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1. Background 
Lately the demand for real-time data services has increased. Applications used in 
manufacturing, web-servers, e-commerce etc. are becoming very sophisticated in their 
data needs. In these applications it is desirable to process user requests within their 
deadlines using fresh data [4]. Since the external environment is constantly changing, it is 
imperative to maintain consistency between the environment and the database. In 
dynamic systems, such as web servers and sensor networks with non-uniform access 
patterns, the workload of the databases cannot be precisely predicted and, hence, the 
databases can become overloaded. As a result, many deadline misses and freshness 
violations may occur. To address this problem we propose a quality of service (QoS) 
sensitive approach, to guarantee a set of requirements on the behavior of the database, 
even in the presence of unpredictable workloads. Our scheme is important to applications 
where timely execution of transactions is emphasized, but where it is not possible to have 
exact analysis of the worst case execution times. 

2. Approach 
In our database model, data objects in a RTDB are updated by update transactions 
(simply referred to as updates), e.g. sensor values, while user transactions (simply 
referred to as transactions) represent user requests, e.g. complex read-write operations.  

Below, we give an overview of how imprecise computation can be introduced in real-
time databases (RTDB), followed by the definition of QoS and how this can be specified. 
Finally, a short description of the system architecture is given. 

2.1 Imprecise Computation 
Our approach is based on imprecise computation [2], where it is possible to trade off 
resource needs for quality of requested service. Imprecise computation techniques have 
been successfully applied to applications where timeliness is important. In our work, 
imprecise computation is employed on both data and transactions. For a data object 
representing a real-world variable, we can allow a certain degree of deviation compared 
to the real-world value. Hence, we relax the temporal consistency requirement. If such a 
deviation can be tolerated, arriving updates may be discarded and, hence, the saved CPU 
power can be allocated to other transactions. Discarding update transactions results in 
imprecision in data, which we refer to as data error. 

Introducing impreciseness in transactions gives us another dimension by which we can 
trade off execution time for quality. For transactions, there are a variety of imprecise 



computation models one can consider. These include milestone, use of sieve functions 
and multiple versions [2]. In this work we have used the milestone technique, since it has 
been shown that it can successfully be used in the context of RTDBs [5]. The main idea is 
to logically divide a transaction into a mandatory and one or more optional 
subtransaction. The mandatory subtransaction is necessary for an acceptable result and 
must be computed to completion before the transaction deadline. By executing more 
optional subtransactions, the overall quality of the result produced by the transaction is 
enhanced. During overloads, the optional parts can be discarded and consequently 
decreasing the execution time and required resources for the transaction. Discarding one 
or more optional parts give rise to a certain error which we call the transaction error. 

2.2 QoS Specification 
In our approach, the database administrator (DBA) can explicitly specify the required 
database QoS, which defines the desired behavior of the database. The QoS specification 
is given in terms of data error, transaction error, and system utilization and allows the 
DBA to specify the desired steady-state and transient-state performance. The 
performance metrics used in the QoS specification are: 

• deadline miss percentage of mandatory user subtransactions, MM 
• deadline miss percentage of optional user subtransactions, MO 
• maximum data error, MDE 
• utilization, U 
• overshoot, Mp 
• settling time, Ts 

The steady-state performance is given using references, whereas the transient-state 
performance is given using overshoot and settling time [3]. Overshoot is the worst-case 
system performance in the transient system state and settling time is the time for the 
transient overshoot to decay and reach the steady state performance. Hence, the settling 
time determines the system adaptability and how fast the performance converges towards 
the desired performance given by the references.  

2.3 System Architecture and Algorithms 
During transient overloads the miss percentage of optional subtransactions may increase, 
increasing the transaction error. Here, a lower transaction error can be achieved by 
allocating more resources to transactions. This is achieved by lowering the workload of 
the data updates, resulting in an increase in data error. This forms the basic concept of our 
QoS management scheme.  

We apply feedback control scheduling policy [3] to provide robustness against 
unpredictable workload variations. In a feedback control system, the reference 
performance can be achieved by dynamically adjusting the system behavior based on the 
difference of the current performance and the reference performance. Feedback control is 
very effective to support the specified performance when the dynamics of the controlled 
system includes uncertainties. By adapting the robustness of feedback control, we can 
provide the guaranteed real-time data services in terms of transaction error and data error. 

The general outline of the feedback control scheduling architecture is given in Figure 1. 
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Figure 1. Feedback control scheduling architecture  
 
Admitted transactions (or subtransactions) are placed in the ready queue. The transaction 
handler manages the execution of the transactions. At each sampling instant, the 
controlled variables, miss percentages and utilization, are monitored and fed into the miss 
percentage and utilization controllers, which compare the performance references with 
the corresponding controlled variables to get the current performance errors and compute 
a change, denoted ∆U, to the total estimated requested utilization. We refer to ∆U as the 
manipulated variable. Based on ∆U, the quality of data (QoD) manager changes the total 
estimated requested utilization by adapting the QoD level (i.e. adjusting MDE). The 
precision control then schedules the update transactions based on MDE. The portion of 
∆U not accommodated by the QoD manager, denoted ∆Unew, is returned to the admission 
controller, which enforces the remaining utilization adjustment. 
 
For managing the workload allocation between user and update transactions, we propose 
two dynamic balancing algorithms, FCS-IC-1 and FCS-IC-2, to balance the workload and 
hence the quality of the data and transactions. Main challenges include unpredictability of 
workload and effective workload balancing between user transaction and data quality. 
The suggested algorithms, FCS-IC-1 and FCS-IC-2, are designed such that the behavior 
of a real-time database can be controlled, even in the presence of load variation and 
inaccurate run-time estimates. For more detailed description we refer to [1]. 
 
 
 
 



3. Performance Evaluation 
We have carried out a set of experiments to evaluate the performance of our algorithms. 
The main objective of the experiments is to show whether the presented algorithms can 
provide guarantees based on a QoS specification. We have for this reason studied and 
evaluated the behavior of the algorithms according to a set of performance metrics. The 
performance evaluation is undertaken by a set of simulation experiments, where a set of 
parameters have been varied. These are: 

• Load. Computational systems may show different behaviors for different loads, 
especially when the system is overloaded. For this reason, we measure the 
performance when applying different loads to the system.  

• Execution Time Estimation Error, EstErr. Often exact execution time estimates of 
transactions are not known. To study how runtime error affects the algorithms, we 
measure the performance considering different execution time estimation errors. 

• QoS specifications. It is important that an algorithm can manage different QoS 
specifications. Here we compare the results of the presented algorithms with 
regards to different QoS specifications. 

In our simulation studies we have applied a wide range of workload and run-time 
estimates to model potential unpredictabilities. Further, to the best of our knowledge, 
there has been no earlier work on techniques for managing data and transaction 
impreciseness, satisfying QoS and QoD requirements. For this reason, we have developed 
two baselines, Baseline-1 and Baseline-2, that can manage data impreciseness based on 
miss percentage of optional subtransactions. We use the baselines to study the impact of 
the workload on the system. 

FCS-IC-1 and FCS-IC-2 give robust and controlled behavior of transaction and data 
quality, even during transient overloads and when we have inaccurate run-time estimates 
of the transactions. Comparing the performance against selected baseline algorithms has 
showed this. 

More specifically, FCS-IC-1 can manage to provide near zero miss percentage for 
optional subtransactions. We have also seen that FCS-IC-1 can efficiently suppress miss 
percentage overshoots. However, the average performance of FCS-IC-1 does not fully 
comply with a given QoS specification. Miss percentages and MDE are kept significantly 
lower than the references, violating the QoS specification. This is due to policy used by 
FCS-IC-1, where the utilization is exponentially decreased every time MO overshoots its 
reference. Although this policy is an efficient way of reducing number of potential 
overshoots, it often lowers the utilization unnecessarily, and as a result, data error is 
increased even though transaction error is low. 

The performance of FCS-IC-2 has shown to satisfy a given QoS specification. Miss 
percentage of optional subtransactions, MO, and MDE are consistent with the specified 
references. In addition, we have seen that the data error and transaction error increase and 
decrease together. FCS-IC-2, however, produces overshoots above the maximum allowed 
overshoot, as given by the QoS specifications. Overshoots occur from various 
disturbances, such as restart and blocking of transactions, and cannot be suppressed when 
MO is kept near the reference. This is the disadvantage of FCS-IC-2. 
 



We conclude that FCS-IC-1 performs better than FCS-IC-2 for suppressing overshoots. 
FCS-IC-1 should be applied to RTDBs where overshoots cannot be tolerated, but where 
consistency between the controlled variables and their references is relaxed, i.e. we do 
not require the system to produce the desired miss percentages and MDE. The 
experiments show that FCS-IC-2 is particularly useful when consistency between the 
controlled variables and their references is emphasized, but where some overshoots 
higher than the maximum allowed can be accepted. 

4. Conclusion 
The need for real-time data services has increased during the last years, e.g. sensor fusion 
support, web based applications, and telecommunications. Here timely processing of user 
transactions using fresh data is important. As the run-time environment of such 
applications tends to be dynamic, it is imperative to handle transient overloads 
effectively. It has been shown that feedback control scheduling is quite adaptive to errors 
in run-time estimates (e.g. changes in workload and estimated execution time). Further, 
imprecise computation techniques have shown to be useful in many areas where timely 
processing of tasks or services is emphasized. In this work, we combine the advantages 
from feedback control scheduling and imprecise computation techniques, forming a 
framework where a database administrator can specify a set of requirements on the 
database performance and service quality. We introduce two algorithms, FCS-IC-1 and 
FCS-IC-2, for managing steady state and transient state performance in terms of data and 
transaction error. FCS-IC-1 and FCS-IC-2 give a robust and controlled behavior of 
RTDBs, in terms of transaction and data quality, even during transient overloads and 
when we have inaccurate run-time estimates of the transactions. 
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