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Abstract 
 

In this paper* we explore the trade-offs involved in 
making one major middleware fault-tolerant. Our work 
builds on the FT-CORBA specification (April 2000), 
which is not in widespread use due to lack of quantified 
knowledge about design rules and trade-offs. Recent 
results show preliminary overhead and trade-off analysis 
for a not entirely FT-CORBA-compliant system for 
embedded applications (Eternal). 

In distinction from Eternal, we have extended an 
existing open source ORB and combine it with a 
collection of service objects and portable request 
interceptors following the FT-CORBA standard. The 
paper reports on extensive studies relating the timing 
aspects to different parameters such as the replication 
style, the number of replicas, and the checkpointing 
frequency. The experiments were conducted using a 
realistic telecom application. 
 
1. Introduction 
 

Future data/telecom applications are built on top of 
object-oriented distributed system platforms that need 
high levels of dependability.  Therefore these industries 
stress the importance of enforcement of system-level 
properties such as fault tolerance, timeliness, and security 
in such platforms. Nevertheless, the ambition is to keep 
the application writer efforts minimal when adding these 
features to a certain application. 

While there could be more elegant approaches for 
supporting fault tolerance in runtime systems of a specific 
language like Java, Ada or Erlang, real systems are 
typically multi-language, multi-platform. Therefore, 
building fault-tolerance in a generic middleware is an 
interesting undertaking. CORBA is one of these types of 
middleware, and one of the platforms used by our 
industrial partners at Ericsson Radio Systems. 
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Although there has been a lot of research work about 
extensions of CORBA towards fault tolerance, a telecom 
engineer who so far built fault tolerance as part of the 
application, needs more information about what are the 
consequences of using a generic fault-tolerant 
middleware.  

Obviously there will be costs associated with support 
for fault tolerance in any infrastructure. Our goal is to 
provide indications about the performance trade-offs and 
the added robustness as a result of the proposed 
enhancement. Also, the engineer could be interested in 
whether the old legacy code dealing with fault tolerance 
inside the application is reusable in the new setting. This 
work will answer some of these questions in the context 
of fault-tolerant CORBA, using a realistic application. 

Following the FT-CORBA standard specification [1], 
we have built our infrastructure by combining: 

 
• a service approach seen by the application writer 
• an extension to an Object Request Broker (ORB)  
• CORBA portable interceptors [2] for requests.  

  
We have tested the infrastructure in a prototype setting to 
obtain some of the above-mentioned answers. Although 
we tried to follow the standard as much as possible, where 
the specification is not complete we had to make our own 
decisions. Our experiments provide a deeper 
understanding of the decisions already made in the 
specification and their consequences. The implementation 
also provides an insight in how to modify a standard ORB 
for supporting fault tolerance. 

To start with, we have tested this infrastructure with an 
artificially created server application. This experiment 
gave an indication of the overhead in the absence of 
failures. The measured overhead covered the cases of cold 
passive, warm passive and active replication. Next, a 
generic service from the telecom domain, provided by 
Ericsson Radio Systems was used as a test-bed. There 
were few changes in the application such as the addition 
of methods for getting and setting the state of the object. 
This paper explains the results of these studies so far. 

The paper is structured as follows. Section 2 presents 
some background information like some aspects of the 
FT-CORBA standard. Section 3 will describe the main 
parts of our infrastructure and some design decisions 
made. Section 4 presents quantitative evaluation results 



 

and discusses the insights gained. Section 5 concludes the 
paper. 
 
2. Background 
 

In December 2001 the FT-CORBA specification has 
been added to the latest CORBA standard (version 2.6). 
Its contents have not changed in a major way since the 
original introduction in April 2000. In what follows we 
give an overview of the main components of the specified 
infrastructure. 

This standard was drawn up against the background of 
several years of work in the fault tolerance research 
community. In section 2.2 we refer to some of the works 
which are closely related to the proposals of the standard, 
and therefore to our work.  
 
2.1. FT-CORBA 
 

To obtain fault-tolerant applications the FT-CORBA 
approach uses replication in space (replicated objects). 
Temporal replication is supported by request retry, or 
transparent redirection of a request to another server.  
Replicated application objects are monitored in order to 
detect failures. The recovery in case of failures is done 
depending on the replication strategy used. Support is 
provided for use of active replication, primary/backup 
replication, or some variations of these. The non-active 
replication styles provided are warm passive, and cold 
passive (primary/backup). The choice of policy is left to 
the application writer when initiating the server. 

Figure 1 shows the architecture for fault tolerance 
support according to the standard. 

There is a Replication Manager that implements 
interfaces such as Property Manager, Object Group 
Manager, Generic Factory.  The standard also informally 
refers to the notion of Fault-Tolerance Infrastructure. This 
is implicitly the collection of mechanisms added to the 
basic CORBA to achieve fault-tolerance. The Property 
Manager interface has methods used to set the above-
mentioned policy i.e. the replication style, the number of 
replicas, the consistency style (infrastructure-controlled or 
application-controlled), the group membership style 
(infrastructure-controlled or application-controlled). The 
Object Group Manager interface has methods that can be 
invoked to support the application-controlled membership 
style, at the price of losing transparency. The Generic 
Factory interface has the create_object and delete_object 
methods. The Replication Manager’s create_object 
method is invoked when a new object group has to be 
created. As a consequence, the Object Factories’ 
create_object methods are called. Each object in a group 
has its own reference, but the published one is the inter-
operable object group reference. 

Application replicas are monitored by Fault Monitors 
by means of calling the is_alive method on them. Thus, 
the FT-CORBA specification mostly focuses on the pull 
monitoring style. Push monitoring style is also mentioned 
but not specified in the standard. The fault monitors, as 
mentioned by the standard, are unreliable (they cannot 
decide whether an object crashed or it is just slow). 
Monitoring is initiated by the Replication Manager. Fault 
Monitors are given indications about the fault monitoring 
granularity, such as member level, type identifier level or 
host level.  

The Replication Manager is involved in the recovery 
process of the object group. For this, it needs to register as 
a consumer at the Fault Notifier. The Fault Monitors 
announce faults to the Fault Notifier that further 
announces it towards its consumers. 

For checkpointing purposes, application replicas must 
implement the Checkpointable interface and provide two 
methods in the application class. These are named 
get_state and set_state. Checkpointing has to be used in 
cold/warm passive replication. The standard also requires 
logging of method calls and replies in those cases.  

When using the active replication style the 
specification strongly recommends the use of a gateway 
for accessing the group members. There is also an 
indication about an alternative, namely the usage of 
proprietary broadcast primitives at the client, and thus, 
direct access to the group.  

To be able to manage large applications, the notion of 
fault tolerance domain is introduced. Each fault tolerance 
domain contains several hosts and object groups. There is 
one Replication Manager associated with it, as well as one 
Fault Notifier. Object Factories and Fault Monitors are 
specified as separate entities (objects) running on every 
host within the FT domain.    
 
2.2. Related work 
 

There have been attempts to build infrastructures to 
provide application writers with the possibility to 
construct fault-tolerant application in an easy way.   

The Java RMI technology is, for example, used to 
provide fault-tolerant distributed services in the Jgroup 
toolkit [4]. Clients interact with these services by an 
external group method invocation. Group members 
cooperate via internal group method invocations. This 
cooperation is achieved by using a group membership 
service, as well as a reliable communication service. 

The Horus toolkit [5] provides a platform independent 
framework for building fault-tolerant applications. It 
offers application writers a set of building blocks (such as 
system and application protocols), to choose from in order 
to fit system requirements. With Horus the virtual 
synchrony runtime model is well supported. 



 

Prior to the specification of the FT-CORBA extension 
(April 2000), few works have studied alternative 
augmentations of CORBA with a process (object) group 
module. 

Little et.al. present a way of integrating a group 
communication service with transactions [6]. They start 
with a system that supports transactions (CORBA), but no 
process groups. Then, they consider enhancing the use of 
transactions by introducing process groups. 

Felber et.al. show some possible approaches for 
introducing object groups in CORBA [7]. Three different 
approaches are presented depending on the position of the 
group communication module relative to the ORB. These 
are: the interception approach, the integration approach, 
and the service approach. 

Narasimhan et al. implemented operating system level 
interceptors to provide fault tolerance to CORBA [8]. The 
result of their research efforts in this direction is the 
Eternal System. With this approach, an ORB’s 
functionality can be enhanced for fault tolerance without 
changes in the ORB, or in the application.   

Chung et. al. present a fault-tolerant infrastructure 
(DOORS) built using the service approach, on top of 
CORBA [9]. In this setup, application objects register to 
DOORS in order to be made fault-tolerant. Fault tolerance 
services are realized with two components: 
ReplicaManager and WatchDog.  

A framework for fault-tolerant CORBA services with 
the use of aspect oriented programming is presented by 
Polze et al. [10]. Their goal is to provide the application 
writer with the possibility to build a fault-tolerant 
application by choosing the types of faults to be tolerated: 
crash faults, timing faults, design faults. The toolkit then 
chooses the appropriate fault-tolerance strategy. 
Communication between a client and a replicated service 
is done via an interface object. 
 
3. Our generic infrastructure 
 

We have chosen to use a Java based open source ORB, 
OpenORB, as a basis for our enhanced infrastructure [3]. 
Figure 1 depicts the architecture of our implemented 
environment in adherence to the standard.  

To be able to build a fault tolerant application using 
our infrastructure, the application writer needs the 
following ingredients:  

• the collection of service objects (Replication 
Manager, Object Factories, Fault Monitors, Fault 
Notifier, and Logging & Recovery Controllers)   

• the basic (extended) ORB classes 
• the proper Portable Request Interceptors for 

different replication styles. 
These constituents of our infrastructure are now explained 
in turn. 
 

3.1. Service Objects 
 

The Replication Manager, as specified in the standard, 
contributes to object group creation and recovery. It was 
implemented according to the specification. 

The Object Factory runs on every host in the fault 
tolerance domain, and has the role to create a replica for 
an object group.  The standard does not specify exactly 
how or where the created CORBA object replicas will 
run. In our implementation every replica runs in a 
different Java Virtual Machine (a new Unix process).  

The Fault Monitor, as specified in the standard, runs on 
every host and monitors replicas. Besides that, also as a 
result of the specification, our implementation allows the 
monitoring at different granularities. Due to the usage of 
Java language, the most straightforward implementation 
of the monitor is as a CORBA object with a collection of 
internal threads. Also, a characteristic of our fault 
monitors is that they are forced to be reliable, by simply 
killing an object as soon as it is suspected to have failed.   

The Fault Notifier is also implemented conforming to 
the specification. It receives the fault event from the 
monitor and it sends it further to the consumers (e.g. 
Replication Manager). 

The FT-CORBA standard does not mention how or 
where the logging and checkpointing has to be done.   

In our implementation, the Logging & Recovery 
Controller is also a service (CORBA) object. It performs 
the checkpointing of objects on its host by using a 
separate internal thread, for every object. The state is 
recorded in a log located in memory (the location of the 
log could be easily changed to be on stable storage). Also, 
the method calls and replies are recorded in the same log, 
from where they are retrieved later at recovery. 

The idea is to have the logging and recovery objects on 
every host. The usage of these objects is dependent on the 
replication policy used. In case of cold passive replication 
the Logging & Recovery Controller at the location of a 
failed group member is contacted to obtain the latest state 
and set of method calls. In case of warm passive 
replication, the logged items are taken from the Logging 
& Recovery Controller on the new primary’s host. 
 
Checkpointing decisions 

 
As mentioned in the specification, checkpointing is 

done only on objects whose state can change while in 
service, and in passive replication scenarios. It is obvious 
that the checkpointing has to be synchronized with 
execution of update methods on those objects. In this 
context some interesting questions arise: Must 
checkpointing be done periodically? In case of periodic 
checkpointing, how long should be the interval between 
two checkpoints? It is quite straightforward to see why 
these issues are important: the recording frequency affects  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the average time for recovery upon failures and it 
influences the perceived (average) reaction time of the 
server as seen by the client. In the next section we will 
come back to these questions in the context of our 
experiments. 
 
Gateway for active replication  
 

In case of active replication, we chose the gateway 
approach. The gateway is set up as a separate CORBA 
Object. One of the gateway’s roles is to broadcast method 
calls to the group members. Besides this, it will be used as 
a duplicate suppressor for the active object group’s 
outgoing method calls. The gateway is a dynamic part of 
the infrastructure, as opposed to all aforementioned   
components. 
 
3.2. Extensions of the ORB 

 
We found that some of the basic ORB classes had to be 

extended. For example, in case of primary backup 
replication, the method for choosing the target address for 
the request had to be changed to be able to find the 
primary’s address (as opposed to the standard non-FT-
ORB which had no notion of primary). 

The standard recommends the usage of a retention 
identifier and a client identifier for a certain request, to 
uniquely identify it. To generate such unique identifiers, 
the ORB class itself had to be modified. Another 
extension to the ORB relates to the use of portable request 
interceptors that will be described below. 
 
3.3. Portable Request Interceptors  
 

The retention identifier and client identifier are sent in 
a request service context. A group reference version 
service context is also recommended by the standard. To 
add these service contexts, at the client side, a portable  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

client request interceptor is used. This applies both when 
the client is just a simple one, and when it is itself 
replicated. The interceptor is also used, in the latter case, 
for recording replies to outgoing requests. This avoids 
unnecessary resending requests if resends are attempted. 

Portable request interceptors have an important role at 
the server side as well. Here, we will talk about server 
request interceptors. Their main function is to contact the 
Logging & Recovery Controller for method call and reply 
logging purposes. For different server replication styles, 
different server interceptors are used. For example, in case 
of stateless replication style, there is no need for logging, 
at least not for logging of method calls. In case of warm 
passive replication style there is need for broadcasting of 
method calls to the rest of the Logging & Recovery 
Controllers for the group.  

Any changes to the group will cause a group reference 
version update. Thus, when serving a request one has to 
verify whether the client has the right version of the 
object group reference or not. This is also done in the 
server side interceptor. 

Sometimes, a request has to be stopped at the level of 
the server portable interceptor and the answer sent from 
that level. For this purpose, a special exception had to be 
introduced as well as its handling. This was a further 
extension to the ORB. In addition, a mechanism for 
sending the reply from within the interceptor had to be 
devised. 

  
4. Evaluation  
 

In this section we present the experimental studies of 
the implemented infrastructure and analyse the results 
obtained.  
 
 
 

Figure 1: The architecture of our implemented environment



 

4.1 Goals 
  

The goal of our work is to obtain a deeper 
understanding of how the addition of fault tolerance to an 
existing middleware affects the design of new 
applications and the behaviour of existing ones. The 
application writer is primarily interested in overheads 
incurred due to the usage of a new infrastructure. There is 
also interest in the effects of the new mechanisms on the 
size of the code and its maintainability, as well as the 
application’s performance in fail-over scenarios. Thus, the 
goal of our experiments has been to shed a light on our 
infrastructure’s behaviour in this context. 

A second goal is to evaluate the proposals made in the 
FT-CORBA specification in general, and get an insight 
into the common weaknesses and strengths of any 
infrastructure built upon this standard. 

 
4.2 Experiment setup 
 

Earlier works in the area have typically provided 
experimental results for artificially created applications 
and test cases (e.g. [7]). Such experiments are easy to set 
up. Also, isolation of infrastructure properties from the 
application-induced ones is simplified in this case. We 
have used such artificial servers for initial tests; but in 
addition, we have tested a real application provided by 
our industrial partners. This application was a generic 
service in the operations and management (O&M) part of 
the radio networks together with artificial client side test 
cases. 

In the first approach, the client calls the four operations 
of a replicated artificial server in a sequence, inside a 
loop. The timing information recorded here is thus 
summed up and averaged over 200 runs of each method 
call using this loop. In the second, more complex O&M 
application, there were six operations within the replicated 
server subjected o our tests. The server is a so-called 
Activity Manager with the role to create application-
related activities and jobs, and schedule them at later 
times. To do this, it also keeps track of the activities’ 
progress and termination. Operations were called using a 
test case provided resembling a client application by 
Ericsson. 

To average out the effects of network load and other 
uncontrollable elements these tests were also performed in 
loops with varying number of iterations (100, 200, 400 or 
800). Although more detailed investigations in this 
direction would be interesting, for the time being, we 
think that simple averaging is adequate.  

The Activity Manager is not stateless. Neither is the 
artificial server. So the replication styles tried out were 
cold and warm passive, as well as active replication for 
both cases. In all three cases, of course, the client was 
kept unchanged.  

Other parameters in our experiment setup were number 
of replicas (ranging over 3, 4, or 5 replicas) and the length 
of the checkpointing interval (ranging over 1s, 5s and 
10s).  

 To estimate overheads, roundtrip times of requests 
were measured (from recording the request at the client 
side, transport over the network and CORBA layers, to 
recording on the server side, performing the operation, 
checkpointing if needed, as well as sending the result over 
the network and receiving the response at client side). 
Then comparisons were made with the same roundtrip 
delay in the  non-replicated case. Failover times were also 
measured and compared with a reference delay. The 
reference is given by the time taken when a (non 
replicated) server crashes and has to be restarted (possibly 
manually).  
    The probes were placed in the client, as well as server 
interceptor methods that are most probably called at the 
client and similarly at the server side (e.g. send_request, 
receive_request, send_reply, receive_reply).  
     The probe effect resulting from the instrumentation of 
the recordings was reduced by adding interceptors to the 
non-replicated runs in exactly the same places as above 
(even if interceptors were not needed for running the non-
replicated scenario, and were simply put for measurement 
purposes).  
 
4.3 Expected results 
 
      This section describes our intuitions before running 
the experimental studies. These will be followed up by the 
real measurements in the following section. 

 The number of replicas was expected not to affect 
overhead or failover times in case of cold passive 
replication. Of course, if the number of replicas drops 
under a certain minimum, new replicas have to be created 
and this can increase the failover time. In case of warm 
passive replication the expected result would have been 
that the roundtrip time was slightly influenced by the 
number of replicas, because of the extra time spent in 
broadcasting method calls to the other replicas’ logging & 
recovery controllers. But, in fact, the broadcasting was 
implemented by use of CORBA one-way method calls. 
Hence, the overhead should not increase dramatically. 
Similarly, in case of active replication, the number of 
replicas should not influence the roundtrip time, since the 
gateway returns the first (fastest) result to the client.  

The rate of checkpointing (inverse of the 
checkpointing interval) can influence the roundtrip time 
for update operations. This is only relevant for cold and 
warm passive replication.  As mentioned earlier, it is only 
in the passive style that the call to the checkpointing 
operation, get_state, is made. 
 
 



 

4.4 Results 
 

The measured overheads for the artificial application 
were seemingly high. For example, for one method call 
the average over 200 iterations, when the server group 
size was 3, the checkpointing interval was 5s, and the cold 
passive style was used, we had 46ms of roundtrip time 
compared to 24ms for the non-replicated case (92% 
overhead). 

Although this seemed very high at the first glance, we 
realised that it might not be representative, since a trivial 
application with low response time will inevitably show a 
large overhead percentage. Thus, the telecom application 
was of real interest. In the realistic application we 
observed considerably lower percentages in general (over 
all the experiments). For example, for one method call we 
had in the non-replicated setup a roundtrip time of 106ms, 
compared to the cold passive with 3 replicas and 
checkpointing interval at 5s, where the roundtrip time was 
156ms (47% overhead).  

The measured roundtrip times for the real application 
showed a clear dominance of the logging component for 5 
method calls (the sixth method had the computation time 
as the dominant component). Actually the logging 
component of the roundtrip time is captured at a point 
where all incoming requests are synchronised on the 
server. So, it is not the very logging method call that takes 
the time. The component includes the wait time, i.e. the 
time that the calling (client) method has to wait until the 
currently running (update or get_state) method on the 
server finishes, together with all the other (update and 
get_state) method calls that arrived earlier. So, in fact it is 
not the logging itself which is taking time, but the 
synchronisation that we cause in order to be able to 
recreate the scenario when a new primary has to take over 
after a crash. For the above scenario the wait component 
was in fact 74ms of the 156ms (47%). Note that this wait 
time alone is almost four times the measured overhead for 
the artificial application. 

 We now summarise the observed influence of the 
chosen parameters on the measured overheads. 

In the cases of cold and warm passive replication, 
overheads were pretty much the same, and independent of 
the number of replicas, as expected. On the other hand, 
the checkpointing interval was observed to slightly 
influence the wait time for the update requests and so the 
roundtrip time.  Figure 2 shows the % of wait time out of 
the round trip time (y-axis) for different experiments 
performed on one method call, using cold passive style 
(averages were done over 100 calls, 200 calls, etc). The 
bars depict the variation relative to the choice of 
checkpointing interval. 
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Figure 2: Wait time vs. checkpointing interval 
 
The figure shows a typical chart for experiments on 

many methods where other parameters were varied. It 
illustrates that wait time increases as checkpointing 
frenquency is raised. 

The quantitative values for overheads are listed as 
percentages in the table below. Every row in the table 
summarises the averaged results over the repeated runs of 
the method call according to the test loop of 100 iterations 
(100, 100, 100, 400, 100 and 200 respectively). They also 
summarize averaged results obtained in the 9 different 
scenarios (3 dimensions for the replica group and 3 values 
for the checkpointing interval). For example, 55% - 79% 
in the first row indicates the collective experience with all 
the cold passive runs we have had with method 1, over 
100 runs. 55% is the lowest overhead % among the 9 
scenarios and 79% is the highest overhead %. The first 
column describes the roundtrip times (ms) for the non-
replicated case, and the two following columns 
differentiate cold and warm passive styles. 
 

n.r. Cold passive Warm passive 
Method 1 130 55% – 79% 53% - 66% 
Method 2 61 77% - 128% 110% - 134% 
Method 3 65 62% - 92% 74% - 106% 
Method 4 80 76% - 168% 100% - 151% 
Method 5 133 44% - 111% 59% - 93% 
Method 6 106 37% - 98% 68% - 94% 

 
Table 1: Summary of primary backup experiments 
 
In case of active replication, for the real application, 

the situation was somewhat different from the case of the 
artificial one. In the made-up application there are no 
outgoing calls from the replicated server. Thus, there is no 
overhead associated with the duplicate suppression 
mechanism of the gateway.  

The overheads for the made-up application in this case 
are somewhat dependent on the number of replicas, and 
remain within acceptable ranges. For example, we had a 
roundtrip time of 66ms as compared with 24ms for the 3-
replica group mentioned earlier in this section.  



 

In case of the real application, on the other hand, we 
noticed that the roundtrip time is considerably larger than 
the non-replicated case, and this is due to the gateway’s 
duplicate suppression mechanism. The fact that servers 
acting as replicated clients have a higher roundtrip time 
can be illustrated by the following comparison. The 
roundtrip times for method 3 (averaged over 100 calls) 
using active replication ranged between 177ms and 325ms 
(4 replicas and 5 replicas respectively). This method call 
does not in turn call other methods (acting as a client) and 
has a reasonable overhead compared to its non-replicated 
time (65ms). In contrast, method 4 exhibits a roundtrip 
time in the range 1698ms and 4678ms (for 3 respectively 
4 replicas), which is at least 20 times its non-replicated 
time! 

The down side of long overhead when actively 
replicating a server is compensated by the faster recovery 
times. For example the fail-over time for the actively 
replicated activity manager is in the range of 62ms to 
73ms. This should be compared to a manual recovery 
process that is in the order of minutes, and to the passively 
replicated group recovery times that are in the range of 
1.7s to 18.7s. The time for recovery depends on the 
checkpointing interval that affects how many earlier calls 
have to be replayed, and on the size of the state which has 
to be set on the new primary in case of cold passive 
replication. The recorded recover times tend to be smaller 
in case of warm passive replication. Figure 3 below shows 
how the size of the state to be set in the new primary 
influences the time for set_state. The picture shows that, 
the time spent with set_state is not influenced only by the 
size of the state. 
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4.5 Lessons learnt 
 

Average roundtrip time for update method calls is 
highly influenced by the nature of the client side code. 
That is, the sequence and placing in time of the method 
calls affects the wait time mentioned earlier. The wait 
time for an update method call is built up by execution 
times of update operations that arrived just before that 
method call and are executing or queuing on the server.   

In our present implementation, because of the way 
checkpointing of state is done, there is no support for 
handling of application created threads that can modify 
the object’s state by calling methods directly on the 
servant. Such modifications are not reflected in the logged 
method calls, and thus can not be replayed once there is a 
crash. Therefore, using such design patterns is not 
advisable in sensitive applications.   

Another aspect of interest is the synchronization of 
update method executions. In the present implementation 
the granularity of this synchronization is at method level. 
For this, of course, the server ORB has to know what type 
a certain method has (is it an update method, or a reader 
method). Obviously, the granularity of this part of the 
synchronization, also affects the roundtrip time of a 
method call. To reduce the round trip time one has to 
come up with a way to capture application writers’ 
knowledge with respect to mutual exclusive accesses. 
This is a potential future optimisation case. 
 
4.6 Why use an FT-CORBA infrastructure? 
 
     Building and testing our infrastructure has facilitated 
evaluating the concept of FT-CORBA infrastructure in 
itself. 

On the one hand it is attractive to use a service oriented 
middleware (CORBA) extension to build fault-tolerant 
applications. The only thing required from the application 
writer is the starting the service objects, deploying on a 
set of hosts, and set the replication policy. Building the 
infrastructure has shown us the feasibility of extending an 
existing ORB to support fault tolerance the way the FT-
CORBA standard devises it.   

On the other hand, building a fault-tolerant 
infrastructure following the CORBA standard implies 
using more resources and introducing new single points of 
failure. For example, the fault monitors, though not fully 
specified in the standard, are implemented as separate 
entities (CORBA Objects) as the most straightforward 
solution. Also, monitoring of an object being done via a 
CORBA call is somehow waste of resources.  

 The most critical point is perhaps that all service 
building blocks of the infrastructure constitute single 
points of failure. Thus, we can obtain transparency and 
modularization, but we have to deal with infrastructure 
vulnerabilities. In earlier works there are indications about 

Figure 3: set_state time vs. state size 



 

using the infrastructure itself to replicate CORBA objects 
that are part of the infrastructure [11]. However, it is not 
clear how the approach deals with the vulnerability. Extra 
resources are needed but single points of failure are still 
not removed.  

In case of infrastructure components it might be easier 
to use more efficient replication strategies that do not 
provide transparency, a property that is important for 
application object servers, but not for an infrastructure.     
 
5. Conclusion 
 

In this paper we have given an account of our 
experience in building and evaluating a fault-tolerant 
middleware based on the FT-CORBA specification. We 
presented results from extensive tests on application 
scenarios, using a dummy application as well as a multi-
tier activity manager from a real telecom setting. The 
quantitative results show trade-offs between various 
design parameters: number of replicas, replication style, 
checkpointing frequency, and nature of application call 
patterns. 

There are several aspects that can be improved with 
respect to the performance of our infrastructure. Some of 
the ideas for improvement are optimisation points specific 
to our design choices. Others are guidelines to application 
writers to lead to desired effects in presence of certain 
policies. Nevertheless, there are weaknesses that are 
inherent to the FT-CORBA approach.  

An interesting point of study is the potential for 
incorporation of unreliable failure detectors in this 
infrastructure, and a more clever approach for dealing 
with retracted suspicions. Also, the work confirms that 
there is a conflict between compliance to FT-CORBA 
specification and the wish for distributed agreement on 
group membership. Hence, the combination of robust 
algorithms (that do not include managers with single point 
of failure) is still a viable question to study in the context 
of CORBA.    
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