
Algorithms for Managing QoS for Real-Time Data
Services Using Imprecise Computation

Mehdi Amirijoo, meham@ida.liu.se
Dept. of Computer and Information Science (IDA)

Linköping University (LiU)

1. Background
Lately the demand for real-time data services has increased. Applications used in
manufacturing, web-servers, e-commerce etc. are becoming very sophisticated in their
data needs. In these applications it is desirable to process user requests within their
deadlines using fresh data [4]. Since the external environment is constantly changing, it is
imperative to maintain consistency between the environment and the database. In
dynamic systems, such as web servers and sensor networks with non-uniform access
patterns, the workload of the databases cannot be precisely predicted and, hence, the
databases can become overloaded. As a result, many deadline misses and freshness
violations may occur. To address this problem we propose a quality of service (QoS)
sensitive approach, to guarantee a set of requirements on the behavior of the database,
even in the presence of unpredictable workloads. Our scheme is important to applications
where timely execution of transactions is emphasized, but where it is not possible to have
exact analysis of the worst case execution times.

2. Approach
In our database model, data objects in a RTDB are updated by update transactions
(simply referred to as updates), e.g. sensor values, while user transactions (simply
referred to as transactions) represent user requests, e.g. complex read-write operations.

Below, we give an overview of how imprecise computation can be introduced in real-
time databases (RTDB), followed by the definition of QoS and how this can be specified.
Finally, a short description of the system architecture is given.

2.1 Imprecise Computation
Our approach is based on imprecise computation [2], where it is possible to trade off
resource needs for quality of requested service. Imprecise computation techniques have
been successfully applied to applications where timeliness is important. In our work,
imprecise computation is employed on both data and transactions. For a data object
representing a real-world variable, we can allow a certain degree of deviation compared
to the real-world value. Hence, we relax the temporal consistency requirement. If such a
deviation can be tolerated, arriving updates may be discarded and, hence, the saved CPU
power can be allocated to other transactions. Discarding update transactions results in
imprecision in data, which we refer to as data error.

Introducing impreciseness in transactions gives us another dimension by which we can
trade off execution time for quality. For transactions, there are a variety of imprecise

computation models one can consider. These include milestone, use of sieve functions
and multiple versions [2]. In this work we have used the milestone technique, since it has
been shown that it can successfully be used in the context of RTDBs [5]. The main idea is
to logically divide a transaction into a mandatory and one or more optional
subtransaction. The mandatory subtransaction is necessary for an acceptable result and
must be computed to completion before the transaction deadline. By executing more
optional subtransactions, the overall quality of the result produced by the transaction is
enhanced. During overloads, the optional parts can be discarded and consequently
decreasing the execution time and required resources for the transaction. Discarding one
or more optional parts give rise to a certain error which we call the transaction error.

2.2 QoS Specification
In our approach, the database administrator (DBA) can explicitly specify the required
database QoS, which defines the desired behavior of the database. The QoS specification
is given in terms of data error, transaction error, and system utilization and allows the
DBA to specify the desired steady-state and transient-state performance. The
performance metrics used in the QoS specification are:

• deadline miss percentage of mandatory user subtransactions, MM
• deadline miss percentage of optional user subtransactions, MO
• maximum data error, MDE
• utilization, U
• overshoot, Mp
• settling time, Ts

The steady-state performance is given using references, whereas the transient-state
performance is given using overshoot and settling time [3]. Overshoot is the worst-case
system performance in the transient system state and settling time is the time for the
transient overshoot to decay and reach the steady state performance. Hence, the settling
time determines the system adaptability and how fast the performance converges towards
the desired performance given by the references.

2.3 System Architecture and Algorithms
During transient overloads the miss percentage of optional subtransactions may increase,
increasing the transaction error. Here, a lower transaction error can be achieved by
allocating more resources to transactions. This is achieved by lowering the workload of
the data updates, resulting in an increase in data error. This forms the basic concept of our
QoS management scheme.

We apply feedback control scheduling policy [3] to provide robustness against
unpredictable workload variations. In a feedback control system, the reference
performance can be achieved by dynamically adjusting the system behavior based on the
difference of the current performance and the reference performance. Feedback control is
very effective to support the specified performance when the dynamics of the controlled
system includes uncertainties. By adapting the robustness of feedback control, we can
provide the guaranteed real-time data services in terms of transaction error and data error.

The general outline of the feedback control scheduling architecture is given in Figure 1.

Control
Precision

Control
Admission

Update Streams
Stream

Stream

....
1

n

∆Unew

Manager
QoD

∆U

Ready Queue

Abort / Restart / Preempt

Dispatched

Monitor

Block

Transaction Handler

FM CC BS

Miss Percentage

MDE

Block Queue

Source

Sourcem

1
....

User Transactions MDE

Miss Percentage

CPU Utilization

Controller

Miss Percentage

Miss Percentage

M

Utilization

O

Figure 1. Feedback control scheduling architecture

Admitted transactions (or subtransactions) are placed in the ready queue. The transaction
handler manages the execution of the transactions. At each sampling instant, the
controlled variables, miss percentages and utilization, are monitored and fed into the miss
percentage and utilization controllers, which compare the performance references with
the corresponding controlled variables to get the current performance errors and compute
a change, denoted ∆U, to the total estimated requested utilization. We refer to ∆U as the
manipulated variable. Based on ∆U, the quality of data (QoD) manager changes the total
estimated requested utilization by adapting the QoD level (i.e. adjusting MDE). The
precision control then schedules the update transactions based on MDE. The portion of
∆U not accommodated by the QoD manager, denoted ∆Unew, is returned to the admission
controller, which enforces the remaining utilization adjustment.

For managing the workload allocation between user and update transactions, we propose
two dynamic balancing algorithms, FCS-IC-1 and FCS-IC-2, to balance the workload and
hence the quality of the data and transactions. Main challenges include unpredictability of
workload and effective workload balancing between user transaction and data quality.
The suggested algorithms, FCS-IC-1 and FCS-IC-2, are designed such that the behavior
of a real-time database can be controlled, even in the presence of load variation and
inaccurate run-time estimates. For more detailed description we refer to [1].

3. Performance Evaluation
We have carried out a set of experiments to evaluate the performance of our algorithms.
The main objective of the experiments is to show whether the presented algorithms can
provide guarantees based on a QoS specification. We have for this reason studied and
evaluated the behavior of the algorithms according to a set of performance metrics. The
performance evaluation is undertaken by a set of simulation experiments, where a set of
parameters have been varied. These are:

• Load. Computational systems may show different behaviors for different loads,
especially when the system is overloaded. For this reason, we measure the
performance when applying different loads to the system.

• Execution Time Estimation Error, EstErr. Often exact execution time estimates of
transactions are not known. To study how runtime error affects the algorithms, we
measure the performance considering different execution time estimation errors.

• QoS specifications. It is important that an algorithm can manage different QoS
specifications. Here we compare the results of the presented algorithms with
regards to different QoS specifications.

In our simulation studies we have applied a wide range of workload and run-time
estimates to model potential unpredictabilities. Further, to the best of our knowledge,
there has been no earlier work on techniques for managing data and transaction
impreciseness, satisfying QoS and QoD requirements. For this reason, we have developed
two baselines, Baseline-1 and Baseline-2, that can manage data impreciseness based on
miss percentage of optional subtransactions. We use the baselines to study the impact of
the workload on the system.

FCS-IC-1 and FCS-IC-2 give robust and controlled behavior of transaction and data
quality, even during transient overloads and when we have inaccurate run-time estimates
of the transactions. Comparing the performance against selected baseline algorithms has
showed this.

More specifically, FCS-IC-1 can manage to provide near zero miss percentage for
optional subtransactions. We have also seen that FCS-IC-1 can efficiently suppress miss
percentage overshoots. However, the average performance of FCS-IC-1 does not fully
comply with a given QoS specification. Miss percentages and MDE are kept significantly
lower than the references, violating the QoS specification. This is due to policy used by
FCS-IC-1, where the utilization is exponentially decreased every time MO overshoots its
reference. Although this policy is an efficient way of reducing number of potential
overshoots, it often lowers the utilization unnecessarily, and as a result, data error is
increased even though transaction error is low.

The performance of FCS-IC-2 has shown to satisfy a given QoS specification. Miss
percentage of optional subtransactions, MO, and MDE are consistent with the specified
references. In addition, we have seen that the data error and transaction error increase and
decrease together. FCS-IC-2, however, produces overshoots above the maximum allowed
overshoot, as given by the QoS specifications. Overshoots occur from various
disturbances, such as restart and blocking of transactions, and cannot be suppressed when
MO is kept near the reference. This is the disadvantage of FCS-IC-2.

We conclude that FCS-IC-1 performs better than FCS-IC-2 for suppressing overshoots.
FCS-IC-1 should be applied to RTDBs where overshoots cannot be tolerated, but where
consistency between the controlled variables and their references is relaxed, i.e. we do
not require the system to produce the desired miss percentages and MDE. The
experiments show that FCS-IC-2 is particularly useful when consistency between the
controlled variables and their references is emphasized, but where some overshoots
higher than the maximum allowed can be accepted.

4. Conclusion
The need for real-time data services has increased during the last years, e.g. sensor fusion
support, web based applications, and telecommunications. Here timely processing of user
transactions using fresh data is important. As the run-time environment of such
applications tends to be dynamic, it is imperative to handle transient overloads
effectively. It has been shown that feedback control scheduling is quite adaptive to errors
in run-time estimates (e.g. changes in workload and estimated execution time). Further,
imprecise computation techniques have shown to be useful in many areas where timely
processing of tasks or services is emphasized. In this work, we combine the advantages
from feedback control scheduling and imprecise computation techniques, forming a
framework where a database administrator can specify a set of requirements on the
database performance and service quality. We introduce two algorithms, FCS-IC-1 and
FCS-IC-2, for managing steady state and transient state performance in terms of data and
transaction error. FCS-IC-1 and FCS-IC-2 give a robust and controlled behavior of
RTDBs, in terms of transaction and data quality, even during transient overloads and
when we have inaccurate run-time estimates of the transactions.

References
[1] M. Amirijoo, "Algorithms for Managing QoS for Real-Time Data Services Using

Imprecise Computation", Master's Thesis Report LiTH-IDA-Ex-02/90,
www.ida.liu.se/~rtslab/master/past

[2] J. W.S. Liu, K. Lin, W. Shin, A. Chuang-shi Yu, "Algorithms for Scheduling
Imprecise Computations", IEEE Computer, 1991.

[3] C. Lu, J. A. Stankovic, G. Tao, S. H. Son, "Feedback control real-time scheduling:
Framework, Modeling and Algorithms", Journal of Real-time Systems, Special
Issue on Control-Theoretical Approaches to Real-Time Computing, 2002.

[4] K. Ramamritham, "Real-time Databases", International Journal of Distributed and
Parallel Databases, 1993.

[5] S. V. Vrbsky, W. S. Liu, " APPROXIMATE - A Query Processor That Produces
Monotonically Improving Approximate Answers ", IEEE Transactions on
Knowledge and Data Engineering, 1993.

Acknowledgement
This project was supervised by Jörgen Hansson at Linköping University and Sang H. Son
at University of Virginia, Charlottesville. The author wishes to thank the supervisors for
their support throughout the project.

http://www.ida.liu.se/~rtslab/master/past

	Background
	Approach
	2.1 Imprecise Computation
	2.2 QoS Specification
	2.3 System Architecture and Algorithms

	Performance Evaluation
	Conclusion
	References
	Acknowledgement

