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Abstract

We are currently developing autonomous
agents to fly aircraft in simulation environ-
ments. In this paper we examine the require-
ments for automated pilots in virtual simula-
tion environments and discuss where the ability
to adjust the agent’s autonomy level can help
to either meet the requirements or improve the
performance of the agent while meeting the re-
quirements.

It is often desirable and sometimes necessary
for the agent(s) in a simulated pilot to have
adjustable autonomy. For example, simulated
pilots need to react to situations in real time
when it is not feasible to have a person in the
loop. In other words, they need complete au-
tonomy in some cases. It is also necessary in
certain circumstances that a person be able to
control or modify a simulated pilot’s behav-
ior to create a desired effect during a simula-
tion. Under these circumstances, the simulat-
ed pilot’s autonomy is reduced. Another com-
mon circumstance where adjustable autonomy
is useful is when an simulated pilot must co-
operate with other agents to accomplish some
task, for example, maintaining a flying forma-
tion during a mission.

1 Introduction

Autonomous agents are being used in an increasingly
broad range of applications ranging from space explo-
ration to economic simulation. Agents must use data
from their sensors to decide what actions (behaviors) to
take using their effectors. The autonomy of an agent
is characterized by the agent’s ability to solve its goals
without influence from the “outside”. Outside influence
can come from a person (external to the system) or from
other agents (possibly within the same system).

We describe an ongoing project to build intelligent
agents for a real-time simulation environment where
varying levels of autonomy in the agents are useful. The
agents must cooperate with each other under some cir-
cumstances and must allow a human controller to mod-

ify or influence particular aspects of an agents behavior
while the agent continues to act. Challenging aspects
of the problem include that the agents must continue
to pursue one or more other tasks at the same time as
accepting input from a human operator or cooperating
with other agents on other task(s).

The rest of the paper is organized as follows. The
next section defines autonomy and adjustable autono-
my. Section 3 describes the domain of automated pilots
for simulation environments and the following section
describes a multi-agent representation for the simulat-
ed pilots. Section 5 discusses how the requirements for
simulated pilots can be achieved or enhanced when the
agents have adjustable autonomy.

2 Adjustable Autonomy

Agents may be completely autonomous, completely con-
trolled (tele operated), or at some point in between —
semi-autonomous [Kortenkamp et al., 1999]. The degree
of autonomy of an agent can be defined and measured
with respect to one or more goals the agent is pursuing
[Barber and Martin, 1999]. The degree of autonomy of
an agent can change over time when its goals change or
when a person (or another agent) takes more control or
relinquishes some of its control on the agent’s decision
making process. An agent may be designed to always
“follow orders” from a person or another agent, or it
may have the ability to consider a person’s or another
agent’s “suggestions” with varying levels of importance
depending on the current situation.

Agents may cooperate with other agents, thus possi-
bly “giving up” some of their autonomy to accomplish
goals of mutual interest. In some situations, an agent
may be completely unable to influence a decision (effec-
tively having no autonomy for that decision). Suppose
an agent votes for an action, but its vote is ignored by
all others and a different action is performed.

3 Awutomated Pilots for Simulation
Environments

Beyond visual range air combat involves highly complex

military aircraft, fairly widely separated, relying main-

ly on radar for sensing and missiles to attack targets



in the air or on the ground. Two systems for this do-
main are TACSI and TacAir-Soar. TACSI is a beyond
visual range air-to-air tactics and combat simulator de-
veloped by Saab Corporation [Saab, 1998] and used for
evaluating aircraft and flight tactics as well as for pilot
training. Simulated pilots for TACSI have been devel-
oped and recent ones are described in [Coradeschi and
Karlsson, 1996; Coradeschi, 1997].

TacAir-Soar [Jones et al., 1993; Tambe et al., 1995;
Jones et al., 1998] is a rule-based system, built with-
in Soar, an architecture for general intelligence [Rosen-
bloom et al., 1991]. The simulated pilots in TacAir-Soar
use Soar to perform complex goal-directed reasoning and
planning. A recent version of TacAir-Soar contains ap-
proximately 5200 production rules [Jones et al., 1998].
TacAir-Soar has been used very successfully with a dis-
tributed interactive simulation (DIS) environment called
ModSAF (Modular Semi-Automated Forces), funded by
DARPA (Defense Advanced Research Projects Agency).
In both TACSI and TacAir-Soar, human pilots may con-
trol simulated aircraft and interact with automated pi-
lots during a simulation.

According to Tambe, et al. [1995], the requirements
for automated pilots in virtual environments are: “(1)
goal-driven behavior, (2) knowledge-intensive behavior,
(3) reactivity, (4) real-time performance, (5) confor-
mance to human reaction times and limitations, (6) over-
lap of performance of multiple high-level tasks, (7) multi-
agent coordination, (8) communication, (9) agent mod-
eling (especially opponent modeling), (10) temporal rea-
soning (dealing with time intervals), (11) planning, (12)
maintenance of episodic memory, and (13) explanation.”
To conform to the requirements of the application, the
automated pilot must produce a wide range of behaviors,
including some that are very complex. For example, se-
lecting the heading of the aircraft requires the combina-
tion of or negotiation of a number of different factors, po-
tentially including avoiding any incoming missiles, ma-
neuvering around mountains and other obstacles, reach-
ing way points in the current path, achieving a position
to attack targets, and maintaining spacing to fly in for-
mation with team members.

4 A Multi-Agent Representation for
Simulated Pilots

In simulated pilots previously developed for use with
TACSI [Coradeschi and Karlsson, 1996; Coradeschi,
1997], pilot behavior was specified using hierarchical
finite-state machines. The states represent the pilot’s
goals and her beliefs about the current state of the world.
Rules produce the pilot’s output and transitions between
states. The rules each have priorities and the highest pri-
ority rule is executed if more than one rule is applicable.

We are using a multi-agent representation for simu-
lated pilots. The agents in our simulated pilots are in
a hierarchy where higher level agents contract agents at
lower levels. At the lowest level of the hierarchy, agents
negotiate with each other over an “output” of the sim-

ulated pilot (which goes to the environment simulator).
At the start of a simulation, a small number of agents
are created for each simulated pilot, one for each primary
goal of the pilot. Example primary goals that automated
pilots in TACSI might have are intercept, escort, attack
and maintain safety. Other agents are created dynami-
cally during runtime to accomplish the goals of the high
level agents.

Communication between the automated pilots and
TACSI are mostly at a low level, however some high-
er level instructions are defined in TACSI. Safeguards
are built in to the aircraft controller in TACSI so that
a pilot does not exceed the capabilities of the aircraft
causing damage to it or themselves. If an instruction is
given to the simulator that would violate the safeguards,
it will not be performed.

5 Requirements and their Relationship
to Autonomy

In this section we discuss how the requirements for au-
tomated pilots in virtual environments (presented in the
same order as in Section 3) can be achieved or enhanced
when the agents have adjustable levels of autonomy.

Requirement 1) goal-driven behavior. An agent’s lev-
el of autonomy can be measured with respect to one
or more goals. If the agent is completely autonomous,
it will pursue the goal without outside interference. It
may however not be able to successfully achieve the goal
autonomously. When a person or external agent assists
the agent in pursuing its goal(s), the agent’s autonomy
level is changed. Improving the chances of achieving a
goal is a common reason to adjust an agent’s autonomy.
Adding or removing goals of the agent is another way of
changing its autonomy.

2) Knowledge-intensive behavior. An agent uses
knowledge of various types and from various sources in
pursuing its goals. The agent’s level of autonomy can
be adjusted depending on how much of its knowledge is
based on external agents or sources.

3) Reactivity and 4) Real-time performance. A simu-
lated pilot must always react to its current situation in
a “reasonable” amount of time. This puts constraints
on how much time can be spent in deliberation. There
may be less time for outside influences to reach the
agent, affecting its autonomy level in meeting this re-
quirement. Because humans are much slower than au-
tomated agents, an agent’s fastest responses need to
be performed without human intervention, there is not
enough time for a person to react. An external agent
can react with much greater speed and could be used
to influence another agent, however. Humans should be
able to influence and change the level of autonomy of an
agent if desirable in the application when the reaction
times are longer.

Modifications made to TacAir-Soar in order for it to
be efficient enough to be used in real-time are described
in Jones, et al. [1998]. These modifications included
re-writing the Soar architecture in C, moving some of



the computation out of the “reasoning” loop into the
support code, and focusing attention by only perform-
ing computations necessary to the current system goals
instead of performing calculations that could potentially
be useful (geometrical, for example).

5) Conformance to human reaction times and limita-
tions. Both upper and lower bounds on reaction times
must be observed. Human-like behavior should also be
produced. In other words, the simulated pilots should
do things human pilots are able to do and might do. In
contrast, a simulated pilot that flies in circles will com-
pletely lose credibility, even if that behavior might help
in some small way. The need to simulate human reac-
tion times puts constraints on how the simulated pilot
can perform its goals. Achieving this requirement does
not directly affect the agent’s autonomy level.

6) Overlap of performance of multiple high-level tasks.
To achieve multiple tasks in parallel, a simulated pilot
must be able to reason about multiple tasks and possibly
combine them. Each of the tasks or combinations of
tasks may be performed most efficiently with a different
level of autonomy. It could be useful to adjust an agent’s
level of autonomy with respect to its goal set to improve
performance, however the integration of goals is usually
handled by the agent autonomously.

7) Multi-agent coordination and 8) communication.
Teamwork among agents is an example of coordination.
In order to coordinate with other agents, an agent must
be aware of the current situation and modify its behavior
to best achieve the mutual goals. The agent’s autonomy
level may be changed by participation in a team.

Communication, when it comes from “the outside”,
may change an agent’s level of autonomy. Communica-
tion is perhaps one of the most commonly used ways for
multiple agents to coordinate behavior. For example, a
team leader might order a group of pilots to follow him in
a team formation. It is also possible to use sensing to try
to determine another agent’s role and performance with-
in the team to effectively accomplish the team’s goals
without direct communication. An example would be
performing a team mission under strict radio silence.

9) Agent modeling (especially opponent modeling), 10)
temporal reasoning (dealing with time intervals) and 11)
planning. A more accurate model of other agents or the
world can increase the effectiveness of an agent’s reason-
ing and planning to attain its goals. This could mean
that the agent is more successful at accomplishing goals
without needing assistance. In other words it can per-
form with a higher degree of autonomy in more situa-
tions, however the autonomy is not changed during exe-
cution.

12) Maintenance of episodic memory. Episodic mem-
ory can be used in the agent’s planning. For example,
an unsuccessful tactic might be repeated over and over
again without a way to remember that it was not suc-
cessful. The use of episodic memory could reduce the
need for a human or another agent to modify the agent’s
behavior. Again, the presence of episodic memory does
not directly affect the autonomy of the agent during ex-

ecution.

13) Ezplanation. The ability of an agent to explain
its actions is important for program development and
improvement. The explanations can be used to improve
the agent’s capabilities in future situations. There ap-
pears to be no relationship between an agent’s ability
to provide explanations of its actions and its degree of
autonomy.

Of these requirements for simulated pilots, those with
the closest relationship to adjustable autonomy are goal-
directed behavior, reactivity, real-time performance and
multi-agent coordination.

6 Discussion

The multi-agent approach we are developing allows ei-
ther human users or other agents to influence (and ad-
just the autonomy of) an agent. The influence can be at
varying levels of abstraction and carry varying weights
by creating or destroying agents that negotiate within
the multi-agent hierarchies of the simulated pilots. The
new agents would negotiate with other agents to pro-
duce an output that is a combination of “normal” agent
behavior and user control.

By appropriately setting the priority of the newly cre-
ated agents, the user’s direction can override some or
all of the other aspects of the agent’s behavior. For ex-
ample, if the aircraft should be forced to crash into the
ground (for some specific reason), a new low-level high-
priority agent should be created that will override other
agents, i.e. those for avoiding the ground, in negotia-
tions about the aircraft heading (output). In contrast,
a task such as firing a missile on a particular ground
position would require the creation of a high level, low
priority agent that will not override agents such as those
concerned with the safety of the aircraft.

Cremer [1995] describes a system using Hierarchical
Communicating State Machines (HCSMs) which allows
control of agents by other agents, however all communi-
cations are taken as orders in that system.

Effective tools to visualize the details of the multi-
agent structure would be useful for a user to know how
and where to change something to modify the agent’s
behavior in real-time. Even with an effective visualiza-
tion tool it may be difficult for a person to control a
complex agent or a large number of agents by creating
and destroying single agents, demonstrating the need for
interactions at multiple levels of abstraction.

A complementary approach is used in TacAir-Soar
where humans are able to interact with the system and
direct the simulated pilots using natural language and
voice recognition software.

7 Summary

This paper describes the application domain of automat-
ed pilots for air combat simulations and discusses the
requirements of the domain in relationship to the level
of autonomy of the agents that comprise the simulated



pilots. In different situations, it is desirable that the sim-
ulated pilots range from being completely autonomous to
having little or no autonomy. The simulated pilot’s au-
tonomy might be changed by a human that directs or
alters its behavior or by other agents through its inter-
action and cooperation with them in the simulation.
We are currently developing simulated pilots for TAC-
SI. We are focusing on ways to specify pilot behavior that
can be performed by non-programming experts, includ-
ing pilots. A simulated pilot’s behavior needs to be speci-
fied before a scenario with a relatively small (reasonable)
amount of effort. In addition, there are situations where
it would be very useful to modify a simulated pilot’s be-
havior during a simulation - changing its autonomy.
Current work includes finishing the prototype imple-
mentation of the simulated pilots, interfacing the sim-
ulated pilots with TACSI and developing test scenarios
and tactics for evaluation of the approach. Future work
is planned to evaluate the ease of specifying simulated pi-
lot (agent) behavior in the system by non-programmers,
adding team behavior capabilities, and adding alterna-
tive interaction modes, for example graphical or natural
language, for users to direct the simulated pilots.

8 Acknowledgments

This work is supported by Saab Corporation Opera-
tional Analysis Division, the Swedish Government under
NUTEK grants IK1P-97-09677 and IK1P-98-06280, and
by Linkoping University under CENIIT grant 98.6.

References

[Barber and Martin, 1999] K. S. Barber and C. E. Mar-
tin. Agent autonomy: Specification, measurement,
and dynamic adjustment. In Henry Hexmoor, ed-
itor, Autonomy Control Software Workshop, Agents
99, pages 8-15, May 1999.

[Coradeschi and Karlsson, 1996] Silvia Coradeschi and
Lars Karlsson. Intelligent agents for aircraft combat
simulation. In Proceedings of the 6th Conference on
Computer Generated Forces and Behavioral Represen-
tation, Orlando, FL, 1996.

[Coradeschi, 1997] Silvia Coradeschi. A decision-
mechanism for reactive and coordinated agents. Mas-
ter’s thesis, Department of Computer and Information
Science, Link6ping University, May 1997.

[Cremer et al., 1995] James Cremer, Joseph Kearney,
and Yiannis Papelis. HCSM: A framework for behav-
ior and scenario control in virtual environments. A CM
Transactions on Modeling and Computer Simulation,
pages 242-267, 1995.

[Jones et al., 1993] R.M. Jones, J.E. Laird, Milind
Tambe, and Paul Rosenbloom. Intelligent automat-
ed agents for flight training simulators. In Proceedings
of the 3rd Conference on Computer Generated Forces
and Behavioral Representation, Orlando, FL, 1993.

[Jones et al., 1998] Randolf Jones, John Laird, and Paul
Nielsen. Automated intelligent pilots for combat flight
simulation. In Proceedings of the Tenth National Con-
ference on Innovative Applications of Artificial Intel-
ligence (TIAAI-98), pages 1047-1054, Menlo Park, Cal-
ifornia, 1998. American Association for Artificial In-
telligence.

[Kortenkamp et al., 1999] David Kortenkamp, Robert
Burridge, R. Peter Bonasso, Debra Schreckenghost,
and Mary Beth Hudson. An intelligent software archi-
tecture for semi-autonomous robot control. In Henry

Hexmoor, editor, Autonomy Control Software Work-
shop, Agents 99, pages 36-43, May 1999.

[Rosenbloom et al., 1991] Paul S. Rosenbloom, John E.
Laird, Allen Newell, and Robert McCarl. A prelimi-
nary analysis of the Soar architecture as a basis for
general intelligence. Artificial Intelligence, 47:289—
325, 1991.

[Saab, 1998] Saab. The TACSI users guide. technical
report TUCU-MI-95:103. Technical report, Saab Mil-
itary Aircraft, 1998. Edition 5.2.

[Tambe et al., 1995] Milind Tambe, W. Lewis Johnson,
Randolph Jones, Frank Koss, John Laird, Paul Rosen-
bloom, and Karl Schwamb. Intelligent agents for
interactive simulation environments. AI Magazine,
16(1):15-39, Spring 1995.



