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Abstract

Lately the demand for real-time data services has increased. Applications
used in manufacturing, web-servers, e-commerce etc. are becoming increas-
ingly sophisticated in their data needs. In these applications it is desirable to
process user requests within their deadlines using fresh data. The real-time
data services are usually provided by a real-time database. Here, the work-
load of the databases cannot be precisely predicted and, hence, the databases
can become overloaded. As a result, many deadline misses and freshness vi-
olations may occur. To address this problem we propose a QoS-sensitive
approach to guarantee a set of requirements on the behavior of real-time
databases, even in the presence of unpredictable workloads. Our approach
is based on imprecise computation, where it is possible to trade off resource
needs for quality of requested service. Imprecise computation is applied on
both data and transactions. A QoS specification is given in terms of data
and transactions quality. We propose two dynamic balancing algorithms to
balance the workload and the quality of the data and transactions, so that a
given QoS specification can be satisfied. Further, we apply feedback control
scheduling to provide robustness against unpredictable workload variations.
We have carried out a set of experiments to evaluate the performance of
our algorithms. In our simulation studies we have applied a wide range of
workload and run-time estimates to model potential unpredictabilities and
the performance analysis show that the proposed algorithms give a robust
and controlled behavior of real-time databases, in terms of transaction and
data quality, even during transient overloads and when we have inaccurate
run-time estimates of the transactions.

Keywords: Quality of Service, Real-time Databases, Imprecise Computa-
tion, Feedback Control Scheduling
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Chapter 1

Introduction

Lately the demand for real-time data services has increased. Applications
used in manufacturing, web-servers, e-commerce etc. are becoming very so-
phisticated in their data needs. In these applications it is desirable to process
user requests within their deadlines using fresh data. Since the external en-
vironment is constantly changing, it is imperative to maintain consistency
between the environment and the database. In dynamic systems, such as web
servers and sensor networks with non-uniform access patterns, the workload
of the databases cannot be precisely predicted and, hence, the databases can
become overloaded. As a result, many deadline misses and freshness viola-
tions may occur. To address this problem we propose a quality of service
(QoS) sensitive approach, to guarantee a set of requirements on the behav-
ior of the database, even in the presence of unpredictable workloads. Our
scheme is important to applications where timely execution of transactions
is emphasized, but where it is not possible to have exact analysis of the worst
case execution times.

Our approach is based on imprecise computation [18], where it is pos-
sible to trade off resource needs for quality of requested service. Imprecise
computation techniques have been successfully applied to applications where
timeliness is important. In our work, imprecise computation is employed on
both data and transactions. A QoS specification can be given in terms of
data and transaction quality. A transaction is divided into one mandatory
and one or several optional subtransactions. The mandatory subtransaction
is necessary for an acceptable result and must be computed to completion
before the transaction deadline. The optional subtransactions are executed
when requested utilization is available. By executing more optional sub-
transactions, the overall quality of the result produced by the transaction is
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enhanced. During transient overload the miss percentage of optional sub-
transactions may increase, degrading the quality of transactions. Here, a
higher transaction quality can be achieved by allocating more resources to
transactions. This is achieved by lowering the workload of the data updates,
resulting in a decrease in data quality. For managing the workload allocation
between user and update transactions, we propose two dynamic balancing
algorithms, FCS-IC-1 and FCS-IC-2, to balance the workload and hence the
quality of the data and transactions. Main challenges include unpredictabil-
ity of workload and effective workload balancing between user transaction
and data quality.

We apply feedback control scheduling policy [20] to provide robustness
against unpredictable workload variations. In a feedback control system, ref-
erence (target) performance can be achieved by dynamically adjusting the
system behavior based on the difference of the current performance and the
reference. Feedback control is very effective to support the specified perfor-
mance when the dynamics of the controlled system includes uncertainties.
By adapting the robustness of feedback control, we can provide the guaran-
teed real-time data services in terms of transactions and data quality.

The suggested algorithms, FCS-IC-1 and FCS-IC-2, are designed such
that the behavior of a real-time database (RTDB) can be controlled, even
in the presence of load variation and inaccurate run-time estimated. We
have carried out a set of experiments to evaluate the performance of our
algorithms. In our simulation studies we have applied a wide range of work-
load and run-time estimates to model potential unpredictabilities. FCS-IC-1
and FCS-IC-2 give robust and controlled behavior of transaction and data
quality, even during transient overloads and when we have inaccurate run-
time estimates of the transactions. This has been shown by comparing the
performance against selected baseline algorithms.

1.1 Report Outline

The rest of this report is organized as follows. In chapter 2, preliminaries
and terminology needed for the rest of this report is given. The background
and analysis of the problem to be solved is discussed in chapter 3. The
approach and suggested algorithms are defined in chapter 4. In chapter 5,
the result of the simulation studies are presented. This report ends with a
section on related work, given in chapter 6, and a summary in chapter 7
where conclusions and future work are discussed.



Chapter 2

Background

In this chapter we give the theory of the techniques used throughout this
report. First, a short description of real-time databases is given, followed by
a section on feedback control scheduling. Finally, an overview of the topic
of imprecise computing is given.

2.1 Real-time Databases

RTDBs differ from traditional databases in several ways. Their differences
and common properties are discussed below with regards to several aspects,
such as data and transaction semantics and timing considerations. Also
techniques for trading off quality for timeliness are discussed. First, a general
comparison between traditional databases and real-time databases is given.

RTDBs facilitate the same feature as traditional databases, below re-
ferred to as simply databases. RTDBs must be able to handle mechanisms
for describing data, maintaining the correctness and integrity of data, effi-
cient access to data and the correct execution of queries and transactions
despite concurrency and failures. Although the similarities, they differ in
two major aspects; data and transactions semantics.

Considering data semantics, databases deal with persistent data, i.e. data
that does not age. RTDBs on the other hand, for the most part, deal with
temporal data, i.e. data that may become outdated. For example, consider
the case of e-commerce applications. They span the spectrum from low-level
data, such as stock prices to high-level aggregated data, e.g. recommended
selling/buying point. It is well known that stock prices change constantly,
leading to the requirement that the database keeps the information fresh.
Hence, it is imperative that the state of the environment, as given by the

3
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RTDB is consistent with the actual state of the environment. In order to
maintain high freshness, timely monitoring of the environment as well as
timely processing of the sensed information is necessary. The sensed data in
turn is used to derive other data.

In addition to the time constraints of data, timing requirements also
arise because of the need to process and make data available for requesting
applications (e.g. a transaction should return an answer within a certain
point in time). This leads to the notion of predictability. As predictability
can be expressed in functional and temporal requirements, we only discuss
the latter in the following sections. Below a more detailed description of the
differences with regards to data and transactions semantics is given.

2.1.1 Data in RTDBs

The need to maintain consistency between the state of the environment as
given by a RTDB and the actual environment leads to the notion of temporal
consistency, which is defined as [23]:

e Absolute consistency, which refers to consistency between the environ-
ment and the state of the RTDB, and

e Relative consistency, which refer to consistency between a set of data
objects that are used to derive a new data object.

Before giving further explanations of the above consider the following. A
data object d; is defined by the following: (CV;,T'S;, AV I;), where CV; is the
current value of d;, T'S; the timestamp giving the time when the observation
of CV; was done, and AV I; the absolute validity interval of d;. AV I; refers
to the length of time followed by T'S;, during which d; is considered to have
absolute validity, i.e. d; is considered fresh. Temporal data objects can
be further classified into base date and derived data. Base data holds the
view of the outside environment, while derived data is derived from possibly
multiple base or derived data. A set of data objects used to derive a new
data object form a relative consistency set R. Each such set R is associated
with a relative validity interval R,,;. Assume that d; € R. d; has a correct
state iff:

e d; is logically consistent, i.e. satisfy database consistency constraints,
and

e d; is temporally consistent, i.e.

— CurrentTime <TS; + AV I;
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— Vd]’ € R, |TS_7' — TS,'| < Ryvi

Considering the second temporal consistency requirement, this means
that for a derived data object, the data objects in the relative consistency
set, d; € R, should not be observed far away from each other. This, of course,
is to maintain a certain degree of freshness among members of R.

Further, temporal data can be updated periodically or aperiodically. A
periodic update occurs at fixed intervals, while an aperiodic update is not
predictable and occurs due to an event, such as when the data value has
changed.

2.1.2 Transactions in RTDBs

RTDBs employ three kinds of transactions, also discussed in databases.
These are:

e Write-only transactions, writing a sensed value (from the outside envi-
ronment) to the database.

o Update transactions, computing derived data and storing it into the
database.

e Read-only transactions, reading a value from the database.

As discussed above, RTDBs should process and make data available for
user applications with regards to time constraints. Timing requirements
are not emphasized in databases, as their main goal is to maximize the
total throughput. As in real-time systems we associate a deadline with each
transaction in a RTDB. The deadline is a point in time when the execution
of a transaction must be finished, i.e. the time when the results of executing
the query should become available to the user. Depending on the transaction
semantics, different kinds of deadlines exist in RTDBs:

e Hard deadlines, where the deadlines cannot be missed or else the impli-
cation will be a catastrophe. We say the value imparted to the system
is negative at a deadline miss.

e Firm deadlines, where the deadlines may be missed. We say the value
imparted to the system is zero after the a deadline miss. If a transaction
delivers its service too late, the system cannot draw values from the
tardy service.
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e Soft deadline, where the deadlines may be missed. We say that the
value imparted to the system is gradually decreased to zero after a
deadline miss. A transaction with a soft deadline may still deliver its
service late, as the system will still draw some value from the tardy
service.

Hence, in RTDBs processing of transactions must take their different
characteristics into account. Since meeting deadlines is the goal, it is impor-
tant to understand how transactions are scheduled and how their scheduling
relates to time constraints. Scheduling techniques used in real-time systems
can also be applied here, e.g. earliest deadline first (EDF) where the trans-
actions are executed in the order determined by their absolute deadlines.
Scheduling is not further discussed here and the reader is referred to litera-
ture, e.g. [26, 27, 7).

Another issue is concurrency control, i.e. how to satisfy consistency
among the data accessed by transactions. Here the notion of isolation is
emphasized, i.e. for each pair of transaction T; and T, the result of executing
T; should become visible to T; before T; has started or after T; has finished.
In other words, data objects accessed by T; must not be changed by Tj
during the execution of T;. Here it is important to serialize the schedules
with regards to consistency and also time constraints in the case of RTDBs.

2.1.3 Trading off Quality for Timeliness

Since time constraints in RTDBs are important, it is acceptable in some
cases to trade off quality for timeliness. In other words, we can tolerate
that a transaction delivers a service of lower quality in the exchange for re-
duced timing faults. In [23], several strategies with regards to completeness,
accuracy and consistency have been pointed out.

Considering completeness, a RTDB can reject a set of write-only or up-
date transactions when the system is overloaded. The choice of rejection can
be based on the criticalness of the data being stored in the database.

Considering accuracy, a transaction may not be able to access a data (e.g.
due to freshness) or the data itself may not be available (e.g. in the case when
another transaction is writing to the data). Instead other methods resorting
to approximate query evaluation can be used [11, 31]. In [31], a query pro-
cessor produces approximate answers if there is not enough time available.
The accuracy of the answer increases monotonically as the computation time
increases. A relational database system proposed in [11], can produce ap-
proximate answers to queries within certain deadlines. Approximate answers
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are provided by processing a segment of the database by sampling. Given
a time quota, the sizes of the samples are computed and an estimation of
the query is provided. The correctness of the estimation is improved as the
number of samples increase.

Further, if a certain data object is not available or stale, various approx-
imation methods can be used. Approximating a data object can be done by
numerical analysis, e.g. extrapolation.

Turning to consistency, strict serializability can be relaxed, giving shorter
response time. For example, a transaction can be executed in spite of concur-
rent updates to the data objects used by the transaction (which in the tra-
ditional sense violates consistency) [22]|. Such relaxations allow more trans-
actions to execute concurrently thereby improving performance.

2.2 Feedback Control Scheduling

We now give the framework of a typical feedback control scheduling (FCS)
structure. Further, a general feedback control design methodology is dis-
cussed, followed by a description of each of the steps in the method.

A typical structure of a feedback control system is given in Figure 2.1.
It consists of a controlled system and a controller. Input to the controller is
the difference between the performance reference (y.), below referred to as
simply reference, and the controlled variable (y). The goal is to control the
controlled system such that the controlled variables converge towards their
corresponding references. The controller changes the value of the controlled
variables by adjusting a set of manipulated variables (u), which are inputs
to the controlled system. We refer to closed loop control if the controlled
variables are used to control the controlled system. In contrast, the con-
trolled variables are not used when open loop control is applied and, hence,
the controlled system is controlled without the knowledge of the controlled
variables. The system in Figure 2.1 applies closed loop control.

As depicted in Figure 2.1, the controlled system consists of an actuator,
which adjusts the “configuration” of a processing plant according to the ma-
nipulated variables. The adjustment of the configuration can take form in
different ways and is application dependent. In [20], the configuration of the
processing plant is modified by changing the QoS-level for a set of tasks,
where each QoS-level of a task is defined by a set of tuples, such as CPU
utilization, deadline, period and execution time. By changing the QoS-level
the CPU utilization can be adjusted. The configuration adjustment can also
be enforced using admission control of arriving tasks. If rejected, the task
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Figure 2.1: Feedback control scheduling architecture

is discarded otherwise it is admitted to the system and allowed to execute.
Other ways include changing the frequency or voltage of the actual hardware
that the processing plant resides on.

The basic scheduler schedules the tasks according to a policy (e.g. EDF).
The performance of the processing plant, including the controlled variable,
is monitored by the monitor.

A general feedback control design methodology is given below. Each of
the items are discussed further in the following text.

1. The system designer specifies the desired behavior of the system with
a performance specification based on steady-state and transient perfor-
mance.

2. A dynamic model of the controlled system is derived for the purpose
of performance control.

3. Based on the specification and the dynamic model derived in steps 1-2,

a controller is designed.

2.2.1 Specification

A designer can specify the desired behavior of the controlled system with
regards to various performance metrics (below referred to as metrics), such
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vaue

reference

Figure 2.2: Definition of settling time (T) and overshoot (M)

as deadline miss percentage and utilization. The performance metrics have to
be chosen such that the state of the system can be captured. Traditional ways
of specifying the behavior such as average performance cannot capture the
transient behavior of the system in response to changes to the environment.
Here, by the use of time-domain specifications or transient specifications one
can specify the responsiveness and efficiency of a real-time system adapting
to changes in the run-time environment. Figure 2.2 illustrates some of the
time-domain specifications used for control systems. The settling time (T)
is the time it takes the system transients to decay to a certain level. The
overshoot (Mp) is the maximum amount the system overshoots its final value
divided by its final value (often given as percentage).

Further, a designer may consider the steady-state error, which is the
difference between the values of a controlled variable in steady state and
its reference. Stability refers to whether an input to the closed loop (i.e.
a reference) causes bounded outputs (i.e. controlled variables). We define
stability and present methods for testing stability and computing steady-
state error in section 2.2.4.

Further issues such as sensitivity and robustness are also mentioned in
control theory literature. In the case of sensitivity, it is of interest to inves-
tigate the impact of various disturbances (e.g. arrival and termination of
tasks) on the feedback control loop. Because the designs of control systems
are based on simplified models, it is also interesting to know how accurate
the model has to be for the design to be successful. Here robustness of a con-
troller to model errors is important. The issues of sensitivity and robustness
are out of the scope of this report and the reader is referred to literature in
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control theory [29, 9].

2.2.2 Modeling

The system designer establishes a dynamic model of the real-time system for
the purpose of performance control. A dynamic model describes the math-
ematical relationship between the control input and the controlled variables
of a system with differential/difference equations or state space matrices. In
modeling it is often convenient to split a system into interconnected sub-
systems. A model for each subsystem is then derived and by merging the
models one can establish a model of the entire system.

Two different approaches can be used to establish the dynamic model
of a system. With an analytical approach, a system designer describes the
system directly with mathematical equations based on the knowledge of the
system dynamics. Example of such modeling can be found in [25], where
a liquid tank model is used. Each accepted task contributes to an amount
of liquid in the tank, where as termination of a task result in a decrease in
liquid. The level of the liquid corresponds to the CPU utilization.

When an analytical model is not available, a system identification ap-
proach can be used to estimate the system model based on profiling experi-
ments [30]. In the latter case, a model can be generated by using experimen-
tal data from e.g. transient response and frequency response. Example on
this work can be found in [21], where a statistical model is tuned by system
profilation.

2.2.3 Controller Design

Given a performance specification and a model, one can design a controller
based on existing mathematical techniques, such as root locus, frequency
response and state space design. Using mathematical techniques enable us
to derive analytic guarantees on the transient and steady-state behavior of
the system. The choice of design methodology depends on the desired per-
formance (from the specification) and the accuracy of the model.

It is known that proportional integrator (PI) controllers do not require an
accurate model [28]. However, they also show relatively poor performance
compared to other controllers designed by frequency response or state space.
Below we give an overview of the concept of PI controllers, as they are used
in this work.

PI controllers work on the following principle. If the controlled vari-
able is smaller than the reference, increase the manipulated variable. If the
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controlled variable is greater than the reference, decrease the manipulated
variable.!

We define the error, e(t), as the difference between the reference and
the controlled variable, i.e. e(t) = y,(t) — y(t). As described above the
goal is to minimize e?(t) for all £. This is achieved by the PI controller
using two different parts, the proportional and the integral controller. The
proportional controller (P controller) is given by,

u(t) = Kpe(t)

where Kp is the proportional gain. We can view the P controller as an
amplifier that adjusts the manipulated variable u(¢) up or down. A system
with a P controller may have a steady-state offset in response to a constant
reference and may not be entirely capable of rejecting a constant disturbance
[28]. One way to improve the steady-state accuracy is to introduce integral
control, hence forming PI control. A PI controller is given by,

u(t) = Kple(®) + K1 | e(€)de) (2.1)
k
u(k) = Kp(e(k) + K1 3" () (2.2)
3=0

where to denotes the point in time when control is started. The discrete
version of equation (2.1) is given by equation (2.2). From (2.1), we can see
that if the error persists during a period of time, the integral term increases
in value and, consequently, the manipulated variable increases. An increase
in manipulated variable pushes for changes in the controlled variable. There-
fore, the steady-state error is in general zero when integral control is used.
The same effect occurs for equation (2.2), as the integral is replaced by a
summation.

The designer needs to tune Kp and K based on the performance specifi-
cation and the model. There are various ways of tuning the parameters such
as root locus and Ziegler-Nichols tuning method. These methods are not
further discussed here as they require knowledge in transform and control
theory. The reader is referred to literature in control theory [28].

2.2.4 Stability and Steady-State Error

In this work, we consider stability in terms of the Bounded-Input-Bounded-
Output (BIBO) relation. A system is defined as BIBO stable if a bounded

1We assume that an increase in manipulated variable results in an increase in controlled
variable and vice versa.
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input gives a bounded output for every initial value of the input. When the
word stable is used without further qualification in this text, BIBO stability
is considered. Below a test for stability is given. The underlying theory of
the methods discussed below is given in [29].

There are various methods for investigating stability. Given the z-trans-
form of a controller, C(z), and the model, P(z), the closed loop is stable
if the roots of the denominator (i.e. the poles) of the closed loop transfer
function,

H() - CEPE)

1+ C(2)P(z)
are within the unit circle. If this is ensured, then the closed loop system is
stable.

Further, when analyzing control systems, it is important to calculate
the steady-state error of the controlled variables, i.e., the difference between
a controlled variable in steady-state and its reference. Assume a simple
feedback system, as shown in Figure 2.1. If the system is stable, then the
steady-state error of a controlled variable,

. Yrz 1
Eg =y, —1 -1
s =y~ (e = ) T PR
is computed by taking the difference of the reference, y,, and the steady-
state value of the controlled variable, which is derived by applying the final
value theorem to the closed loop transfer function [29]. Observe, in order to
use the final value theorem, the stability of the system must be proved.

2.3 Imprecise Computing Techniques

In real-time systems, a deadline is associated with each task. In the case of
hard real-time systems, the result of missing a deadline can be catastrophic,
i.e. the value imparted to the system is negative. Various factors such
as varying execution time make meeting all deadlines at all times difficult.
Here, the imprecise computation technique can minimize this difficulty. It
prevents timing faults and achieves graceful degradation by giving the user
an approximate answer, in return for timeliness guarantees.

The main idea is to divide a task into one mandatory and one or sev-
eral optional subtasks. The mandatory subtask has the highest priority and
must be completed before its deadlines. If the system is not overloaded, the
optional subtasks are executed as well, producing more accurate results. Ex-
isting imprecise computation techniques are classified into several categories
[18]:
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e Monotone computations, where the quality of a tasks intermediate
results does not decrease as it executes longer. Practically, the results
of a task are recorded at appropriate times during its execution. The
task is then able to return an answer along with an error indication
at any time during its execution. This method for returning imprecise
results is called the milestone approach. The drawback of this method
is the overhead caused by storing the intermediate results.

e Use of sieve functions, where computational steps can be skipped to re-
duce time. This requires however more complex scheduling algorithms,
since the execution of a step must be planned in advance, such that the
completion of the task before the deadline can be guaranteed. In radar
applications, the step that computes noise estimation may be skipped.
During transient overloads, an old estimation of the noise may be used.

e In applications where neither the milestone nor the sieve functions
can be applied, one can use multiple versions of a task. Here each
version produces results of varying degree of impreciseness in return for
resource needs (such as execution time etc). In the case of a transient
overload, the system can choose to execute an alternative version of a
task. The drawback of this method is the overhead caused by storing
multiple versions as well as the increased scheduling complexity due to
the same reasons described for sieve functions.
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Chapter 3

Problem Formulation

3.1 Background

It is known that RTDBs may become overloaded, since the load applied on
the systems cannot be predicted and various run-time estimates are difficult
to accurately estimate. Initial research has shown that by adapting feed-
back control scheduling [20] and dynamic update policy [14] (the QMF ap-
proach), user transactions and updates can be dynamically balanced to guar-
antee transaction miss percentage and freshness requirements at the same
time. The deadline miss percentage of user transactions can be decreased by
switching the update policy of one or more data objects from immediate to
on-demand policy, giving a higher CPU power to user requests. In contrast,
improved data freshness can be achieved by favoring updates. Intuitively,
during transient overloads, more effort can be put on user transactions in
order to keep the miss percentage low. Whereas when the load is small, more
effort can be put on keeping the data fresh and consistent. The QMF ap-
proach has shown that the behavior of RTDBs can be controlled to a greater
extent compared to a set of simple baselines.

Another possible approach that has been successfully applied in overload
management is imprecise computation [18]. Here, we can trade off execution
time for the quality of a certain task or in our case a transaction. By doing
so we are able to prevent timing faults and we can to a greater extent control
the behavior of RTDBs. The main strategy is as follows. During transient
overloads, the quality of the transactions can be degraded, thus lowering
the resource needs of the updates and the user transactions. Lowering the
resource needs results in fewer timing faults, more transactions admitted
and, consequently, more users requests serviced. Similarly, when the system

15
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Figure 3.1: A set of arriving updates. Updates one and four are discarded
since their value does not deviate much from the currently stored value.

is underutilized, the quality of the transactions and the service provided
is increased. Associated with imprecise computing is a certain error that
indicates the degree of service quality provided.

Integrating imprecise computation with feedback control scheduling sho-
uld provide a robust way of managing overloads in RTDBs. Here, the
database administrator can specify the lowest level of quality tolerated dur-
ing overloads. By the use of feedback control scheduling, service quality
can dynamically be adjusted, such that the desired quality of service can be
maintained.

3.2 Problem Analysis

In a RTDB, the notion of imprecision may be applied at data object and/or
transaction level. For a data object representing a real-world variable, we
can allow a certain degree of deviation compared to the real-world value.
Hence we relax the temporal consistency requirement. If such a deviation
can be tolerated, arriving updates may be discarded and, hence, the saved
CPU power can be allocated to other transactions. Figure 3.1 illustrates this
concept. Here we allow the value of a certain data object to deviate from the
real-world value by one unit at most. Initially, the value of the data object is
three. Since the first update deviates from the initial value by one unit, this
update is discarded. The next update cannot be discarded since its value
deviates by more than one unit.
In general, we let the data error,

DE; = f(CurrentValue;, UpdateV alue;)

of a data object d; be a function of the current value (CurrentValue;) of
d;, and the update value (UpdateV alue;) of the latest arrived transaction
(T;) that updated or was going to update d;. Note, T} also denotes update
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transactions that were going to update d;, but that were discarded. The data

error gives an indication of how much the values of data objects stored in the

RTDB deviate from the corresponding values in the external environment.
We introduce the notion of mazimum data error,

MDE = g(PerformanceVariable,...)

as a function of a set of performance variables giving the current state of the
RTDB (e.g. load, deadline miss percentage). The variable M DE gives the
maximum data error tolerated considering a set of performance variables.
The idea is to vary MDE according to the system performance. If the
RTDB is overloaded, we may increase the data error tolerance in exchange
for increased saved resource due to discarding update transactions. The
data error is adjusted by the following criteria. An update transaction (7})
is discarded if the data error of the data object (d;) that is to be updated by
Tj is less or equal to MDE (i.e. DE; < MDE). Otherwise, the update is
committed (executed). In both cases the time stamp of d; is updated, hence
we say that the value of d; has been revised. In the example above, we define
DE; as,
DE; = |CurrentValue; — UpdateV alue;|

and set MDFE to one.

Introducing impreciseness in transactions gives us another dimension by
which we can trade off execution time for quality. For transactions, there
are a variety of imprecise computation models one can consider. These in-
clude milestone, use of sieve functions and multiple version (see section 2.3).
The main idea is to logically divide a transaction into a mandatory and one
or more optional parts. The mandatory subtransaction is necessary for an
acceptable result and must be computed to completion before the transac-
tion deadline. During overloads, the optional parts can be discarded and
consequently decreasing the execution time and required resources for the
transaction. Discarding one or more optional parts give rise to a certain
error which we call the transaction error.

3.3 Objective

The objective of this thesis is to investigate how impreciseness in form of
data and transaction can be applied and maintained according to a given
QoS specification using feedback control scheduling. This includes:

1. Investigating how impreciseness can be applied at data object level.
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2. Investigating how impreciseness can be applied to user transactions.

3. Defining a QoS specification in terms of data and user transaction
impreciseness.

4. Developing algorithms for managing data and user transactions quality
such that a given QoS specification can be satisfied.

5. Evaluating the performance of the proposed algorithms.

It should be noted that in this work, we do not consider derived data.
Hence, our data model only addresses base data. The data model is discussed
in more detail in section 4.1.3.



Chapter 4

Approach

The following chapter gives a description of our approach. First, the data
and the transaction models are given, followed by the definition of a QoS
specification. The rest of this chapter is devoted to the presentation of the
proposed algorithms, FCS-IC-1 and FCS-IC-2.

4.1 Data and Transaction Model

4.1.1 Database Model

We consider a firm RTDB model, in which tardy transactions, i.e. trans-
actions that have missed their deadlines, add no value to the system and
therefore are aborted. We consider a main memory database model, where
there is one CPU as the main processing element.

4.1.2 Transaction Model

Transactions are classified either as update transactions or user transactions:

e Update transactions arrive periodically and may only write to base
data objects.

e User transactions arrive aperiodically and may read temporal and read-
/write non-temporal data. The inter-arrival time of user transactions
is exponentially distributed.

User and update transactions (7;) are assumed to be composed of one
mandatory subtransaction (M;) and #0; optional subtransactions (O; j, 0 <

19
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J < #0;). For the remainder of the paper, we let t; € {M;,0;1,...,0; #0,}
denote a subtransaction of T;.

We use the milestone approach (see section 2.3) to transaction imprecise-
ness. Here, we have divided transactions into subtransactions according to
the milestones. A mandatory subtransaction is completed when it is com-
pleted in a traditional sense. The mandatory subtransaction is necessary for
an acceptable result and must be computed to completion before the trans-
action deadline. The optional subtransactions depend on the mandatory
subtransaction and may be processed if there is enough time or resources
available. It is assumed that all subtransactions (¢;) of a transaction arrive
at the same time as the transaction (7;). The first optional subtransaction
(i.e. O;,1) becomes ready for execution when the mandatory subtransaction
is completed. In general, an optional subtransaction, O;;, becomes ready
for execution when O; ;1 (where 2 < j < #0;) is completed. Hence, there
is a precedence relation given by M; < O;1 < O;2 < ... < O; 0,

We set the deadline of all subtransactions (t;) of a transaction to the
deadline of the transaction (7;). A subtransaction is terminated if it is com-
pleted or has missed its deadline. A transaction (7;) is terminated when its
last optional subtransaction (i.e. O; #0;,) is completed or one of its subtrans-
actions has missed its deadline. In the latter case, all subtransactions that
are not completed are terminated as well.

Each transaction and its respective subtransactions are characterized by
the following attributes.

The following attributes are common to all transactions and subtransac-
tions:

e EET;, the estimated (average) execution time of T;. EET;[t;],
the estimated (average) execution time of ¢;.

e AET;, the average execution time of T;. AET;[t;], the average
execution time of ¢;.

o AT;, the arrival time of T;. We set AT;[t;| = AT;, Vt;.
In addition to the common attributes, we apply the following attributes to
update transactions:
o AV;, the average update value of T;.
e P;, the period of T;. We set P;[t;] = P;, Vt;.
e D;, the relative deadline of T;. We set D;[t;] = D; = P;,Vt;.
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e EU;, the estimated utilization of T;, EU; = EET;/P;.
EU;t;], the estimated utilization of ¢;, EU;[t;] = EET;[t;]/ P;.
e AU;, the average utilization of T;, AU; = AET;/P;.
AU;[t;], the average utilization of ¢;, AU;[t;] = AET;[t;]/P;.

In addition to the common attributes, we apply the following attributes to
user transactions:

e EIT;, the estimated inter-arrival time of T;. We set EIT;[t;| =
EIT;, Vt;.

e AIT;, the average inter-arrival time of T;. We set AIT;[t;] =
AIT;, Vt;.

e D;, the relative deadline of T;. We set D;[t;] = D; = AIT;, Vt;.

e EU;, the estimated utilization of T;, EU; = EET;/EIT;.
EU;t;] the estimated utilization of t;, EU;[t;| = EET;[t;|/EIT;.

o AU;, the average utilization of T;, AU; = AET; /AIT;.
AUjlt;], the average utilization of t;, AU;[t;] = AET;[t;]/AIT;.

For update transactions, we assume that there are no optional subtrans-
actions (i.e. #0; = 0). Hence, each update transaction is composed of a
single mandatory subtransaction. This assumption is based on the fact that
updates do not use complex logical or numerical operations and, hence, have
a lower execution time than user transactions.

In our user transaction model, we assume that the number of optional
subtransactions is greater or equal to zero (i.e. #0; > 0). However, for im-
precise transactions it is required, inherent by the assumptions, that trans-
actions consist of one mandatory and at least one optional subtransaction.
Our work primarily focuses on imprecise transactions.

It should be noted that a feature in our transaction model is that it mod-
els systems in unpredictable environments where the actual CPU utilization
of transactions is time-varying and unknown to the scheduler. With such
modeling it is possible to use feedback control loops to dynamically adapt
the scheduling to load variations at run-time.

4.1.3 Data Model and Data Management

As described in chapter 2, data can be classified into two classes, temporal
and non-temporal. For temporal data, we only consider base data, i.e. data
that hold the view of real-world and updated by sensors. In our model, a
data object d; has the following attributes.
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o CV;, the current value of d;.
e T'S;, the time stamp of d;.
o AV I;, the absolute validity interval of d;.

A base data object d; is considered temporally inconsistent or stale if
the current time is later than the timestamp of d; followed by the absolute
validity interval (avi) of d;, i.e.,

CurrentT'ime > TS; + AV ;.

Hence, the absolute validity interval is the length of the time a temporal data
object remains fresh or temporally consistent. We set the absolute validity
interval of d; to twice the period of T}, i.e. AV I; = 2 x P;, where P; denotes
the period of the transaction updating d;. This is done in order to guarantee
that the absolute consistency of d; is not violated [23].

We let data error,

[CV: — Vi

DE; = 100 x
|CVil

(%) (4.1)

where V; is the value of the latest arrived transaction (7)) that updated
or was going to update d;. For example, consider Figure 3.1. Here, in the
time period between the arrival and completion (commitment) of the second
update transaction, we have a data error of 100 x ‘3;7|% = 100 x %% (the
current value is three since the first update transaction was discarded). Once
the second update transaction commits, the data error becomes zero since
the current value stored in the database is equal to the value of the last
arrived update transactions, i.e. update two. The data error remains zero
until update transaction number three arrives.

4.1.4 Admission Control, Scheduling and Concurrency Con-
trol

For user transactions, admission control is applied to reduce the chance of
potential overload. A newly arrived user transaction can be admitted to
the system if the required CPU utilization is currently available. A more
detailed description of admission control is given in section 4.3.4.

We apply earliest deadline first (EDF) [17] to schedule user transactions.
Update transactions and mandatory user subtransactions are considered im-
portant and, thus, scheduled before optional user subtransactions.
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For concurrency control, we employ two phase locking with highest prior-
ity (2PL-HP) [2], in which a low priority transaction is aborted and restarted
upon a conflict. 2PL-HP is selected since it is free of priority inversion.

4.2 Performance Metrics and QoS specification

In our approach, the database administrator (DBA) can explicitly specify the
required database QoS, which defines the desired behavior of the database.
An overview of performance specifications and metrics for real-time systems
in general can be found in [19]. In this work we adapt steady-state and
transient-state performance metrics. The metrics are as follows:

e Deadline Miss Percentage of Mandatory User Subtransactions (M™M).
In a QoS specification the DBA can specify the deadline miss percent-
age of the mandatory subtransactions. M™ is defined as,

#DeadlineMiss™

MM =100
X #Terminated™

(%) (4.2)

where # DeadlineMiss™ denotes the number of mandatory subtrans-
actions that have missed their deadline and #Terminated™ is the
number of terminated mandatory subtransactions. We exclusively con-
sider user transactions admitted to the system.

e Deadline Miss Percentage of Optional User Subtransactions (MO).
MPO is the percentage of optional subtransactions that have missed
their deadline. M9 is defined by,

#DeadlineMiss®
#Terminated®

MO =100 x (%) (4.3)
where #DeadlineMiss® denotes the number of optional subtransac-
tions that have missed their deadline and #Terminated© is the num-
ber of terminated optional subtransactions. We exclusively consider
user transactions admitted to the system.

o Mazimum Data Error (MDE). This metric gives the maximum data
error tolerated for the data objects. Note that M DE is common to all
data objects. An update transaction (T}) is discarded if the data error
of the data object (d;) that is to be updated by 7j is less or equal to
MDE (i.e. DE; < MDE). Increasing M DFE results in a higher error
tolerance (i.e. we allow less precise data) and, hence, more updates are
discarded.



24 CHAPTER 4. APPROACH

e Quershoot (Mp) is the worst-case system performance in the transient
system state. Overshoot is applied to M9, MM and MDE.

e Settling time (Ts) is the time for the transient overshoot to decay and
reach the steady state performance.

e Utilization (U). In a QoS specification the DBA can specify a lower
bound for the utilization of the system.

We define Quality of Data (QoD) in terms of MDE. An upgrade in
QoD refers to a decrease in M DE. In contrast a degrade in QoD refers to
an increase in MDE.

We measure user transaction quality in terms of deadline miss percentage
of optional subtransactions, i.e. M©. This is feasible in the case when
optional subtransactions contribute equally to the final result.!

The DBA can specify a set of target levels or references for the metrics
listed above. A QoS specification can hold the following: MM = 1% (ref-
erence MM), MO = 10% (reference M©), MDE, = 2% (reference MDE),
U > 80%, Ts < 60s and M, < 30%. This gives the following transient
performance specifications: MM < MTM x M, = 1.3%, M9 < 13% and
MDE < 2.6%. The QoS given above requires some explanation. We have
specified that the average miss percentage for mandatory subtransactions
to be 1%, maximum 1.3%. This does not mean that the system will keep
the average miss percentage at 1% at all times, but that the system will
try to keep the miss percentage at the specified reference during overloads.
When the system is underutilized, one can expect to see small or zero miss
percentage.

4.3 Feedback Control Scheduling Architecture

In this section we give an overview of the feedback control scheduling ar-
chitecture used in this work. Further, we identify a set of control related
variables, i.e. manipulated variables and controlled variables. The general
outline of the feedback control scheduling architecture is given in Figure 4.1.

Admitted transactions (or subtransactions) are placed in the ready queue.
The transaction handler manages the execution of the transactions. At each
sampling instant, the controlled variables, miss percentages and utilization,

1This is a simplification, which we intend to address in future work by computing
errors considering the amount of completed subtransactions having different values. One
can then specify a QoS with the notion of transactions error.
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Figure 4.1: Feedback control scheduling architecture

are monitored and fed into the miss percentage and utilization controllers,
which compare the performance references, MTM , MTO , and U,, with the
corresponding controlled variables to get the current errors and compute
a change, denoted AU, to the total estimated requested utilization. We
refer to AU as the manipulated variable. Based on AU, the QoD manager
changes the total estimated requested utilization by adapting the QoD level
(i.e. adjusting MDE). The precision control then schedules the update
transactions based on MDE. The portion of AU not accommodated by
the QoD manager, denoted AU,,¢y, is returned to the admission controller,
which enforces the remaining utilization adjustment.

4.3.1 Streams and Sources

The streams (Stream;) generate update transactions, whereas the user trans-
actions are generated and submitted by sources (Source;).
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4.3.2 Transaction Handler

The transaction handler provides a platform for managing transactions. It
consists of a freshness manager (FM), a unit managing the concurrency con-
trol (CC) and a basic scheduler (BS).

Freshness Manager FM checks the freshness before accessing a data ob-
ject, using the timestamp and the avi of the data. If the transaction
(Tyser) is accessing a stale data object (d;) there are two options:

o Wait for next update, if the estimated execution time of Tyger
(EETyser) added to the next arrival time of the transaction up-
dating d; is earlier than the deadline of Tyser (Dyser)-

o Use stale data if the above condition does not hold.

Concurrency Control We employ two-phase locking with highest priority
(2PL-HP) [2, 12| for concurrency control, where a conflict is resolved
by allowing the transaction with the highest priority (in our case the
transaction with the earlier deadline) to lock the data object. 2PL-HP
is chosen since it is free from priority inversion and has well known
behavior.

Basic Scheduler The FCS architecture includes a basic scheduler that
schedules admitted tasks according to a scheduling policy (e.g. Earliest
Deadline First, Rate Monotonic etc). We have chosen earliest deadline
first (EDF), due to its high performance [17, 27]. Since the properties
of the scheduling policy can have significant impact on the design of
the feedback loop [20], our design and model tuning are based on EDF.
Conceptually, transactions are scheduled in a multi-level queue system.
Update transactions and mandatory user subtransactions are placed in
the highest priority queue, whereas optional user subtransactions are
placed in a lower priority queue.

4.3.3 Feedback Control

As discussed above, controllers are used to compute a change to the to-
tal estimated requested utilization, such that a given QoS specification can
be satisfied. A detailed discussion regarding the design and tuning of the
controllers is given in section 4.5.
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4.3.4 Admission Control

The admission controller (AC) controls the flow of transactions into the
database. When a new transaction is submitted to the database, AC de-
cides whether it can be admitted to the system. Given the total estimated
requested utilization (Ugstreq), the AC admits a transaction (T;) if the esti-
mated utilization of admitted subtransactions and EFET; is less or equal to
UEstReq-

In the current setting, all optional subtransactions are taken into account
when admitting a transaction. A negotiation process may be added, so that
a transaction is admitted with fewer optional subtransactions. This gives us
another way of regulating M©.

4.3.5 Precision Control

The precision controller discards an update transaction writing to a data
object, having an error less than the maximum data error allowed, i.e.,

DE; < MDE

where DE; is the current data error of the data object d; that is to be
updated by T}. If the data error of d; is greater than M DE, then the update
transaction is executed. In both cases the time stamp of d; is updated.

4.4 System Modeling

In system modeling, we identify the main components of the controlled sys-
tem, the data values that flow in and out of them and the mathematical
relationships between these values. This section describes our approach to
system modeling. The particular form of the models we construct (linear
models) enables us to use a set of analytical methods that are available in
control theory. For analysis purposes, we apply the principles of z-transform
theory.

There has been several initial work on modeling real-time systems using
linear models [20, 21]. In [20], an analytical approach to system modeling is
used whereas in [21] a statistical (ARMA) model is fit to historical measure-
ments of the controlled system. In our work, we adapt the model used in
[20], since it has been well-studied and shown to provide good results. The
model is shortly discussed below. The reader is referred to [20] for a more
detailed description.



28 CHAPTER 4. APPROACH
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Figure 4.2: Model of the controlled system

The controlled system includes AC, QoD manager, BS, and monitor. The
input to the controlled system is the change in the total estimated utilization
(AU). The output of the system is the controlled variables (i.e. MM, MO,
and U).

As mentioned earlier, it is hard to model a real-time system due to its
underlying complexity, resulting in a non-linear and time varying system.
However, since PI controllers are known for their robustness, it is often ade-
quate to model such a system with a linear model for the purpose of control
design methodology. The block diagram of the system is depicted in Figure
4.2.

We use the notation, where X (k) and X(z) denote the time domain
and the z-domain respectively of the variable X. The goal is to derive a
transfer function describing the relation between the manipulated variable,
i.e. AU(z), and the controlled variables, i.e. MM(z), M©(z), and U(z).

Starting from the control input, the estimated requested utilization is
the integration of the control input AU. Formally, the estimated requested
utilization in period k + 1,

UEstReq(k + 1) = UEstReq(k) + AU(k) (4'4)
UEstRre (z) _ 1
AtU(Z') T z—1 (45)

is the summation of the estimated requested utilization (Ugstreq(k)) and
estimated utilization adjustment AU(k) in period k. Note, the estimated
utilization adjustment, AU(k) refers to the desired change in utilization
during period k + 1. The z-transform of equation (4.4) is given in equation
(4.5). Further, the actual requested utilization (Uactreq(k)) may differ from
Ugstreq(k). This is due to incomplete knowledge about the controlled sys-
tem, e.g. unknown execution times of the transactions and data conflicts.
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Therefore, Ugctreq(k) is computed according to the following,

UActReq(k) = GA X UEstReq(k) (46)

where G 4, the utilization ratio represents the extent of worst case workload
variation in terms of actual total required utilization.

The next step becomes to model the utilization and the miss percentages
based on the actual requested utilization. The relationship between U ctreq
and U is non-linear due to saturation. This occurs when Uactreq > 100%
(CPU overloaded), resulting in no change of U even if AU is varied. This
can formalized by the following:

Uactreq(k); Usctreq(k) < 100%

Uk) = { 100%, Uctreq(k) > 100% (4.7)

The case is somewhat different with the miss percentages M™ (k) and
MO(k). The schedulable threshold for mandatory subtransactions, denoted
UM(k), and optional subtransactions, denoted UQ(k), is defined as the
utilization threshold, in the k! sampling period, for which no deadline
miss can be observed for the respective type of subtransaction. When the
miss percentages are saturated (i.e. inside the saturation zones given by
Uctreq(k) < UM (k) and Uactreq(k) < UZ(k)) no deadline misses are ob-
served, since adjustments of AU and consequently Ugcireq(k) will not affect
the miss percentages (until the utilization becomes greater than the thresh-
old and miss percentages start increasing). However, when outside the sat-
uration zones (i.e. Uictreq(k) > UM (k) or Uactreq(k) > US(k)), the miss
percentage for either subtransaction is increased nonlinearly. Note, since
mandatory subtransactions have higher priority than optional subtransac-
tions, the schedulable threshold for mandatory subtransactions is greater
than the threshold for optional subtransactions (i.e. U} (k) > U3 (k)). One
way of linearizing the relationship between Uactreq(k), MM (k) and MO (k)
is to take the derivative at the vicinity of UM (k) and UQ (k). Hence, we let,

B dMM (k) _

G% - dUActReq(k) (UACtRelI(k) - Ut]flll(k)) (4'8)
_ dMO(k) B

6% = ey Waanealk) = UR(K) (4.9

where GA and G, denote the miss percentage factors. At the vicinity of
the schedulable utilization thresholds, we have:

MM (k) = MM(k — 1) + G (Usctreq(k) — Usctreg(k — 1)) (4.10)
MO(k) = MO(k — 1) + G3(Unctheq(k) — Unctreg(k — 1)) (4.11)
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From equations (4.4)-(4.11), we can derive a transfer function for each of
the controlled variables when it is outside its saturation zone:

Utilization Controller. Under the condition that Ugctreq < 100%, there
exists a transfer function,

from the control input AU to CPU utilization U.

Mandatory Subtransaction Miss Percentage Controller. Under the
condition that Ugctreq > Uf,‘:" , there exists a transfer function,

_ GaGif

pM
M z—1

from the control input AU to miss percentage of mandatory subtrans-
actions MM (z).

Optional Subtransaction Miss Percentage Controller. Under the
condition that Uactreq > Ut%, there exists a transfer function,

z—1

from the control input AU to miss percentage of optional subtransac-
tions MO (z).

Since the same control design and tuning method is applied to both
mandatory and optional subtransaction miss percentage controllers, we use
the same symbol Py(z) to denote P (z) and P{(z) for the remainder of
this report.

4.5 Feedback Controller Design and Tuning

In this section, we discuss different kinds of controllers and how to apply
control design methods and analysis to the controllers. Based on the analyt-
ical system model derived in section 4.4, we tune a set of model parameters
and then use root locus to tune the controllers. Mathematical analysis is
applied to evaluate the performance of the tuned controllers.

From the discussions in section 2.2, we learned that feedback control
scheduling is able to deal with dynamic systems that are resource insufficient
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Figure 4.3: Miss percentage / utilization controller architecture

and operating in environments where the load applied on the system cannot
be predicted. We employ PI regulators, since compared with other regulators
they do not require a precise model of the controlled system.

There have been several FCS policies proposed, such as FC-U, FC-M and
FC-UM [20]. FC-U uses a utilization control loop to control the utilization
according to a reference, U,. FC-U can guarantee that the system has zero
or low miss percentage in steady state if its reference U, is less than the
schedulable utilization threshold of the system. Note, this requires that the
schedulable utilization threshold is known in advance.

FC-M on the other hand uses a miss percentage control loop to directly
control the system miss percentage. Compared with FC-U, the advantage of
FC-M is that is does not depend on any knowledge of utilization bounds.

Finally, FC-UM integrates the miss percentage and the utilization con-
trollers. This has the advantage that the DBA can simply set the utilization
reference to an expected value (based on profiling etc.) that causes zero or
low deadline miss percentage. Similarly, the DBA can set the miss percent-
age references, M and M?, according to the application requirements.

We use FC-M and an extended version of FC-UM in our algorithms for
controlling the quality of data and user transactions (given in section 4.6).
An overview of the controllers and how they are integrated is given in Figure
4.3. Depending on the FCS policy being used, different controllers are em-
ployed. In FC-M only the miss percentage controllers are used, whereas in
FC-UM both miss percentage and utilization controllers are used. Here we
assume that our controllers are of single-input-single-output type. By using
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separate controllers we can achieve modularization and also provide flexibil-
ity against varying workload mixtures among mandatory and optional sub-
transactions. The former statement results in a design methodology where
FCS policies can more easily be designed by simply joining controllers that
are needed.

Using separate controllers raises the question of integration of the signals
from each controller. In the case where miss percentage controllers are used,
we first need to integrate the signal from the mandatory and the optional
subtransaction miss percentage controllers. If using FC-M the signal from
the miss percentage controllers are returned to the QoD manager. However,
when a combination of miss percentage and utilization controllers (e.g. FC-
UM) is used, an integrated signal from both the miss percentage and the
utilization controller is computed and returned (discussed in section 4.5.3).

4.5.1 Miss Percentage Controller

Miss percentage controllers are employed for mandatory and optional sub-
transactions, respectively, to guarantee their miss percentages. As speci-
fied by the QoS specification, there is a target miss percentage associated
with mandatory and optional subtransactions (M and MP? respectively).
We employ separate controllers for mandatory and optional subtransaction
miss percentages to compute control signals, AUps and AUp, based on the
current performance error, Ejs and Eg, which are the differences between
the references and the measured performance (i.e. Eyy = MM — MM and
Eop = MTO — M©). If the miss percentage of mandatory subtransactions
overshoots its reference, then AUj,s becomes negative as a request to lower
the estimated requested utilization. Similarly, if the miss percentage of op-
tional subtransactions overshoots its reference, then AUp becomes negative
as a request to lower the estimated requested utilization.

4.5.2 Utilization Controller

When using FC-UM, an utilization controller is used as well. This is done
in order to prevent a potential underutilization when all the miss percentage
requirements are satisfied due to underutilization. It should be noted that
underutilization is avoided in FC-M by either setting MM # 0 or MP # 0
[20]. At each sampling period, the utilization controller computes the utiliza-
tion control signal AUyy; based on the utilization error, Eyy, which is the
difference between the reference utilization (U,) and the current utilization

).
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It is known that accurate execution time estimates may not be available
in RTDBs. This is due to data conflicts that result in aborts or restarts
of transactions, and also varying data needs of transactions. Consequently,
utilization cannot be accurately predicted and, hence, the miss percentages
may overshoot. In order to suppress potential overshoots, we have extended
FC-UM such that the reference utilization, U,, is constantly updated on-
line.2 The utilization reference is dynamically updated according to a linear
increase/exponential decrease scheme. Initially, U, is set to 80%. As long as
the utilization controller has the control (i.e. the miss percentages are below
the references), the utilization reference is increased by a certain step. As
soon as one of the miss percentage controllers take over (i.e. one of the miss
percentages is above its reference), U, is reduced exponentially, i.e., we have

U, (k) + 80
2

where U, (k+1) is the new utilization reference. This is to prevent a potential
overshoot due to a too optimistic utilization reference (for which a miss
percentage overshoot can be observed). Note, this approach is self adapting
and does not require any knowledge about the underlying run-time estimates.

Ur(k+1) = (%)

4.5.3 Derivation of Single Control Signal

Derivation of AUsp is done as follows.

e If both miss percentage control signals are negative (i.e. AUp < 0 A
AUp < 0, we set,
AUpyp = AUy + AUp

to the sum of both control signals. This is done since both miss per-
centages are above their references and both signals must be considered
to compensate for miss percentage overshoots.

e If the above does not hold, we set,
AUMP == InlIl(AUM, AUo)

to the minimum of the control signals. If one of the control signals is
negative (due to an overshoot), we return the negative one to reduce
the miss percentage of the corresponding subtransaction’s type. If both
are positive, the min operator provides a smooth transition from one
system state to another one (transition between low and high miss
percentages among mandatory and optional subtransactions) [20].

*In the original FC-UM the reference utilization is not modified on-line.
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In the case of FC-M, we set AU to AUy p. However, when FC-UM is

used, we derive,

AU = min(AUyp, AUy1ir)

by taking the minimum of AUp;p and AUyy;. This is done for the similar
reasons as mentioned above.

4.5.4 Integrator Antiwindup

For real-time systems, it may happen that a control variable reaches its miss
percentage saturation point (e.g. when U reaches 100%). When this hap-
pens the feedback control loop is broken and the system runs as an open
loop because the controlled variable will remain unchanged independently of
the controller output. This may have an undesired effect, as the error will
continue to be integrated, growing to a large value. We say that the integra-
tor “winds up”. It is then required that the error has the opposite sign for a
long time before a controlled variable reaches its respective reference. The
same effect happens when a controlled variable is far away from its reference.
For example, consider the case when M© reaches MC. If MM is less than
MM then Ey is greater than zero and this results in the miss percentage
controller (of mandatory subtransactions) accumulating the error. If at a
later stage, MM overshoots its reference, then it may take some time for the
miss percentage controller to respond to the high miss percentage. For this
reason we use an integrator antiwindup mechanism [28, 29, 9].

We implement the integrator antiwindup by using a conditional integra-
tion [28] technique, where the integration is switched off when a controlled
variable is far from its reference. Integration is, thus, used only when a cer-
tain condition is fulfilled. We employ the following scheme for conditional
integration:

o If AUy is less than AUyp, i.e. the utilization controller takes over,
all integrators (see equation 4.12) in miss percentage controllers are
turned off.

o If AUyy; is greater than AUysp, i-e. one of the miss percentage con-
trollers take over, the integrator of the utilization controller is turned
off. Here there are two further options.

— If AUy is less than AUp, turn off the integrator of the optional
subtransaction miss percentage controller, since the mandatory
subtransaction miss percentage controller takes over.
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— If AU)y is greater than AUp, turn off integrator of the manda-
tory subtransaction miss percentage controller, since the optional
subtransaction miss percentage controller takes over.

Note that in the case of FC-M, the conditional integration scheme is only
employed on miss percentage controllers.

4.5.5 Controller Implementation

In this section we present how the controllers are implemented. Since the
same control function (with different parameters) is used for all controllers,
we use the same symbol E(k) to denote Ep(k), Eo(k), and Eyy; in the
remainder of this section.

A digital version of the PI controller is given below. Equations (4.12)
and (4.13) are equivalent, but equation (4.13) is more efficient at run-time.

AU(K) = Kp(BK) + K SOBG) (412
AU (k) = AU(k — 1) + Kp((Ky + 1)E(k) — é{k ~1)) (4.13)

The z-transform of equation (4.13) is given by:

glz—r) 1

Ck) === 9= (Kp(Kr+1)),r= X1

The parameters that need to be tuned for each controller are Kp and
K;. The tuning, based on system model and QoS requirements, is given in
section 4.5.6.

4.5.6 Controller Tuning and Performance

To tune the miss percentage controllers, the model parameters G and G’?,[
have to be tuned under the worst case set-up to support a certain QoS
guarantee [20]. Tuning of the model parameters is done by profiling the
system under the worst case setup.?

We have tuned G and G, by measuring average miss percentage for
mandatory and optional subtransactions respectively, under loads of 50-
200%, by steps of 10% increase. A graph illustrating the miss percentage is
given in Figure 4.4. The vertical bars indicate 95% confidence intervals.

3In our work, we have used a simulator to evaluate our algorithms. Detailed information
about system related issues is given in chapter 5.
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Figure 4.4: System profiling and model tuning

From the graph we can see that the schedulable utilization threshold
for optional subtransactions (Ut% ~ 80%) is significantly lower than the
threshold for mandatory subtransactions (U} ~ 150%). This is in line with
our discussions in section 4.4.

We have turned off AC during system profiling. This allows us to derive
the relationship between actual load and the miss percentages without the
intervention of an AC. Further, in this profiling we assume that mandatory
subtransactions have higher priority than optional subtransactions. Since we
must consider the worst-case setting, we have for the profiling scheduled the
update transactions before user transactions. This is due to the case when all
pending update transactions have an earlier deadline than user transactions
and thus higher priority.

Another case that decreases the performance of the system occurs as the
number of optional subtransactions decreases. Consequently, the percent-
age of mandatory subtransactions to the total number of subtransactions
increases. This leads to a higher competition among mandatory subtransac-
tions and, hence, may lead to a higher M™. Also, optional subtransactions
will receive less CPU power since there are more mandatory subtransactions
with higher priority, resulting in a higher M©. In our performance evalua-
tions we have set the minimum number of optional subtransactions for each
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Controller Kp K; M, T,

MM 0.60394 0.18 ~18% =~55.2s
M© 0.22272 0.18 ~18% =~b55.2s
Utilization  0.2906  0.1765 =~ 18% =~ 175s

Table 4.1: Controller parameters and time domain performance

user transaction to one (i.e. #0O; > 1). In order to assume the worst-case
setup. we have for the profiling, set the number of optional user subtransac-
tions to one (i.e. #0; = 1). From the above we can derive G} = 0.83 and
G§; = 2.23, when the load increases from 160% to 170% and 110% to 120%,
respectively.

For tuning purposes, we consider the QoS specification given in section
4.2. Having a tuned model of the system and a QoS specification, the next
step is to tune the controllers based on the closed loop of the system. As
in section 4.4, we use the same symbol C(z) to denote the mandatory and
optional subtransaction miss percentage and utilization controllers. Further,
we use M(z) and M,(z) to denote the z-transform of the miss percentage and
the reference miss percentage of the mandatory and optional subtransactions,
respectively.

Given the model of the controlled system, i.e. Py and Pjs, the transfer
function of each feedback control loop,

_ O(2)Pu(?)
I+ C(2)Pu(z)

_ C()Py(z)
I+ C(2)Py(2)

Hy(2) (4.14)

HM(Z)

can be established. The z-transform of the miss percentages and the utiliza-
tion,

U,z
z—1

Hy(z)  U(z) = = Hy(2)
can be derived by using equation (4.14).

We have applied the root locus method in Matlab [1] to tune the con-
troller parameters such that the performance specifications (as given by the
QoS specification in section 4.2) are satisfied. Assuming the system work-
load having a worst-case utilization ratio of two (i.e. G4 = 2), we set Kp
and Ky according to Table 4.1. Here, we have set the sampling period to 5
seconds.

Below we evaluate the performance of the controllers with regard to over-
shoot, settling time, stability, and steady-state error.
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Time Domain Performance

Given a unit step in Matlab, the transient performance of the tuned feedback
controllers are established. As we can see from Table 4.1, the overshoot and
the settling time for the miss percentage controllers are 18% and 55.2s,
respectively, which meet the requirements given in the QoS specification.

Stability
The closed loop systems are stable since all the poles of Hps(2) and Hy(2)
are within the unit circle.

Steady-state Error

Further, the controllers in FC-M and FC-UM can achieve zero steady-state

error [20]. Since the closed loop systems are stable, the steady-state error of
MM

MM, 1
E = MM —lim(z —1)=—— —
mss r ~ lim(z )z—11+0(z)P,{‘;(z)
MM, z—1
= MM _lim(z —1)— =0
r zl—%(z )z—ll—l—g(z—r)—}—GAG%

can be computed by applying the final value theorem to the closed loop
transfer functions. Similarly, the final value theorem can by applied to find
steady-state errors of M©C (E,s,) and U (Eys,). This yields that the steady-
state errors for M© and U is zero (i.e. Epzs = Eyss = 0).

4.6 Algorithm Specification

Below, two algorithms for managing a QoS specification in terms of data
and user transaction quality are introduced. Both are based on adjusting
the estimated requested utilization using feedback control. The utilization
adjustment is enforced partially by adjusting the QoD, which requires setting
MDE according to the utilization adjustment (AU), as described in section
4.3.

For now, we assume the existence of a function f(AU(k)) that returns,
based on AU(k), the corresponding M DE for period k+1, i.e. MDE(k+1).
The function f holds the following property. If AU (k) is less than zero, then
MDE(k+1) is set such that MDE(k+1) is greater than M DE(k) (i.e. QoD
is degraded). Similarly, if AU (k) is greater than zero, then MDE(k + 1) is
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set such that MDE(k + 1) is less than M DE(k) (i.e. QoD is upgraded). A
formal definition of the concepts around f is given in section 4.7.

The algorithms presented in this work are designed to adjust a set of
performance metrics such that a given QoS specification can be satisfied. In
this work we use M9 to indicate user transaction quality. Similarly, data
quality is expressed in terms of M DE. Consider the following "snapshot"
of the RTDB state: M© just below MY and MDE near zero. Here, the
transaction quality is quite low while the data quality is high. What we
rather would like to observe is that the transaction and the data quality
increase and decrease together. Hence, as M© is increases, so does MDE
and vice versa. We consider this property important but not necessary,
as our preliminary goal is to design algorithms that satisfy a given QoS
specification.

4.6.1 FCS-IC-1

In FCS-IC-1 (Feedback Control Scheduling Imprecise Computation 1) the
FC-UM policy is used to manage data and user transaction quality. The
integrated signal, AU, from the miss percentage and utilization controllers
is fed into the QoD manager, which adjusts the QoD based on the signal.
The rationale behind using a FC-UM controller is that AU(k) is computed
by considering both the miss percentage and the utilization. As described
earlier, the utilization reference is increased as long as no miss percentage
overshoot is observed. When the miss percentage is higher than the reference,
the miss percentage controllers take over and as a result, the utilization refer-
ence is reduced exponentially. The utilization controller then tries to enforce
the new utilization reference. This technique has two advantages. First,
the utilization yielding the target miss percentage can be closely approxi-
mated. Second, the exponential reduction decreases the risk for a potential
overshoot. The outline of the algorithm is given as follows.

The system monitors the deadline miss percentage and the CPU utiliza-
tion. At each sampling period, the CPU utilization adjustment, AU (k), is
derived. Based on AU(k) we perform one of the following. If AU(k) is
greater than zero, upgrade QoD as much as AU(k) allows. However, when
AU (k) is less than zero, degrade the data according to AU, but not beyond
than the highest allowed MDE (i.e. MDE x Mp). Degrading the data fur-
ther would violate the upper limit of M DE, given by the QoS specification.
In the case when AU(k) is less than zero and M DE equal to MDE x Mp, no
QoD adjustment can be issued and, hence, the system has to wait until some
of the currently running transactions terminate. An outline of FCS-IC-1 is
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given in Algorithm 1.

Algorithm 1 FCS-IC-1

Monitor MM (k), M9 (k) and U (k)

Compute AU (k)

if (AU (k) > 0 and MDE(k) > 0) then
Upgrade QoD according to MDE(k + 1) := f(AU(k), MDE(k))
Inform AC about the portion of AU(k) not accommodated by QoD
upgrade

else if (AU(k) <0 and MDE(k) < MDE, x M) then
Downgrade QoD according to MDE(k + 1) = f(AU(k), MDE(k))
Inform AC about the portion of AU(k) not accommodated by QoD
downgrade

else if (AU(k) < 0 and MDE(k) = MDE, x M) then
Reject any incoming transactions

else
Inform the AC of AU(k)

end if

The advantage of FCS-IC-1 is that a potential miss percentage overshoot
is suppressed by the use of a utilization controller. However, FCS-IC-1 has
some drawbacks, as will be discussed in the following. Imagine the case
where the RTDB is overloaded and the miss percentages are kept around
the references. Using FCS-IC-1, the utilization reference is reduced as soon
as M™ or M© overshoot, resulting in the utilization controller to take over
during the next sampling periods (since Eytil will be larger than Ejs and
Ep). In the consecutive sampling periods, the utilization controller tries
to reduce Eytil by setting AU(k) to a negative value. This means that as
soon one of the miss percentages overshoot its reference, the utilization of
the system and, hence, the miss percentages are reduced significantly. This
behavior is repeated every time one of the miss percentages is higher than
its reference, resulting in a cycle of miss percentages above and significantly
below the references. Hence, the average miss percentages of mandatory and
optional subtransactions will be less than the specified references. Further,
the QoD will be unnecessarily degraded as the utilization controller tries to
reduce the utilization (negative AU (k)).

The above is the main motivation for developing an algorithm that con-
trols the miss percentage in a way such that the average miss percentages
are kept near their reference (as they should do). Further, in the discussions
given earlier, we would like M© and MDE to increase and decrease to-
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gether. For the reasons given above, we have developed an algorithm, called
FCS-1C-2 (Feedback Control Scheduling Imprecise Computation 2), which
is described in the next section.

4.6.2 FCS-IC-2

FCS-IC-2 also uses feedback control to control data and user transaction
quality. It differs from FCS-IC-1 in the way that a FC-M controller is used
rather than a FC-UM. Here the utilization controller is removed to keep the
miss percentages at the specified references. This may on the other hand
yield high miss percentage overshoots.

As described above, we would like M© and MDE to increase and de-
crease together. The reader may have noticed that as long as Ejs and Ep
are positive (i.e. MM < MM A M© < MP), the controller output AU will
be positive.* This means that even if the miss percentages are just below
the references, AU (k) is positive and, hence, due to the property of f, the
QoD manager will upgrade the data. For this reason, in FCS-IC-2, the QoD
manager is extended such that M DFE is set not only by considering AU, but
also according to the current transaction quality, given by M©. When AU
is less than zero (i.e. at miss percentage overshoot), M DE is set according
to f. However, when AU is greater or equal to zero, MDE is set according
to the moving average of M©, defined as:

MO A(k) =aMO (k) + (1 —a)MJs(k—1) 0<a<l.

The latter results in the data quality to vary with the transaction quality.
When M) , is relatively low, MDE is set to a low value relative to MDE,..
As M§), increases, MDE is increased too but only to a maximum value
of MDE, x M,. A further increase will violate the QoS specification. An
outline of FCS-IC-2 is given in Algorithm 2.

4.7 QoD Management

4.7.1 Effects of Varying MDE

The data quality is controlled by the QoD manager (as described in the
above), which controls M DE(k) depending on the system behavior. An
update transaction is rejected if the error of the data object that is to be

4 At transient oscillation of M™ and M©, the controller output, AU, may temporally
stay negative due to the integral operation.
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Algorithm 2 FCS-IC-2

Monitor MM (k) and M9 (k)

Compute AU (k)

if (AU(k) > 0) then
Adjust MDE(k) according to

MDE(k + 1) = min(22a® M DE,, MDE, x M,)
if (MDE(k — 1) < MDE(k)) then
Add the utilization gained after QoD degrade to AU (k)
else
Subtract the utilization lost after QoD upgrade from AU (k)

end if
Inform AC of the new AU (k)

else if (AU(k) <0 and MDE(k) < MDE, x M) then
Downgrade QoD according to MDE(k + 1) = f(AU(k), MDE(k))
Inform AC about the portion of AU(k) not accommodated by QoD
downgrade

else if (AU(k) < 0 and MDE(k) = MDE, x M) then
Reject any incoming transactions

else
Inform the AC of AU(k)

end if
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updated is less or equal to the current maximum data error, as described in
section 4.2.

Rejecting an update transaction results in a decrease in CPU utilization.
We define gained utilization, GU(k), as the utilization gained due to the
result of rejecting one or more update transactions during period k. GU (k)
is formally defined as,

#RU; (k)
GU(k) = zz: LT (b x EU;
where #RU;(k) is the number of rejected update transactions T;, #AU;(k)
the number of arrived update transactions T;, and EU; is the estimated uti-
lization of the update transactions T;. Note that #AU;(k) can be either
monitored at run-time or computed in advance if the periodicity of the up-
date transactions are constant.

An important issue is how to set MDE(k + 1) given a certain AU(k).

Basically, we want to set M DE(k + 1) such that,

GU(k) — GU(k +1) = AU(k) (4.15)

the difference of gained utilization in period k£ and k + 1 equals the change
to the requested estimated utilization. This requires that we can predict
GU(k +1) induced by MDE(k + 1). Note, we can only estimate this factor
since our problem is of probabilistic nature. We can in advance predict the
arrival times of the update transactions, but it is impossible to know the
update values. One possible solution would be to by means of statistics
and probability derive estimates of GU(k). If the density function of the
update values for each stream (generating update transactions) is known,
we can compute the probability of rejecting transactions (7)) generated by
Stream;, during a period k. This is done by considering the probability of
|CV; —V;| < CV; x MDE(k) for T; updating d;. Knowing the probability,
we can go further and estimate GU(k). For example, if the probability of
rejecting T} is 0.25, then the estimated contribution to the gained utilization
by Tj is 0.25 times EU;. By computing the estimated gained utilization
contributed by each update transaction, we can derive the total estimated
gained utilization, i.e. GU(k). However, the above mention solution would
require a high computational overhead. Further, the distributions of the
update values may not be available, which in turn introduces uncertainties
in the computation.

According to the discussions above we need to predict GU(k), given
MDE(k). For now, we skip the notion of time and let GU denote gained
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utilization, as the result of our discussions below do not depend on time. GU
can be viewed as a function of MDE (#RU; depends on MDE). One can
observe the following properties of GU as M DE varies. If MDE is equal
to zero, then GU is equal to zero as well. As M DFE increases, GU increases
monotonically. The latter is a result of that GU cannot decrease if MDE
increases. There is an upper boundary for GU, given by GU,,q4., which is
the utilization of all update transactions. Consequently, as M DE grows,
GU will grow towards GUgy (i.e. MDE — 400 = GU — GUpgy)-

4.7.2 Modeling and Online Tuning

In this section, we describe our approach to predicting GU, given an M DE.
We present a model relating GU and M DE and also a scheme for how the
model can be adapted online.

We introduce the notion of predicted gained utilization (PGU),

PGU = g(MDE)

where given an M DE, the corresponding GU can be predicted. We derive
g based on system profiling; it can be derived by considering the average of
GU for different MDE and then use numerical analysis to derive g (with
the use of e.g. interpolation and/or spline). Further, since RTDBs are
dynamic systems in a sense that the behavior of the system and environment
are changing (e.g. the distributions of the update values may change), the
parameters of g have to be profiled and adjusted on-line. Also note that
on-line profiling also has the advantage of requiring less accurate parameters
obtained from an off-line analysis.

We derive g by first profiling the system off-line and linearizing the re-
lationship between GU and M DE. In other words, we consider PGU to
be a linear function of MDE. Here, it is possible to linearize the relation-
ship based on different M DFE intervals. In our approach, we have linearized
the relationship within the bounds given by [0, MDE,]. Hence, we linearize
considering the “working-interval” of M DE, i.e. the interval that MDE is
allowed to vary within. We refer to the gradient of g as v and, hence, we
get’

PGU = g(MDE) =y x MDE.

We have measured average GU for different M DE and the result in shown
in Figure 4.5. From the measurements we set v to 2.27.
The inverse of g, i.e. g7!, is given by

1
MDE = g Y(PGU) = ;PGU = u x PGU.
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Figure 4.5: Profiling gained utilization with respect to different MDE

Given p we can compute M DE based on PGU.
Further, an online profiling of y is applied in order to adjust the model
to changes. During each sampling period, GU (k) is monitored and,

_ MDE(k)

p(k) = “GUk)

is computed. p is then updated by considering the moving average of the
earlier y(k). The moving average of y is defined by,

pnma(k) =ax p(k)+(1—a) x upalk—1) 0<a<l1 (4.16)

and is used to smoothen out large deviations from one sampling period to
another. Updating p according to equation (4.16) has the advantage of
linearizing based on “locality”. For example, consider the case where the
system is at steady state and M DE(k) is set to a certain value, v. Using
equation (4.16), results in g being linearized at v. Hence, this technique
adapts p based on the current value of MDE(k).

Finally, MDE(k + 1) can be computed by,

MDE(k+1) = ppa(k) x PGU(k + 1) (4.17)
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4.7.3 Derivation of f

When f is used to compute MDE(k + 1) (as in FCM-IMP1 and some cases
in FCS-IC-2), the following scheme is used.

Assume that we want to compute MDE(k +1). It is desired that during
period k + 1, the gained utilization to equal the predicted gained utilization,
ie.,

GU(k+1)=PGQU(k+1). (4.18)

Note, in period k, GU(k) does not necessary have to be equal to PGU(k),
as our predicted gained utilization may deviate from the actual gained uti-
lization. From equation (4.15) and equation (4.18) we derive,

PGU(k +1) = GU(k) — AU(k) (4.19)

as the difference between the gained utilization and the estimated requested
utilization adjustment. Inserting equation (4.19) in equation (4.17), yields:

MDE(k + 1) = ppra(k) x (GU(k) — AU(K)) (4.20)

Since, MDE(k + 1) may not be greater than MDE, x M, (as given by a
QoS specification), we take the minimum of the value generated by equation
(4.20) and MDE, x My, and we get,

MDE(k+1) = f(AU(k))) =
= min(uara(k) x (GU(k) — AU(k)), MDE, x M,).
(4.21)

If AU (k) is less than zero, the result will be an increase in M DE, where as
if AU(k) is greater than zero, the new M DE will be smaller. AU (k) equals
zero results in no change in the current MDE.



Chapter 5

Performance Evaluation

In the following chapter a detailed description of the performed experiments
is given. The goal and the background of the experiments are discussed, and
finally the results are presented.

5.1 Experimental Goals

The main objective of the experiments is to show whether the presented
algorithms can provide guarantees based on a QoS specification. We have for
this reason studied and evaluated the behavior of the algorithms according
to a set of performance metrics. The performance evaluation is undertaken
by a set of simulation experiments, where a set of parameters have been
varied. These are:

e Load (Load). Computational systems may show different behaviors
for different loads, especially when the system is overloaded. For this
reason, we measure the performance when applying different loads to
the system.

e Execution Time Estimation Error (EstErr). Often exact exe-
cution time estimates of transactions are not known. To study how
runtime error affects the algorithms, we measure the performance con-
sidering different execution time estimation errors.

e QoS specifications. It is important that an algorithm can manage
different QoS specifications. Here we compare the results of the pre-
sented algorithms with regards to different QoS specifications.
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5.2 Baselines

To the best of our knowledge, there has been no earlier work on techniques
for managing data and transaction impreciseness, satisfying QoS and QoD
requirements. Further, previous work within imprecise computing applied
to tasks focus on maximizing or minimizing performance metrics (e.g. total
error). The latter cannot be applied to our problem, since in our case we
want to control a set of performance metrics such that they converge towards
a set of references given by a QoS specification.

For this reason, we have developed two baselines that can manage data
impreciseness based on miss percentage of optional subtransactions. We use
the baselines to study the impact of the workload on the system. Here,
we can establish the efficiency of FCS-IC-1 and FCS-IC-2 by comparing the
operational envelope of the algorithms, i.e. we can compare the resistance
to failure of the algorithms with regard to applied load and/or run-time
estimation errors. The baselines are given below.

5.2.1 Baseline-1

In Baseline-1, the preciseness of the data is adjusted based on the relative
miss percentage of optional subtransaction. Basically, M DE increases as
MO increases. No feedback control scheduling is used here as the adjustment
of MDE is not based on a given requested utilization adjustment. M DFE is
set as follows:

MO (k)

MDE(k + 1) = min( 170
T

MDE,, MDE, x M,) (5.1)

A simple AC is applied, where a transaction (7;) is admitted if the estimated
utilization of admitted subtransactions and EET; is less or equal to 80%.

5.2.2 Baseline-2

In Baseline-1, a significant change in M D E may introduce oscillations since a
large M© (k) results in a large M DE(k+1), which in turn lowers M©(k+1),
resulting in a low M DE(k + 2) and so on. Baseline-2 is similar to Baseline-
1, but here MDE is increased and decreased linearly. The outline of the
algorithm is given below:

1. If MO (k) is greater than zero, increase MDE(k) by a step (MD Esyep)
until MDE, x M, is reached (i.e. MDE(k + 1) = min(MDE(k) +
MDE,y.,, MDE, x M,)).



5.3. SIMULATION SETUP 49

Parameter Value

#DataObjects 1000

P; U : (100ms,50s)

EET; U : (1ms,8ms)

AV U : (0,100)

AET; N : (EET;,JEET;)

V; N : (AV;, AV; x VarFactor)
VarFactor U:(0,1)

Table 5.1: Workload settings for data and update transactions

2. If MO(k) is equal to zero, decrease M DE(k) by a step (M D Ejep) until
zero is reached (i.e. MDE(k + 1) = max(MDE(k) — MDEjp,0))

The same AC as in Baseline-1 is used here.

5.3 Simulation Setup

In our simulator, the workload consists of update and user transactions,
which access data and perform virtual arithmetic/logical operations on the
data. Update transactions occupy approximately 50% of the total workload.
The workload model of the update and user transactions are given in Tables
5.1 and 5.2, and described as follows.

5.3.1 Data and Update Transactions

The simulated DB holds 1000 temporal data objects (O;) where each data
object is updated by a stream (Stream;, 1 < i < 1000). The period (F;)
is uniformly distributed in the range (100ms,50s) (i.e. U : (100ms,50s))
and estimated execution time (EET;) is given by U : (lms,8ms). The
average value (AV;) is given by U : (0,100). Upon a periodic generation of
an update, Stream; gives the update an actual execution time (AET;) given
by the normal distribution N : (EET;,«/EET;) and a value (V;) according
to N : (AV;, AV; x VarFactor), where VarFactor is uniformly distributed
in (0,1). The deadline is set according to D; = AT; + P;.

5.3.2 User Transactions

Each Source; generates a transaction T;, consisting of one mandatory, and
#0; (1 < #0; < 3) optional subtransaction(s). The probability of #0; =
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Parameter Value

#0; 1<#0,<3,P(#0;,=1)=...=P(#0;,=3) ==
EET;[t;] U : (10ms, 20ms)

AET;[t;] AET [ti] = (1 + EstErr) x EET;t;]

Act Ezec. Time (AET;[t;], /AET;[ti])

D; D AT; + EET; x SlackFactor

SlackFactor U : (20,40)

Act. Data Accesses N : (#DA;[ti], V/#DA;[t;))

Table 5.2: Workload settings for user transactions

m,1<m <3, is 3 (i.e. P(#0; =1) = P(#0; =2) = P(#0; =3) = 3).

The estimated execution time of the subtransactions (EET;[t;]) is given
by U : (10ms,20ms). The estimation error EstErr is used to introduce
execution time estimation error in the average execution time given by
AET;[t;] = (1+ EstErr) x EET;[t;]. Further, upon generation of a transac-
tion, Source; associates an actual execution time to each subtransaction t;,
which is given by N : (AET;[t;], / AET;[t;]). The deadline is set according
to D; = AT;+ EET; x SlackFactor. The slackfactor is uniformly distributed
according to U : (20,40).

It is assumed that the number of data accesses (#DA;[t;]) for each
subtransaction (t;) is proportional to EET;[t;]. Hence, longer subtrans-
actions (or transactions) access more data. Upon a transaction genera-
tion, Source; associates an actual number of data accesses given by N :
(#DA;[ti],/#DA;[t;]) to each subtransaction of T;. The data set accessed
by a transaction is partitioned among the subtransactions such that the par-
titions are mutually disjoint. However, the data sets accessed by transactions
may overlap.

5.3.3 QoS Specifications

We consider the following QoS specifications for simulation purposes. They
are referred to as QoSSpec! and QoSSpec? and are listed in Table 5.3.

Note, MM, MP, and MDE, are steady-state specifications, whereas
transient spec1ﬁcat10ns for respective metric can be obtained by considering
the overshoot M), (e.g. MM < MM x M,,). Note that by changing the target
variables, we do not need to retune the controllers.
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QoS Metric | QoSSpecl | QoSSpec2
MM 1% 1%
MP 10% 5 %
MDE, 2.5% 5 %
M, 30% 30 %
T, 60 s 60 s
U, < 80% < 80%

Table 5.3: QoS specifications used for performance evaluation

5.4 Experiments and Results

The results of our experiments are given below. As described in section 5.1,
we perform experiments based on varying load and varying execution time
estimation error. Further, we compare the results between different QoS
specifications.

In our experiments, one simulation run lasts for 10 minutes of simulated
time. For all the performance data, we have taken the average of 10 simu-
lation runs and derived 95% confidence interval, denoted as vertical lines in
the graphs.

5.4.1 Varying Load

We first compare the performance of our approach with the baselines de-
scribed in section 5.2 for increasing loads. The load is based on submitted
user and update transactions. The tested approaches may reduce the ap-
plied load by applying admission control. The setup of the experiment is
given below followed by the presentation of the results. Figure 5.1 shows the
average M© and MDE.

Experimental setup

We assume that a uniform access pattern is used. We measure MM, MO,
MDE and U. The experiment setup is as follows:

e Apply loads from 50% to 200%.
e Set the execution time estimation error to zero (i.e. EstErr = 0).

e QoSSpecl is used.
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Figure 5.1: Average performance for Load = 50, 75, 100, 150 and 200%,
EstErr = 0, QoSSpecl
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Average Miss Percentage of Mandatory Subtransactions

Miss percentage of mandatory subtransactions (M™) has been observed to
be zero for all four algorithms and, therefore, this has not been included in
Figure 5.1. The specified M™ reference (MM), has been set to 1% and this is
not satisfied. The careful reader has observed that according to Figure 4.4 on
page 36, MM is increased when M9 reaches a large value. This is of course
due to higher priority of mandatory subtransactions compared to optional
subtransactions. Further, in section 4.5.6, we assumed that #0O; = 1 for
all transactions, ¢, which yields a lower Utj,‘:[ than in the assumed simulation
setup for user transactions (i.e. 1 < #0; < 3). Hence, for our simulation
setup MM will remain at zero even if M9 is quite large.

Average Miss Percentage of Optional Subtransactions

For Baseline-1 and Baseline-2, the miss percentage of optional subtrans-
actions (M©) increases as the load increases, violating the reference miss
percentage, MC, at loads exceeding 150%. Miss percentage for Baseline-1
and Baseline-2 at loads 150% and 200% are 57.7 &+ 3.4% and 73.9 + 2.6%,
respectively. In the case of FCS-IC-1, M© is near zero at loads 150% and
200% (0.35+0.1% and 0.33+0.1%, respectively). Even though the miss per-
centage is low, it does not satisfy the QoS specification. This is in line with
our earlier discussions regarding the behavior of FCS-IC-1. The low miss
percentage is due to the utilization controller, since it attempts to reduce
potential overshoots by reducing the utilization, which in turn decreases the
miss percentage. FCS-IC-2 on the other hand shows a better performance.
The average M9 at loads 150% and 200% is 8.5 +0.1%, which is fairly close
to MP. In section 4.5, we tuned the controllers assuming that the utilization
ratio is set to two (i.e. G4 = 2). In this experiment we have set EstErr
to zero (meaning that the utilization ratio is equal to one, i.e. G4 = 1),
resulting in a certain model error. If EstErr is set to one, i.e. G4 = 2, there
is no model error and we can observe a M© close to M2. This is shown in
section 5.4.2.

Average MDE

The average M DFE for Baseline-1 and Baseline-2 violates the reference M DE
set to 2%. This is due to the high M9, and since in both algorithms M DE
is set directly based on MO, this yields a large average MDE (in both
approaches, M DE is less than the transient performance specification given
by MDE < MDE, x M, = 2.6%). In contrast, in the case of FCS-IC-1,



54 CHAPTER 5. PERFORMANCE EVALUATION

MDE is much lower than M DE,. Since the miss percentages are kept low at
all times, they are not likely to overshoot. Consequently, the control signal
from the miss percentage controllers (i.e. AUjpsp) is likely to be positive,
which is interpreted by the QoD manager as an QoD upgrade and, hence,
MDE will not reach the level of M DE,. This will be further explained in
section 5.4.3, where the transient performance of the algorithms is discussed.
FCS-IC-2 provides an average M DF closer to MDE,, given by 1.78+0.024%
at loads exceeding 150%. Since in FCS-IC-2, M DE is set according to the
MPO at steady state, MDE cannot reach MDE, (since M© does not reach
the level of M9).

Average Utilization

For all approaches, the utilization is above the specified of 80% for loads
between 100-200%, reaching almost 100% at 200% applied load.

5.4.2 Varying EstErr

In this experiment, we compare the performance of our approach with the
baselines described in section 5.2 for increasing execution time estimation er-
ror. The setup of the experiment is given below followed by the presentation
of the results. Figure 5.2 shows the average M© and MDE.

Experimental setup

We assume that a uniform access pattern is used. We measure MM, MO,
MDE, and U. The experiment setup is as follows:

e Apply 200 % load.

e Set the execution time estimation error ranging from zero to one, in-
creased by 0.25.

e QoSSpecl is used.

Average Miss Percentage of Mandatory Subtransactions

As in section 5.4.1, MM is zero for all approaches and all EstErr. The
discussions in section 5.4.1 also apply here and are not further discussed.
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Average Miss Percentage of Optional Subtransactions

As expected, Baseline-1 and Baseline-2 do not satisfy the QoS specification.
In fact, as EstErr increases, M© increases, reaching a value close to 90% for
both algorithms. As we can see, FCS-IC-1 and FCS-IC-2 are more robust
against varying EstErr. An interesting issue arises when considering the
behavior of FCS-IC-1 as U and M© actually decrease as EstErr increase
(the utilization is not shown in Figure 5.2). As EstErr increases the more
MPO is prone to overshoot. If this is the case, the utilization controller
attempts to decrease the utilization more often, resulting in a lower average
U and, hence, lower average M?. FCS-IC-2 shows a somewhat different
trend; M© grows towards MO as EstErr increases. M© for EstErr set
to zero is 8.47 £ 0.036%, and for EstErr set to one is 9.23 & 0.17%. This
is the result of the discussions given in section 5.4.1. As EstErr increases,
the model error decreases and, hence, the controlled system becomes closer
to the model.! This gives a more accurate picture of the system and the
controllers are able to control the system in a more correct way.

Average MDE

Baseline-1 and Baseline-2 violate the specification M DE, = 2%. For FCS-
IC-1, average M DE does not change considerably for different EstErr. In
the case of FCS-IC-2, average M DE grows towards M DE,, with increasing
EstErr. The adjustment of M DE depends on M©. As we noticed above,
as EstErr increases, the average M© grows toward M2, resulting in MDE
growing towards M DE,, reaching a value of 1.97 + 0.03% when EstErr is
set to one.

5.4.3 Transient Performance

Studying the average performance is often not enough when dealing with
dynamic systems. Therefore we study the transient performance of FCS-IC-1
and FCS-IC-2 when Load is set to 200%, EstErr is set to one, and QoSSpecl
is assumed. Figures 5.3 and 5.4 show the transient behavior of FCS-IC-1 and
FCS-IC-2. The dash-dotted line indicates maximum overshoot.

Starting with FCS-IC-1, we note that M© is kept low at all times. This
is expected since the average M© was shown to be low. Since both miss
percentage and utilization controllers are used, one cannot explain the be-
havior of M DE considering the miss percentages only. The reader may have

!By model error we mean the deviation of the model compared with the actual system
being controlled.
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noticed that M DE is greater than zero in the interval 20-150, where M©
is zero. Since M DFE is greater than zero, it is clear that AU may become
negative during that period. Further, since M© is zero, the negative control
signal must have originated from the utilization controller (we have traced a
set of performance variables and they confirm this behavior). Initially, the
utilization is below the reference (U,). As the utilization increases and no
miss percentage overshoots are observed, U, increases linearly until a miss
percentage is observed (one of the miss percentage controllers takes over)
and U, is reduced exponentially. In the current setting, U,, is only increased
if the utilization controller has taken over. Our investigations show that the
utilization controller takes over once the utilization overshoots its reference,
resulting in a negative AU and, hence, U, being increased too late (one can
observe that M DE starts increasing at time 20, which is exactly the time
where the U overshoots U,, initially set to 80%). Consequently, the negative
AU leads to an increase in MDE.

In the case of FCS-IC-2, since no utilization controller is used, the behav-
ior of MDE can be explained using M©. FCS-IC-2 shows a more satisfying
result as both M© and M DE increase and decrease together (this was one
of the desired effects discussed in section 4.6). Both M© and M DE are kept
around M and M DE,, respectively. Although the average M© is close to
MP, we can see that M© often overshoots its reference. The highest M© has
been noted to 25.7%. This is much higher than the specified maximum miss
percentage for optional subtransactions of 13% (M© < 13%). One cause
to such overshoot is the various disturbances like data conflicts, resulting in
restarts or abort of transactions. Further, we have assumed that EstErr is
equal to one, which yields a higher overshoot than in the case when EstErr
is zero. The results of setting EstErr to zero is shown in Figure 5.5. Here
we can see that the miss percentage variance is much smaller than in the case
of EstErr is equal to one. The maximum overshoot here has been noted to
20.6% at t = 135.

5.4.4 Varying QoS specification

We also compare the performance of our approaches considering other QoS
specifications. The idea is to see how the algorithms can adapt to different
QoS specifications. Below, we apply similar load pattern as in in the first
experiment. Figure 5.6 shows the average M© and MDE.
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Experimental setup

Uniform access pattern is used. We measure MM, M@ MDE, and U. The
experiment setup is as follows:

e Apply loads from 50% to 200%.
o Set the execution time estimation error to zero (i.e. EstErr = 0).

e (QoSSpec2 is used.

Results

We do not present the results of the baselines, since they have showed poor
results in earlier experiments. As shown in Figure 5.6, FCS-IC-1 is able to
manage average miss percentage in a controlled manner. However, it does
not comply with the given QoS specifications, i.e. average M© is much lower
than M and similarly MDE is lower than M DE,. FCS-IC-2 on the other
hand manages to provide better performance. Average M© and MDE for
FCS-IC-2 is 4.4 + 0.04% and 4.14 + 0.06%, respectively.

5.4.5 Summary of Results and Discussions

It has been shown that FCS-IC-1 and FCS-IC-2 are robust against load
variations and inaccurate execution time estimations.

FCS-IC-1 can manage to provide near zero miss percentage for optional
subtransactions. We have also seen that FCS-IC-1 can efficiently suppress
miss percentage overshoots. However, the average performance of FCS-IC-1,
does not fully comply with a given QoS specification. Miss percentages and
MDE are kept significantly lower than the references, violating the QoS
specification. This is due to the exponential decrease in utilization every
time M© overshoots its reference. Although this policy is an efficient way
of reducing number of potential overshoots, it often lowers the utilization
unnecessarily, and as a result, data quality is degraded even though user
transactions quality is high.

The average performance of FCS-IC-2 has shown to satisfy a given QoS
specifications. Miss percentage of optional subtransactions, M©, and MDE
are consistent with the specified references. In addition, we have seen that
the data and user transaction quality increase and decrease together. FCS-
IC-2, however, produces overshoots above the maximum allowed overshoot,
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as given by the QoS specifications. Overshoots occur from various distur-
bances, such as restart and blocking of transactions, and cannot be sup-
pressed when MO is kept near the reference. This is the disadvantage of
FCS-1C-2.

We conclude that FCS-1C-1 performs better than FCS-IC-2 for suppress-
ing overshoots. FCS-IC-1 should be applied to RTDBs where overshoots
cannot be tolerated, but where consistency between the controlled variables
and their references is relaxed, i.e. we do not require the system to produce
the desired miss percentages and M DE. The experiments show that FCS-
IC-2 is particularly useful when consistency between the controlled variables
and their references is emphasized, but some overshoots higher than the
maximum allowed can be accepted.
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Chapter 6

Related Work

We have identified three topics closely related to our work. Our research
has been focusing on RTDBs where imprecise computation can be applied.
We employ FCS in order to provide robustness against varying workload
and inaccurate run-time estimates. Below, we present various works within
FCS, QoS management in RTDBs and imprecise computation applied on
databases.

6.1 Feedback Control Scheduling

In the past few years, feedback control scheduling has been receiving special
attention [20, 19, 21, 8, 16, 6].

In [16], a framework is proposed for controlling the application requests
for system resources using a PID controller. It has been shown that feedback
control scheduling can be used to bound the resource usage in a stable and
fair way.

Parekh et al. use feedback control scheduling to control the length of a
queue of remote procedure calls (RPCs) arriving at a server [21]. In contrast
to [20], they have used statistical models to tune their controllers. However,
in their work, they have used I controllers (only integral part), whereas PI
controllers (proportional integral parts), in general, have shown to provide
better performance.

Changing the periodicity of a set of tasks in response to load variations
has been suggested in [6]. If the estimated load is found to be greater than
a threshold, task periods are enlarged to find the desired load. Aperiodic
tasks are not considered in their model.

In the work of Cervin et al., a feedback-feedforward scheduling algorithm
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for optimizing the performance of a set of control tasks is presented [8]. The
rates of the control tasks are adjusted, such that the utilization is kept close
to a reference. Further, execution times of individual tasks are monitored
and estimates are derived online. They also use a feedforward structure to
make the feedback scheduler more reactive to workload changes.

The approaches above do not address imprecise computation. Lu et al.
have presented a feedback control scheduling framework [20], where each task
has several QoS-levels giving results of varying quality. Each QoS-level is
characterized by a set of attributes, such as period, deadline and utilization.
Miss percentage and utilization are monitored and controlled by changing
the QoS-level for a set of tasks. They have modeled the system using an
analytical method and tuned the model parameters via profiling. They have
proposed three algorithms for managing the miss percentage and/or utiliza-
tion. Simulation studies show that their algorithms provide performance
guarantees for periodic and aperiodic tasks even when execution varies con-
siderably from the estimate. Our work is based on the feedback control
scheduling methodology given in [20].

6.2 QoS Management in RTDBs

Despite the abundance of QoS research, QoS-related work has been relatively
scarce in database systems. The Stanford Real-Time Information Processor
(STRIP) addressed the problem of balancing between freshness and transac-
tion timeliness [3]. To study the trade-off between freshness and timeliness,
four scheduling algorithms were introduced to schedule updates and trans-
actions and their performance was compared.

The notion of QoD was introduced in [15]. In their work an update
scheduling policy was proposed in the context of the web server. Here, the
web pages are cached at the server and the back-end database continuously
updates them. Their proposed update scheduling policy can significantly
improve data freshness compared to FIFO scheduling.

In the work by Kang et al., a feedback control scheduling architecture is
used to control the miss percentage and utilization by dynamically balancing
update policies (immediate or on-demand) of a set of data [14]. In a similar
work, specified miss percentage and utilization levels can be satisfied by
modifying the period of the update transactions [13].

Although the approaches described above have addressed QoS or QoD,
they have not considered QoS or QoD in terms of imprecision. In our work,
we have defined QoS in terms of transactions and data impreciseness.
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6.3 Imprecise Computation

Liu et al. proposed an imprecise computation model [18]. They presented
a set of imprecise scheduling problems associated with imprecise computing
and also gave an algorithm for minimizing the total error of a set of tasks.
However, a task set may have more than one optimal schedule with the
minimum total error. Consequently, for an optimal schedule the total error
may be unevenly distributed among the tasks. Shih et al. addressed this
problem by presenting two algorithms for minimizing the maximum error
for a schedule that minimizes the total error [24]. Hansson et al. proposes
an algorithm, OR-ULD, for minimizing total error and total weighted error
(where there is an weight associated with each task) [10]. Further, it has
been shown that OR-ULD can handle other types of workloads, including
firm and hard tasks.

However, the algorithms presented by Liu, Shih, and Hansson require the
knowledge of accurate processing times of the tasks. The same assumption
cannot be made for transactions in a RTDB, as the execution time depends
on the data needs of the users. In addition, overheads caused by data conflicts
and concurrency control must be taken into account as well.

The reader may have noticed that the algorithms proposed by Liu, Shih,
and Hansson focus on maximizing or minimizing a performance metric (e.g.
total error). The latter cannot be applied to our problem, since in our case
we want to control a set of performance metrics such that they converge
towards a set of references given by a QoS specification.

Imprecise computation applied to RTDBs has been addressed in the liter-
ature. Here the correctness of answers to databases queries can be traded off
to enhance timeliness. A query processor, APPROXIMATE |[31], produces
approximate answer if there is not enough time available. The accuracy
of the improved answer increases monotonically as the computation time
increases.

A relational database system proposed in [11], can produce approximate
answers to queries within certain deadlines. Approximate answers are pro-
vided processing a segment of the database by sampling. Given a time
quota, the sizes of the samples are computed and an estimation of the query
is provided. The correctness of the estimation is improved as the number
of samples increases. Further consistency can be traded off for shorter re-
sponse time. In [22], queries can be executed in spite of concurrent updates
to the data used by the transaction (which in the traditional sense violates
consistency).

In the approaches above, impreciseness has been applied to only trans-
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actions. Further they have not addressed the notion of QoS. In our work,
we have introduced impreciseness at data object level and presented QoS in
terms of transactions and data impreciseness.



Chapter 7

Summary

Below a short summary is given. We discuss the suggested approaches,
performance evaluations and then we identify topics/issues for future work.

7.1 Conclusion

The need for real-time data services has increased during the last years,
e.g. sensor fusion support, web based applications and telecommunications.
Here timely processing of user transactions using fresh data is important.
As the run-time environment of such applications tends to be dynamic, it is
imperative to handle transient overloads effectively. It has been shown that
feedback control scheduling is quite adaptive to errors in run-time estimates
(e.g. changes in workload and estimated execution time). Further, imprecise
computation techniques have shown to be useful in many areas where timely
processing of tasks or services is emphasized. In this work, we combine
the advantages from feedback control scheduling and imprecise computation
techniques, forming a framework where a database administrator can specify
a set of requirements on the database performance and service quality. We
introduce two algorithms, FCS-IC-1 and FCS-IC-2, for managing steady
state and transient state performance in terms of data and transaction error.
FCS-IC-1 and FCS-IC-2 give a robust and controlled behavior of RTDBs, in
terms of transaction and data quality, even during transient overloads and
when we have inaccurate run-time estimates of the transactions.
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7.2 Future Work

We have identified some possible research problems that are listed below.
They are based on feedback scheduling and different aspects and approaches
to QoS management.

7.2.1 System Modeling and Feedback Control Scheduling

In this work, we have used an analytical approach to system modeling. An-
other way of modeling the controlled system is by means of statistical models.
In the work by Parekh et al., a system model based on an ARMA model has
been tuned by system profiling [21]. Since, RTDBs are quite complex, it
is hard to derive accurate system models based on analytical methods. It
is then more feasible to derive models based on statistical approaches. As
the relative performance of the two approaches has not been established yet,
it would be interesting to perform detailed comparisons between the two
approaches.

Further, it is known that in real-time databases various factors such
as non-uniform arrival pattern of transactions, varying execution time of
transactions and unpredicted data conflicts (resulting in restarts or aborts)
can introduce disturbances in the feedback control scheduling loop. The
feedback control community has produced an impressive body of knowledge
dealing with reduction of disturbances with various methods.

One possible way of rejecting disturbances is by describing them using
stochastic models and designing the feedback control loop with regards to the
“improved” model. Other ways include the structure of the control loop itself.
By using various feedback and feedforward structures, the disturbances can
be further eliminated. A third method mentioned in the literature is based
on prediction of disturbances [29] with the use of e.g. Kalman filter.

7.2.2 Management of Derived Data

In this work, we have not addressed derived data management. A derived
data object is derived from a set of base or derived data objects, R. A
user transaction may miss its deadline if the derived data objects they read
are out-of-date. If it is possible to update the derived data objects before
they are read, temporal consistency is improved. However, derived data
computation may be relatively expensive, including complex logical and/or
arithmetic computations. Hence, it may not be acceptable to recompute
a derived data object every time a data object in R is changed. Another
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option is to block transactions trying to access derived data objects that
are out-of-date. However, if it takes too long for an update transaction
to arrive, the waiting transactions may miss their deadline. To address the
issues mentioned above, a QoS management scheme, similar to the following,
need to be applied. Here, a derived data objects are kept updated when the
system is underutilized. When the system is overloaded, the derived data
objects are updated on-demand, e.g. with the use of triggered updates [5] or
with the notion of forced delay [4] (i.e. delay the derived data recomputations
during overloads).

Further, in this work we have applied imprecise data and transaction
techniques to RTDBs. Hence, we allow a certain degree of data error in
compensation for decreased resource requirements. This leads to the issue
of error propagation in a database. Consider the case where a set of base
data objects are read to compute a derived data object. If each of the
base data objects have a certain error, then the derived data object will
also have an error, induced by the error of the base data set. If the error
of the base data is known and arithmetic operations are used to compute
the derived data object, then the error of the derived data object can be
computed. We may then be able to use the error propagation in our derived
data management scheme. Here, recomputation of a derived data object
might not be necessary if the base data error can be disregarded or can be
tolerated. This approach requires that equations describing the influence of
base data error on the derived data object is available. For most numerical
computations, functions describing error propagation can be derived.

7.2.3 Service Differentiation

Service differentiation has been receiving more attention during the last
years. In the case of RTDBs, one can classify transactions according to a set
of classes with different QoS specifications. Classes can be issued depending
on their criticalness, security needs etc.

A user transaction (T4) belonging to a class (A), will in general pro-
duce service of higher quality (e.g. lower deadline miss percentage of user
transactions) as compared to a user transaction (Tg) in a lower class (B).
The QoS provided by user transactions is directly in connection with per-
ceived freshness (i.e., the ratio of number of fresh data objects accessed by
timely transactions to the total number of data objects accessed by timely
transactions in a RTDB). It seems feasible that T4 should receive higher
perceived freshness than Ts. If this is the case, the RTDB should be able
to provide or satisfy the specified QoS for Ty to a greater extent. Since,
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the database freshness is in turn related to the update transactions, one can
imagine classifying the update transactions into several classes.

To the best of our knowledge, there has been no work on classification
on update transactions. Here an update transaction (7)) updating a data
object d; can be classified into different classes depending on the class of user
transactions accessing d;. Conceptually, if d; is frequently accessed by T4,
then T} is moved into a higher class, resulting in 7} receiving higher priority
among other update transactions. Hence, we will increase the perceived
freshness for T4. Now, an issue is how to classify update transactions. If T4
accesses d; often (or other transactions belonging to class A), then clearly T}
should be moved to a higher class. The situation is somewhat different when
d; is rarely accessed by transactions in class A, but often by transactions in
class B. The question here is if T; should be moved to a higher class or not.
It would be interesting to develop a scheme where update transactions can
be classified according to the access patterns of the user transactions.

7.2.4 QoS Specification

A DBA may want to give a QoS specification in terms of various performance
metrics. In this work, we have introduced metrics based on transaction and
data quality. In [14], the DBA can specify the minimum perceived freshness
that a database should have. A QoS could further include guarantees on
response time. In the case of imprecise computation, if it is possible to de-
scribe transaction quality in terms of error, then one may specify transactions
quality by steady-state and transient error.

In this work, we have not addressed maintainance of QoS per transaction
basis. For example, in our work one can specify RTDB QoS in terms of miss
percentage. Here, it is not possible to provide certain QoS guarantees for
each admitted optional subtransaction. One transaction may have all its
optional subtransactions executed and completed, while another one may
only have one optional subtransactions completed before the transaction
deadline. Hence, there will be a great variance in the QoS provided by the
RTDB. For this reason, we would like to be able to specify a QoS, such that
it is guaranteed for each admitted transaction. Also, it is desired that the
variance of QoS provided by the RTDB is minimized.

7.2.5 Managing Data Impreciseness

As discussed in section 4.7, an issue regarding the data preciseness manage-
ment was how much to degrade or upgrade QoD given an estimated requested
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utilization adjustment. Given the estimated utilization adjustment, AU (k),
we would like to set M DE(k + 1) such that the difference in gained utiliza-
tion in period k and k + 1 is equal the estimated utilization adjustment, i.e.,
GU(k) — GU(k + 1) = AU(k). Our approach to this problem was to profile
the system and linearize the relation between M DE(k) and gained utiliza-
tion GU(k) for different MDE(k). From this we could derive estimates of
MDE(k + 1), given AU(k).

Now, one can imagine other approaches to this problem. As discussed
in section 4.7, we can apply an analytical method, based on probability and
statistics. Given an M DE(k+1), if it is possible to compute the probability
of rejecting a set of update transactions, then the gained utilization for the
specified MDE(k + 1) may be derived. It was mentioned that this method
might require high computational overhead, which was one of the drawbacks.
However, this method is still interesting from a theoretical point of view.
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