented operating system level
interceptors to provide fault tolerance to CORBA [8]. The
result of their research efforts in this direction is the
Eternal System. With this approach, an ORB’s
functionality can be enhanced for fault tolerance without
changes in the ORB, or in the application.

Chung et. al. present a fault-tolerant infrastructure
(DOORS) built using the service approach, on top of
CORBA [9]. In this setup, application objects register to
DOORS in order to be made fault-tolerant. Fault tolerance
services are realized with two components:
ReplicaManager and WatchDog.

A framework for fault-tolerant CORBA services with
the use of aspect oriented programming is presented by
Polze et al. [10]. Their goal is to provide the application
writer with the possibility to build a fault-tolerant
application by choosing the types of faults to be tolerated:
crash faults, timing faults, design faults. The toolkit then
chooses the appropriate fault-tolerance strategy.
Communication between a client and a replicated service
is done via an interface object.

3. Our generic infrastructure

We have chosen to use a Java based open source ORB,
OpenORB, as a basis for our enhanced infrastructure [3].
Figure 1 depicts the architecture of our implemented
environment in adherence to the standard.

To be able to build a fault tolerant application using
our infrastructure, the application writer needs the
following ingredients:

• the collection of service objects (Replication
Manager, Object Factories, Fault Monitors, Fault
Notifier, and Logging & Recovery Controllers)

• the basic (extended) ORB classes
• the proper Portable Request Interceptors for

different replication styles.
These constituents of our infrastructure are now explained
in turn.

3.1. Service Objects

The Replication Manager, as specified in the standard,
contributes to object group creation and recovery. It was
implemented according to the specification.

The Object Factory runs on every host in the fault
tolerance domain, and has the role to create a replica for
an object group. The standard does not specify exactly
how or where the created CORBA object replicas will
run. In our implementation every replica runs in a
different Java Virtual Machine (a new Unix process).

The Fault Monitor, as specified in the standard, runs on
every host and monitors replicas. Besides that, also as a
result of the specification, our implementation allows the
monitoring at different granularities. Due to the usage of
Java language, the most straightforward implementation
of the monitor is as a CORBA object with a collection of
internal threads. Also, a characteristic of our fault
monitors is that they are forced to be reliable, by simply
killing an object as soon as it is suspected to have failed.

The Fault Notifier is also implemented conforming to
the specification. It receives the fault event from the
monitor and it sends it further to the consumers (e.g.
Replication Manager).

The FT-CORBA standard does not mention how or
where the logging and checkpointing has to be done.

In our implementation, the Logging & Recovery
Controller is also a service (CORBA) object. It performs
the checkpointing of objects on its host by using a
separate internal thread, for every object. The state is
recorded in a log located in memory (the location of the
log could be easily changed to be on stable storage). Also,
the method calls and replies are recorded in the same log,
from where they are retrieved later at recovery.

The idea is to have the logging and recovery objects on
every host. The usage of these objects is dependent on the
replication policy used. In case of cold passive replication
the Logging & Recovery Controller at the location of a
failed group member is contacted to obtain the latest state
and set of method calls. In case of warm passive
replication, the logged items are taken from the Logging
& Recovery Controller on the new primary’s host.

Checkpointing decisions

As mentioned in the specification, checkpointing is

done only on objects whose state can change while in
service, and in passive replication scenarios. It is obvious
that the checkpointing has to be synchronized with
execution of update methods on those objects. In this
context some interesting questions arise: Must
checkpointing be done periodically? In case of periodic
checkpointing, how long should be the interval between
two checkpoints? It is quite straightforward to see why
these issues are important: the recording frequency affects

the average time for recovery upon failures and it
influences the perceived (average) reaction time of the
server as seen by the client. In the next section we will
come back to these questions in the context of our
experiments.

Gateway for active replication

In case of active replication, we chose the gateway
approach. The gateway is set up as a separate CORBA
Object. One of the gateway’s roles is to broadcast method
calls to the group members. Besides this, it will be used as
a duplicate suppressor for the active object group’s
outgoing method calls. The gateway is a dynamic part of
the infrastructure, as opposed to all aforementioned
components.

3.2. Extensions of the ORB

We found that some of the basic ORB classes had to be

extended. For example, in case of primary backup
replication, the method for choosing the target address for
the request had to be changed to be able to find the
primary’s address (as opposed to the standard non-FT-
ORB which had no notion of primary).

The standard recommends the usage of a retention
identifier and a client identifier for a certain request, to
uniquely identify it. To generate such unique identifiers,
the ORB class itself had to be modified. Another
extension to the ORB relates to the use of portable request
interceptors that will be described below.

3.3. Portable Request Interceptors

The retention identifier and client identifier are sent in
a request service context. A group reference version
service context is also recommended by the standard. To
add these service contexts, at the client side, a portable

client request interceptor is used. This applies both when
the client is just a simple one, and when it is itself
replicated. The interceptor is also used, in the latter case,
for recording replies to outgoing requests. This avoids
unnecessary resending requests if resends are attempted.

Portable request interceptors have an important role at
the server side as well. Here, we will talk about server
request interceptors. Their main function is to contact the
Logging & Recovery Controller for method call and reply
logging purposes. For different server replication styles,
different server interceptors are used. For example, in case
of stateless replication style, there is no need for logging,
at least not for logging of method calls. In case of warm
passive replication style there is need for broadcasting of
method calls to the rest of the Logging & Recovery
Controllers for the group.

Any changes to the group will cause a group reference
version update. Thus, when serving a request one has to
verify whether the client has the right version of the
object group reference or not. This is also done in the
server side interceptor.

Sometimes, a request has to be stopped at the level of
the server portable interceptor and the answer sent from
that level. For this purpose, a special exception had to be
introduced as well as its handling. This was a further
extension to the ORB. In addition, a mechanism for
sending the reply from within the interceptor had to be
devised.

4. Evaluation

In this section we present the experimental studies of
the implemented infrastructure and analyse the results
obtained.

Figure 1: The architecture of our implemented environment

4.1 Goals

The goal of our work is to obtain a deeper
understanding of how the addition of fault tolerance to an
existing middleware affects the design of new
applications and the behaviour of existing ones. The
application writer is primarily interested in overheads
incurred due to the usage of a new infrastructure. There is
also interest in the effects of the new mechanisms on the
size of the code and its maintainability, as well as the
application’s performance in fail-over scenarios. Thus, the
goal of our experiments has been to shed a light on our
infrastructure’s behaviour in this context.

A second goal is to evaluate the proposals made in the
FT-CORBA specification in general, and get an insight
into the common weaknesses and strengths of any
infrastructure built upon this standard.

4.2 Experiment setup

Earlier works in the area have typically provided
experimental results for artificially created applications
and test cases (e.g. [7]). Such experiments are easy to set
up. Also, isolation of infrastructure properties from the
application-induced ones is simplified in this case. We
have used such artificial servers for initial tests; but in
addition, we have tested a real application provided by
our industrial partners. This application was a generic
service in the operations and management (O&M) part of
the radio networks together with artificial client side test
cases.

In the first approach, the client calls the four operations
of a replicated artificial server in a sequence, inside a
loop. The timing information recorded here is thus
summed up and averaged over 200 runs of each method
call using this loop. In the second, more complex O&M
application, there were six operations within the replicated
server subjected o our tests. The server is a so-called
Activity Manager with the role to create application-
related activities and jobs, and schedule them at later
times. To do this, it also keeps track of the activities’
progress and termination. Operations were called using a
test case provided resembling a client application by
Ericsson.

To average out the effects of network load and other
uncontrollable elements these tests were also performed in
loops with varying number of iterations (100, 200, 400 or
800). Although more detailed investigations in this
direction would be interesting, for the time being, we
think that simple averaging is adequate.

The Activity Manager is not stateless. Neither is the
artificial server. So the replication styles tried out were
cold and warm passive, as well as active replication for
both cases. In all three cases, of course, the client was
kept unchanged.

Other parameters in our experiment setup were number
of replicas (ranging over 3, 4, or 5 replicas) and the length
of the checkpointing interval (ranging over 1s, 5s and
10s).

 To estimate overheads, roundtrip times of requests
were measured (from recording the request at the client
side, transport over the network and CORBA layers, to
recording on the server side, performing the operation,
checkpointing if needed, as well as sending the result over
the network and receiving the response at client side).
Then comparisons were made with the same roundtrip
delay in the non-replicated case. Failover times were also
measured and compared with a reference delay. The
reference is given by the time taken when a (non
replicated) server crashes and has to be restarted (possibly
manually).
 The probes were placed in the client, as well as server
interceptor methods that are most probably called at the
client and similarly at the server side (e.g. send_request,
receive_request, send_reply, receive_reply).
 The probe effect resulting from the instrumentation of
the recordings was reduced by adding interceptors to the
non-replicated runs in exactly the same places as above
(even if interceptors were not needed for running the non-
replicated scenario, and were simply put for measurement
purposes).

4.3 Expected results

 This section describes our intuitions before running
the experimental studies. These will be followed up by the
real measurements in the following section.

 The number of replicas was expected not to affect
overhead or failover times in case of cold passive
replication. Of course, if the number of replicas drops
under a certain minimum, new replicas have to be created
and this can increase the failover time. In case of warm
passive replication the expected result would have been
that the roundtrip time was slightly influenced by the
number of replicas, because of the extra time spent in
broadcasting method calls to the other replicas’ logging &
recovery controllers. But, in fact, the broadcasting was
implemented by use of CORBA one-way method calls.
Hence, the overhead should not increase dramatically.
Similarly, in case of active replication, the number of
replicas should not influence the roundtrip time, since the
gateway returns the first (fastest) result to the client.

The rate of checkpointing (inverse of the
checkpointing interval) can influence the roundtrip time
for update operations. This is only relevant for cold and
warm passive replication. As mentioned earlier, it is only
in the passive style that the call to the checkpointing
operation, get_state, is made.

4.4 Results

The measured overheads for the artificial application
were seemingly high. For example, for one method call
the average over 200 iterations, when the server group
size was 3, the checkpointing interval was 5s, and the cold
passive style was used, we had 46ms of roundtrip time
compared to 24ms for the non-replicated case (92%
overhead).

Although this seemed very high at the first glance, we
realised that it might not be representative, since a trivial
application with low response time will inevitably show a
large overhead percentage. Thus, the telecom application
was of real interest. In the realistic application we
observed considerably lower percentages in general (over
all the experiments). For example, for one method call we
had in the non-replicated setup a roundtrip time of 106ms,
compared to the cold passive with 3 replicas and
checkpointing interval at 5s, where the roundtrip time was
156ms (47% overhead).

The measured roundtrip times for the real application
showed a clear dominance of the logging component for 5
method calls (the sixth method had the computation time
as the dominant component). Actually the logging
component of the roundtrip time is captured at a point
where all incoming requests are synchronised on the
server. So, it is not the very logging method call that takes
the time. The component includes the wait time, i.e. the
time that the calling (client) method has to wait until the
currently running (update or get_state) method on the
server finishes, together with all the other (update and
get_state) method calls that arrived earlier. So, in fact it is
not the logging itself which is taking time, but the
synchronisation that we cause in order to be able to
recreate the scenario when a new primary has to take over
after a crash. For the above scenario the wait component
was in fact 74ms of the 156ms (47%). Note that this wait
time alone is almost four times the measured overhead for
the artificial application.

 We now summarise the observed influence of the
chosen parameters on the measured overheads.

In the cases of cold and warm passive replication,
overheads were pretty much the same, and independent of
the number of replicas, as expected. On the other hand,
the checkpointing interval was observed to slightly
influence the wait time for the update requests and so the
roundtrip time. Figure 2 shows the % of wait time out of
the round trip time (y-axis) for different experiments
performed on one method call, using cold passive style
(averages were done over 100 calls, 200 calls, etc). The
bars depict the variation relative to the choice of
checkpointing interval.

0
10
20
30
40
50
60
70
80
90

100 200 400 800

1s
5s
10s

Figure 2: Wait time vs. checkpointing interval

The figure shows a typical chart for experiments on

many methods where other parameters were varied. It
illustrates that wait time increases as checkpointing
frenquency is raised.

The quantitative values for overheads are listed as
percentages in the table below. Every row in the table
summarises the averaged results over the repeated runs of
the method call according to the test loop of 100 iterations
(100, 100, 100, 400, 100 and 200 respectively). They also
summarize averaged results obtained in the 9 different
scenarios (3 dimensions for the replica group and 3 values
for the checkpointing interval). For example, 55% - 79%
in the first row indicates the collective experience with all
the cold passive runs we have had with method 1, over
100 runs. 55% is the lowest overhead % among the 9
scenarios and 79% is the highest overhead %. The first
column describes the roundtrip times (ms) for the non-
replicated case, and the two following columns
differentiate cold and warm passive styles.

n.r. Cold passive Warm passive
Method 1 130 55% – 79% 53% - 66%
Method 2 61 77% - 128% 110% - 134%
Method 3 65 62% - 92% 74% - 106%
Method 4 80 76% - 168% 100% - 151%
Method 5 133 44% - 111% 59% - 93%
Method 6 106 37% - 98% 68% - 94%

Table 1: Summary of primary backup experiments

In case of active replication, for the real application,

the situation was somewhat different from the case of the
artificial one. In the made-up application there are no
outgoing calls from the replicated server. Thus, there is no
overhead associated with the duplicate suppression
mechanism of the gateway.

The overheads for the made-up application in this case
are somewhat dependent on the number of replicas, and
remain within acceptable ranges. For example, we had a
roundtrip time of 66ms as compared with 24ms for the 3-
replica group mentioned earlier in this section.

In case of the real application, on the other hand, we
noticed that the roundtrip time is considerably larger than
the non-replicated case, and this is due to the gateway’s
duplicate suppression mechanism. The fact that servers
acting as replicated clients have a higher roundtrip time
can be illustrated by the following comparison. The
roundtrip times for method 3 (averaged over 100 calls)
using active replication ranged between 177ms and 325ms
(4 replicas and 5 replicas respectively). This method call
does not in turn call other methods (acting as a client) and
has a reasonable overhead compared to its non-replicated
time (65ms). In contrast, method 4 exhibits a roundtrip
time in the range 1698ms and 4678ms (for 3 respectively
4 replicas), which is at least 20 times its non-replicated
time!

The down side of long overhead when actively
replicating a server is compensated by the faster recovery
times. For example the fail-over time for the actively
replicated activity manager is in the range of 62ms to
73ms. This should be compared to a manual recovery
process that is in the order of minutes, and to the passively
replicated group recovery times that are in the range of
1.7s to 18.7s. The time for recovery depends on the
checkpointing interval that affects how many earlier calls
have to be replayed, and on the size of the state which has
to be set on the new primary in case of cold passive
replication. The recorded recover times tend to be smaller
in case of warm passive replication. Figure 3 below shows
how the size of the state to be set in the new primary
influences the time for set_state. The picture shows that,
the time spent with set_state is not influenced only by the
size of the state.

0 50 100 150 200 250 300 350
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Size of state (Kbytes)

T
im

e
sp

en
t w

ith
 s

et
_s

ta
te

 (
s)

4.5 Lessons learnt

Average roundtrip time for update method calls is
highly influenced by the nature of the client side code.
That is, the sequence and placing in time of the method
calls affects the wait time mentioned earlier. The wait
time for an update method call is built up by execution
times of update operations that arrived just before that
method call and are executing or queuing on the server.

In our present implementation, because of the way
checkpointing of state is done, there is no support for
handling of application created threads that can modify
the object’s state by calling methods directly on the
servant. Such modifications are not reflected in the logged
method calls, and thus can not be replayed once there is a
crash. Therefore, using such design patterns is not
advisable in sensitive applications.

Another aspect of interest is the synchronization of
update method executions. In the present implementation
the granularity of this synchronization is at method level.
For this, of course, the server ORB has to know what type
a certain method has (is it an update method, or a reader
method). Obviously, the granularity of this part of the
synchronization, also affects the roundtrip time of a
method call. To reduce the round trip time one has to
come up with a way to capture application writers’
knowledge with respect to mutual exclusive accesses.
This is a potential future optimisation case.

4.6 Why use an FT-CORBA infrastructure?

 Building and testing our infrastructure has facilitated
evaluating the concept of FT-CORBA infrastructure in
itself.

On the one hand it is attractive to use a service oriented
middleware (CORBA) extension to build fault-tolerant
applications. The only thing required from the application
writer is the starting the service objects, deploying on a
set of hosts, and set the replication policy. Building the
infrastructure has shown us the feasibility of extending an
existing ORB to support fault tolerance the way the FT-
CORBA standard devises it.

On the other hand, building a fault-tolerant
infrastructure following the CORBA standard implies
using more resources and introducing new single points of
failure. For example, the fault monitors, though not fully
specified in the standard, are implemented as separate
entities (CORBA Objects) as the most straightforward
solution. Also, monitoring of an object being done via a
CORBA call is somehow waste of resources.

 The most critical point is perhaps that all service
building blocks of the infrastructure constitute single
points of failure. Thus, we can obtain transparency and
modularization, but we have to deal with infrastructure
vulnerabilities. In earlier works there are indications about

Figure 3: set_state time vs. state size

using the infrastructure itself to replicate CORBA objects
that are part of the infrastructure [11]. However, it is not
clear how the approach deals with the vulnerability. Extra
resources are needed but single points of failure are still
not removed.

In case of infrastructure components it might be easier
to use more efficient replication strategies that do not
provide transparency, a property that is important for
application object servers, but not for an infrastructure.

5. Conclusion

In this paper we have given an account of our
experience in building and evaluating a fault-tolerant
middleware based on the FT-CORBA specification. We
presented results from extensive tests on application
scenarios, using a dummy application as well as a multi-
tier activity manager from a real telecom setting. The
quantitative results show trade-offs between various
design parameters: number of replicas, replication style,
checkpointing frequency, and nature of application call
patterns.

There are several aspects that can be improved with
respect to the performance of our infrastructure. Some of
the ideas for improvement are optimisation points specific
to our design choices. Others are guidelines to application
writers to lead to desired effects in presence of certain
policies. Nevertheless, there are weaknesses that are
inherent to the FT-CORBA approach.

An interesting point of study is the potential for
incorporation of unreliable failure detectors in this
infrastructure, and a more clever approach for dealing
with retracted suspicions. Also, the work confirms that
there is a conflict between compliance to FT-CORBA
specification and the wish for distributed agreement on
group membership. Hence, the combination of robust
algorithms (that do not include managers with single point
of failure) is still a viable question to study in the context
of CORBA.

Acknowledgments

The authors would like to thank Calin Curescu for
preparing the application, and Johan Moe for useful
CORBA related discussions.

References

[1] Object Management Group, “Fault-Tolerant CORBA

Specification V1.0” available as
ftp.omg.org/pub/docs/ptc/00-04-04.pdf

[2] Object Management Group, “The Common Object Request
Broker: Achitecture and Specification” - Portable
Interceptors

[3] Exolab OpenORB webpage http://www.openorb.com

[4] Alberto Montresor, “Jgroup Tutorial and Programmer’s
Manual”, Technical Report 2000-13 available at
ftp.cs.unibo.it/pub/TR/UBLCS

[5] Robert van Renesse, Kenneth P. Birman, and Silvano
Maffeis, “Horus: A Flexible Group Communication
System”, Communication of the ACM, Vol. 39, Nr. 4, pp.
76-83, April 1996

[6] Mark C. Little and Santosh K. Shrivastava, “Integrating
Group Communication with Transactions for
Implementing Persistent Replicated Objects”, Distributed
Systems, Lecture Notes in Computer Science 1752,
Springer Verlag, pp.238-253, 2000

[7] Pascal Felber, Rachid Guerraoui, and Andre Schiper,
“Replication of CORBA Objects”, Distributed Systems,
Lecture Notes in Computer Science 1752, Springer Verlag,
pp.254-276, 2000

[8] Priya Narasimhan, Louise E. Moser, and P. Michael
Melliar-Smith, “Using Interceptors to Enhance CORBA”,
IEEE Computer, pp.62-68, July 1999

[9] P. Emerald Chung, Yennun Hung, Shalini Yajnik, Deron
Liang, and Joanne Shih, “DOORS: Providing Fault
Tolerance for CORBA Applications”, Poster session at
IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing
(Middleware'98), The Lake District, England, 1998

[10] Andreas Polze, Janek Schwarz and Miroslaw Malek,
“Automatic Generation of Fault-Tolerant CORBA-
Services”, Proceedings of Technology of Object-Oriented
Languages and Systems (TOOLS), Santa Barbara, August
2000, pp.205-215, IEEE Computer Society Press, 2000

[11] Priya Narasimhan, Louise E. Moser, and P. Michael
Melliar-Smith, “State Synchronization and Recovery for
Strongly Consistent Replicated CORBA Objects”, In
Proceedings of the 2001 International Conference on
Dependable Systems and Networks, Göteborg, Sweden,
pp.261-270, 2001

