
1

The HoneyTank : a scalable approach
to collect malicious Internet traffic

Nicolas Vanderavero, Xavier Brouckaert
�
, Olivier Bonaventure, Baudouin Le Charlier

Abstract— During the last few years, the amount of malicious
traffic on the Internet has increased due to the spreading of
worms, various port scanning activities, intrusion attempts or
spammers. Collecting and analyzing this malicious traffic is an
important issue. It can teach us what are the latest trends
in computer misuse, it can help us discovering new kinds of
attacks or it can be used to automatically generate signatures
for network-based intrusion detection systems. In this paper,
we propose an efficient method for collecting large amounts
of malicious traffic running over TCP. The key advantage of
our method is that it does not need to maintain any state to
emulate TCP services running on a large number of emulated
end-systems. We implemented a prototype on the ASAX IDS
and provide in this paper several examples of the malicious
activities which were collected on a campus network attached to
the Internet. We explain how we implemented various protocols
in a stateless way and we discuss limitations of our approach.
We also discuss how our method can be improved to make an
accurate but still stateless emulation of stateful protocols.

Index Terms— Honeypots, Intrusion Detection Systems, Worms

I. INTRODUCTION

THE Internet is not anymore a research network used only
by researchers and grad students. The TCP/IP protocol

suite is now ubiquitous and the Internet is used to carry various
types of information, from large scientific datasets to Voice or
Video over IP. Unfortunately, the Internet is also being more
and more used for various malicious activities such as intrusion
attempts, phishing [1], denial-of-service attacks, spamming,
worms [2], [3] . . . and some automated attacks can compromise
a large number of computers in a short period of time. Most
experts indicate that the amount of illegitimate traffic on the
Internet is growing. Faced with those problems, it is important
to be able to obtain more informations about the characteristics
of the malicious traffic on the Internet.

A first solution to detect and collect malicious traffic is to
monitor the IP packets passing on the production links of a
network and use packet analysis tools to determine the infected
machines based on signatures. Some of the deployed solutions
use a network-based intrusion detection system like Snort [4]
: they capture all the packets including their payload and use
rules to identify infected machines.

This solution is often used by enterprises, but it suffers from
two problems.

The authors are within the Computing Science and
Engineering Department, Université catholique de Louvain
(UCL), Belgium, http://www.info.ucl.ac.be, email:�
nv,xbr,Bonaventure,blc � @info.ucl.ac.be�

Supported by a grant from FRIA (Fonds pour la Formation la Recherche
dans l’Industrie et l’Agriculture, Rue d’Egmont 5, B-1000 Bruxelles, Bel-
gium).

First, it cannot be deployed everywhere and thus it only
monitors the traffic on a small number of links, typically
the Internet access links of corporate networks. This means
that a worm spreading first on the local subnets [5], [6] will
be detected lately, i.e. when the corporate local subnetworks
are already infected. Second, as the network link carries both
legit and malicious traffic, analysing it in real-time on a high
bandwidth link can be difficult. False-positives alerts may be
generated as it is sometimes necessary to lower the complexity
of the detection rules to achieve real-time analysis.

In addition to monitoring the traffic exchanged on a network
link, we can learn a lot from monitoring the traffic sent to un-
used addresses of a network. Since no devices are connected to
those addresses, nobody should try to contact them (typo errors
and misconfigurations excepted). Thus, every request sent to
an unused address should be considered as suspect. Moreover,
the bandwidth used by this traffic should be significantly lower
than the ’normal’ traffic. It should thus be easier to analyze it
in real-time.

Collecting the traffic sent to unused addresses has been
used in other projects like [7]–[9]. These related works are
discussed in section II of this paper.

As TCP is the protocol used to transport more than 90%
of the total Internet traffic [10], it is important to accurately
measure the malicious traffic running over TCP. This paper
presents the design and the experimentation results of what
we call a HoneyTank. A HoneyTank is a workstation receiving
TCP segments sent to unused or unallocated IP addresses
and replying to those segments to emulate real end-systems
supporting real TCP services. Given the amount of segments
that could be collected by such a system during the spreading
phase of a worm, it must be able to handle a huge amount of
simultaneous TCP connections. To achieve this, we propose
a HoneyTank that emulates TCP services without maintaining
any state and report our experience with a prototype based on
the ASAX IDS.

The remainder of this paper is organised as follows. The
section II discusses the related works. In section III we discuss
several methods to collect malicious traffic in operational IP
networks. In section IV we describe our prototype HoneyTank
implemented on the ASAX IDS. Section IV analyses the
performance of our prototype and we describe in section V the
malicious traffic captured on a campus network. We identify
the limitations of the HoneyTank approach in section VI.

II. RELATED WORK

Various methods exist to collect traffic sent to unused IP
addresses. A first approach is to configure the routers to export

2

flow-information [11] to a monitoring station and use this
information to detect the infected machines [7]. A flow record
indicates for each layer-4 flow passing through the router the
IP source, IP destination addresses, the source and destination
ports, the transport protocol (UDP/TCP), . . . By processing this
information, the monitoring station can detect which machines
are currently scanning the network and could take actions
to block the source of this traffic [12]. However, blocking
a suspicious machine after the arrival of TCP SYN segments
from its IP address is not always a good idea since an infected
machine sending spoofed packets could easily deny service
to legitimate hosts. Instead of flow-information, firewall logs
[13], [14] could be also used.

Two methods for collecting malicious traffic have been
proposed in [8] and [15], [16] : Darknets and ”network
telescopes”. They use a monitoring station running a network
sniffer and a default network route announced toward this
station. When a packet is sent to an unallocated subnet of the
network, it will take the default route and will be analyzed
by the monitoring station. However, Darknets and network
telescopes usually do not respond to the received packets.
This implies that in the case of malicious traffic sent over
TCP, a network telescope will only collect the TCP SYN
segments. This is not sufficient to determine precisely the type
of malicious packets received. Since those methods do not
reply to incoming connections, they are limited to the analysis
of ICMP and UDP traffic or TCP port scans.

If we want more accurate data, we have to reply to the
connection requests. For this, a low-interaction honeypot such
as Honeyd [17] can be used. Honeyd is a program which can
fake the behavior of many TCP/IP stacks implementations.
A complete network topology can be simulated by Honeyd,
including routing, link latency or bandwidth. It handles by
itself ICMP messages and the opening and clearing of TCP
connections. The emulated services are not provided by Hon-
eyd. They must be implemented either as external programs
which are spawned by Honeyd on each TCP connection or as
Python modules interpreted by the Python interpreter linked
with Honeyd. Honeyd can also intercept network system calls
of standard applications and virtualize their execution inside
the honeypot. Our HoneyTank could have been implemented
as a Python module for Honeyd.

Compared with Honeyd, an advantage of our HoneyTank is
that it emulates the services without maintaining any state and
thus can support a potentially unlimited number of addresses
and ports. Yet, a disadvantage of the HoneyTank is the lower
accuracy of emulated services. A human attacker could easily
detect that he is connected to a fake service, but we believe that
it is not a severe problem when collecting automated malicious
activities such as worms.

Another method has been proposed in [9]. The iSink
architecture is composed of three parts. The first is a pas-
sive monitoring component analysing flow-information. The
second part is an active component based on a VMWare
Honeynet. The last is an active component called the Active
Sink. This component is very similar to our HoneyTank. It
contains a set of stateless responders for various protocols
(HTTP, Windows RPC Service, ...) implemented in Click [18].

Click is a modular software router. The user can combine
together various predefined modules which process network
packets. The user can also write its own modules in C++.
Once combined, the modules can be run in kernel space under
Linux to achieve maximum efficiency.

Another approach to reply to connection requests is to
use high-interaction honeypots [19] (that is, real computers
intended to be compromised). A solution using a virtual
network of three machines built on top of VMWare has been
described in [20] and in [21]. The drawbacks of this approach
are that usually, only a small number of IP addresses are used
and exposed, and managing several machines is not always
trivial. This solution is complementary to our approach. It is
useful to monitor the network activity off a few IP addresses
in the long run. Our approach is rather useful to monitor large
subnets and can quickly collect a large amount of malicious
traffic.

By replying to incoming requests, our HoneyTank can be
considered as an “active” method for collecting malicious
traffic. If we are interested in worms detection, a more passive
approach has been proposed in [22]. Since most worms scan
the Internet randomly, an infected host will try to contact
more unused IP addresses than non-infected hosts. Thus an
infected host will receive many ICMP destination unreachable
messages. They propose a solution where routers generate a
duplicate ICMP destination unreachable message and forward
them to a monitoring station. By analyzing those messages,
they can detect hosts having an abnormal behavior. A Hon-
eyTank attached to a default route inside an ISP as described
in section III would collect much more information than only
the offending IP addresses.

One possible use of the collected traffic would be to analyze
it with Honeycomb [23]. This tool uses protocol analysis
and pattern-detection methods on the captured traffic and can
generate signatures for network intrusion detection systems.
Our approach monitors a large range of IP addresses and can
gather a vast amount of malicious traffic in a short period
of time. Used together with Honeycomb, this could allow to
quickly generate detection rules for new attacks.

III. COLLECTING MALICIOUS TRAFFIC

In this section, we discuss how the ISP’s routers and
enterprises or campus networks should be configured to allow
a HoneyTank to collect malicious traffic.

A. ISP networks

Several ISPs, and in particular those providing broadband
access are now trying to limit the spreading of worms as an
added value service to their customers. One method is to use
access-lists on the routers to block IP packets on ports used by
worms. This approach is possible for some ports, but not for
common ports like 80 (http). Monitoring all the ISP’s traffic
to track worms is also difficult given the amount of data to be
processed.

If the routers of the ISP maintain full BGP routing tables,
a simple solution to capture worm traffic is possible. At the
time of this writing, only 70 % of the IPv4 addresses are

3

ISP

IDS

172.16.0.0/24

172.16.3.0/24

172.16.0.0/22

172.16.0.0/24

172.16.3.0/24

172.16.0.0/22

172.16.0.0/22

IDS

Fig. 1. Collecting packets in a campus network

announced in the global Internet [24]. When a router receives
a packet, it consults its forwarding table and sends the packet
along the route with the most specific prefix corresponding to
its destination address. Thus, a simple solution to collect the
packets sent to unadvertised IP addresses is to advertise, inside
the ISP, a default (0.0.0.0/0) route toward the monitoring
station. By tagging this route with the BGP NO EXPORT
community, it will not be advertised outside the ISP.

B. Campus and enterprise networks

In enterprise or campus networks, the spreading of worms
needs to be tackled in two ways. First, the enterprise must be
able to detect the external addresses that are trying to infect the
enterprise network. Once such an address has been found, the
typical outcome is to configure the firewall to completely block
any access of this address to the campus network. Second,
the campus network must be able to detect worms spreading
inside the campus. As worms often start to scan in the local
subnet before trying distant addresses [5], [6], it is important
to quickly detect those local scans.

The routers of a campus network usually do not maintain
full BGP routing tables and the solution described above for
ISPs is not applicable here. In many campus networks, the
allocated block of IPv4 addresses is large and some subnets
of this block are not used in the campus. Consider a campus
that obtained the 172.16.0.0/22 block from its ISP. Inside
this block, the campus currently uses 172.16.0.0/24 and
172.16.3.0/24. To collect malicious traffic, the campus
could configure one of its routers to route 172.16.0.0/22
to the monitoring station and advertise this route in its IGP
(figure 1). As 172.16.0.0/22 is also advertised by the
campus ISP, the monitoring station will collect all packets sent
to the IPv4 addresses in the 172.16.1.0-172.16.2.255
range. When the campus network needs to use a part of those
subnets, it simply advertises the new prefix inside its IGP and
the packets sent to those addresses will reach their destination.

To detect the local scans, the IDS would need to be present
on all subnets. A simple solution to reach this goal would be
to reserve on each subnet an IPv4 address for the IDS and
configure each router to perform proxy ARP for this address
and tunnel the packets sent to this address via a GRE tunnel to
the IDS [17]. Unfortunately, deploying such a solution could
be difficult from an operational viewpoint as each router needs
to be manually configured to perform proxy ARP.

Fig. 2. Using Mobile-IP to redirect traffic to the IDS

As campus networks often maintain a list of all the allocated
IP addresses in the campus either on their DNS servers or
through their DHCP servers, a better solution would be to use
this information to determine the unused IP addresses and to
automatically configure the routers to collect the packets sent
to those addresses. This can be achieved by using Mobile IPv4
which is now supported by recent routers.

Mobile IPv4 [25] (MIPv4) enables a node to move across
subnets while maintaining its IP connections alive. In the
simplest case, the node sends a Registration Request to its
Home Agent with its Co-located Care-of Address (an address
valid on the foreign network) when it arrives on a foreign
network. The Home Agent then forwards packets sent to
the home address of the mobile node to its current location
using IP-in-IP tunnels. On the home link, it also automatically
performs proxy ARP.

We can use Mobile IPv4 with another aim : redirecting
malicious traffic toward the IDS. The key is to let the IDS act
as a multitude of fake mobile nodes having the unallocated
addresses as home addresses (figure 2).

Let us suppose that the IDS knows from the DNS or DHCP
server the list of unallocated addresses in the internal network.
We want to let the IDS receive all traffic sent to unallocated
addresses in all subnets. First, we enable the Home Agent
functionality in the routers connected to subnets we want to
observe. Then we create the necessary security associations
for all unallocated addresses in the Home Agent. A basic
MIPv4 security association consists in a Security Parameter
Index (SPI) and a MD5 key. If we want to reduce the
configuration burden, we can choose to always use the same
security association for all unallocated addresses. The MIPv4
control traffic can be limited by using long lifetimes for the
MIPv4 Registration Requests. If an unused address needs to
be allocated, the IDS simply sends a Registration Request with
a zero lifetime to cancel the previous registration and to stop
traffic redirection.

We have verified in a lab environment that this solution
works. The routers used were Cisco 3640 with IOS 12.2(7).
We simulated MIPv4 Registration Requests using Scapy [26].
Our IDS running ASAX could afterwards answer to traffic
sent toward unused addresses on the Home LAN.

4

IV. A PROTOTYPE HONEYTANK IN ASAX

In order to analyze and respond to redirected requests,
we use the ASAX intrusion detection system [27], [28]. We
provide a short overview of ASAX (Advanced Sequential
Analyzer on uniX) in the next section. A detailed description
of ASAX can be found in [29].

A. Overview of ASAX

ASAX is a generic system designed to efficiently analyze
sequential files like security audit trails. Every specific instance
of ASAX is composed of three parts : the analyzer, the rule
declarations and the format adaptor.

The format adaptor reads the data to analyze and converts it
to the internal representation format of ASAX called Normal-
ized Audit Data Format (NADF). This way, it is easy to modify
ASAX to support a new kind of file format : the analyzer is left
untouched and we only need to write a new format adaptor for
this format. In our implementation, we wrote a format adaptor
based on libpcap [30] to let ASAX analyze network traffic.

The analyzer receives its input from the format adaptor and
analyzes it according to the rule declarations. To be efficient,
the ASAX analyzer applies the whole set of rule declarations
to all data to be analyzed, in parallel. Therefore, the analysis
process is done in one pass on the data.

Rule declarations are written in a rule-based language called
RUSSEL. A rule declaration can be seen as the code of
a (lightweight) thread, which is responsible for analyzing a
single record and take actions regarding the content of the
record. The actions can be logging information about the
record, sending an alarm, triggering the execution of a new
rule instance for the next or current record, ... A rule-based
language is convenient to write a program which searches for
a particular pattern of records in a sequential file, or to verify
if a sequence of events matches a given finite state machine.
Furthermore, a wrapping mechanism allows the set of actions
available in RUSSEL to be extended by linking C functions to
the analyzer. In our implementation, we extend RUSSEL by
including C-functions based on libnet [31] to be able to reply
to the network requests.

The analysis process is done as follows : ASAX maintains
a set of rule instances to be executed for the current record
(called the for current set) and a set of rule instances to be
executed for the next record (the for next set). The analyzer
receives a NADF record from the format adaptor. In our case,
it is a network datagram translated into NADF. Then all rule
instances in the for current set are executed against this record.
The rules can take various actions. Once the for current set is
empty, the rules in the for next set are moved to the for current
set, a new NADF record is fetched and the analysis goes on.

ASAX and its RUSSEL language are particularly well fitted
for writing stateful detection rules because rule declarations
can have parameters, which can be instantiated to keep relevant
information about previously analyzed records. Moreover, the
analyzer is able to handle thousands of rule instances at the
same time. Nevertheless, the HoneyTank only uses stateless
rules to achieve maximum scalability.

B. Emulation of the TCP three-way handshake

To support applications running over TCP, the HoneyTank
needs to be able to successfully establish TCP connections. To
ensure that the HoneyTank is able to emulate a large number
of IP addresses, it is important to design and implement it as a
stateless system. Hopefully, for most applications it is possible
to infer a suitable response packet by simply looking at the
contents of the request packet. In this section, we first describe
how to correctly accept TCP connection establishments. We
later show how to support standard applications running over
TCP.

To establish a TCP connection, a client and a server
exchange three TCP segments. The first segment sent by the
client has its SYN flag set and contains a sequence number
chosen by the client (�). The server replies with a segment
with the SYN and ACK flags set and a sequence number (�)
chosen by the server. This segment acknowledges the received
SYN segment by containing ����� as its acknowledgement
number. The client will reply to this SYN+ACK with a segment
whose acknowledgement number is equal to ����� .

Real TCP implementations create state for the new con-
nection either upon arrival of the first (SYN) or third (ACK)
segment and maintain state during the entire TCP session.

Our HoneyTank establishes a new TCP connection by send-
ing the appropriate SYN+ACK segment to each SYN segment
received. All TCP segments containing only an acknowledge-
ment and no data such as the third segment of the three-way
handshake are ignored.

For some protocols, a “welcome banner” must be sent by
the server directly after the three-way handshake. For those
protocols, in addition to the packet containing the SYN+ACK,
we create and send immediately to the client a packet contain-
ing the banner.

The implementation in RUSSEL is rather straightforward.
Two rules are running in parallel. The first rule tests the TCP
flags of the received segment which are exported by the format
adaptor built on top of libpcap [30]. If the record is a
SYN segment, then we select an initial sequence number and
send the corresponding SYN+ACK segment in reply with the
adequate sequence number.

The second rule tests if the current record is an ACK segment
and observes the contents of the TCP payload. If it is empty,
the received segment is silently discarded. Otherwise, we
analyze its content and we send the required reply segment
(see later). A new instance of both rules are retriggered for
the next received packet.

So far, a human interacting with the HoneyTank could easily
detect that the servers are emulated. A simple method to detect
the HoneyTank is to send a TCP segment containing data on
a non-established TCP connection. A normal TCP implemen-
tation would return a RST segment, a stateful firewall would
drop the segment and the HoneyTank will acknowledge the
segment as if the connection was already established. This
problem has been solved by relying on the acknowledgement
numbers. During the three-way handshake, when the first SYN
segment arrives, we use a hash function to select the sequence
number to put in the SYN+ACK segment sent in reply. This

5

sequence number is ���������
	���
 ����������
 ���������
	���
 ��������������
����� ��!�"��#
where ���� ��!�"� is a configuration parameter of the HoneyTank.

When receiving a TCP segment with the ACK flag set, the
hash value ������� �
	��
 ��� �����
 ������� �
	��
 ������� �����
 �$�" %���"��# is com-
puted. This hash value is then compared with the acknowl-
edgement number present in the packet. We define as a
configuration parameter an “acceptance window” around the
hash value. If the ack number falls inside this windows (i.e.
is “near” the hash value), this segment is assumed to be part
of an initiated TCP session. Otherwise, the segment is silently
discarded.

During the three-way handshake, current TCP implemen-
tations include TCP options to negotiate parameters of the
TCP connection such as the Maximum Segment Size (MSS)
[32] or the utilization of TCP extensions such as the window
scale option, the timestamps option [33] or the selective
acknowledgements. The MSS option indicates the maximum
size of the segments to be sent on the TCP connection.
Each TCP end-systems indicates the largest segments which
it is able to accept on the connection. In practice, most
TCP implementations use the minimum value proposed by
both end-systems with a minimum of 536 bytes. Our current
implementation of HoneyTank assumes this default MSS value
but will accept any unfragmented TCP segment.

The most useful TCP extension for the HoneyTank is the
TCP timestamp option. Most current TCP implementations
support this option [33]. This option was developed to im-
prove the accuracy of the round-trip-time measurement and to
protect high bandwidth-delay product TCP connections against
wrapped sequence numbers.

Each TCP segment may contain a timestamp option. If the
client supports this extension, it will include a null timestamp
option in the SYN segment. If the server also supports this op-
tion, it will include it in the SYN+ACK segment. A timestamp
option contains two 32 bits timestamps : TSval and TSecr.
When a TCP entity sends a TCP segment, it will place in the
TSval field a 32 bits integer, usually derived from its clock.
The TSecr will contain the last value received from the other
entity in the TSval field.

For example, consider an emulated server willing to verify
that the client correctly finishes the three-way handshake.
Without maintaining state in the HoneyTank, we need to
distinguish between the ACK segment finishing the three-way
handshake and a normal ACK in the flow of an established
connection. With the timestamp option, a simple solution to
this problem is to copy the sequence number of the SYN+ACK
segment inside the TSval field of the timestamp option.
When replying to this SYN+ACK segment, the client will
echo this value in the TSecr field of the ACK segment. By
comparing the TSecr field and the acknowledgement number,
the HoneyTank will easily determine whether it is the third
segment of a three-way handshake or a segment sent during
the normal data flow. We will provide more details about the
TCP timestamp options in the HoneyTank in section IV-D.

C. Emulation of stateless protocols

The first server we implemented in the HoneyTank pro-
vides the echo service. This standard service is supported

by most TCP/IP implementations. The client establishes a
TCP connection to the server and all the information sent by
the client is echoed by the server. To emulate this service,
the HoneyTank simply replies to each received data segment
with a data segment constructed as follows : the payload of
the reply segment is equal to the payload of the received
segment. The sequence number of the reply segment is set
to the acknowledgement number of the received segment plus
one. The acknowledgement number of the reply segment is set
to the sequence number of the last byte in the received segment
plus one. This implies that we assume that all segments were
received correctly and in sequence. If TCP segments are lost,
the HoneyTank will not send the acknowledgements, allowing
the sender to retransmit the lost segments. As the objective
of the HoneyTank is to receive malicious traffic, this is not a
severe problem.

Another example of a stateless application-level protocol
is the HyperText Transfer Protocol (HTTP) [34]. HTTP is
widely used and several worms spread through vulnerabilities
in various HTTP servers [35]. A HTTP server accepts TCP
connections established by clients on port 80. After the three-
way handshake, the client sends a request. This request can
be a single command with one parameter, for example GET
index.html or a one line command with parameters and
additional information in subsequent lines. The server analyzes
the received request and sends a response composed of a status
line, a header with optional information and often a MIME
document.

The simplest approach to emulate a HTTP server without
maintaining any state is to assume that when the client sends
a HTTP request, it will send it inside a single TCP segment.
In this case, the server can use regular expressions to match
the content of the received TCP segments with the standard
HTTP commands and send the corresponding responses. If
no matching rule is found for the received TCP segment,
the HoneyTank acknowledges the received segment. Table I
shows the regular expressions used in our HoneyTank to
emulate HTTP. The configuration of an emulated HTTP server
can be tailored to fake different types of HTTP servers by
providing different Server identification strings in the HTTP
responses.

Using regular expressions to determine the command sent
by the client is not perfect from a theoretical viewpoint. A first
possible problem is that the request may be sent inside several
TCP segments instead of a single one. In practice, when
testing the HoneyTank with several HTTP clients, we found
the emulation to be sufficient. A second possible problem is
that a MIME document containing HTTP commands may be
attached to a HTTP request. This would happen for example
when a client is using a POST request to send to the emulated
server the RFC defining HTTP. However, in practice this is
unlikely to happen. As our objective is to collect malicious
traffic, an incorrect reply to a malicious request is not a severe
problem.

Although many application-level protocols use ASCII en-
coded commands and replies, some important applications ex-
change binary messages. As an example of such protocols, we
consider the Remote Procedure Call (RPC) [36] based services

6

TABLE I

EMULATION OF HTTP/1.1

Regular expression Reply
GET .* HTTP/1.1 � n HTTP/1.1 200 Ok � nHTML page
HEAD .* HTTP/1.1 � n HTTP/1.1 200 Ok � nLast-modified:. . .
CONNECT .* HTTP/1.1 � n HTTP/1.1 200 Ok � n � n
TRACE .* HTTP/1.1 � n HTTP/1.1 200 Ok � nContent-type:message/http � n � n...
OPTIONS .* HTTP/1.1 � n HTTP/1.1 200 Ok � nAllow: CONNECT,. . . � n � n
PUT .* HTTP/1.1 � n HTTP/1.1 201 Created � n � n
DELETE .* HTTP/1.1 � n HTTP/1.1 200 Ok � n � n
POST .* HTTP/1.1 � n HTTP/1.1 200 Ok � n � n

which are often targeted by worms. Among the available RPC
services, the portmapper/rpc.bind [37] is important as it listens
to a standard TCP port and provides the list of RPC services
supported on the local system and the TCP/UDP ports used to
reach those services. A request to the portmapper is a standard
RPC call addressed to the service number 100000 on port
111. To emulate the portmapper service in our HoneyTank,
we created a rule which waits for a RPC message on the
default portmapper. This request is encoded in XDR format
and contains the service number and a transaction identifier.
We extract this identifier and use it to build a matching
RPC reply containing a list of fake RPC services which are
emulated on the HoneyTank.

D. Emulation of stateful protocols

As another example of protocol implemented on the Honey-
Tank, we consider the Simple Mail Transfer Protocol (SMTP)
[38]. SMTP is the standard protocol used to send electronic
mail. SMTP servers are subject to different types of attacks
such as buffer overflows or spammers using them as relays to
send unsolicited emails. SMTP is a stateful application level
protocol running over TCP on port 25.

During a SMTP session, an email is transferred in a few
steps. After the SYN+ACK segment of the TCP three-way
handshake, the server sends its banner. The client sends a
HELO message and the server confirms by sending a one-
line reply containing a number and a comment. After this
exchange, a mail transaction can start. The client issues a
MAIL FROM command indicating the sender’s email address.
The server replies and indicates whether the sender is accept-
able or not. Then, the client issues one or several RCPT TO
commands that are confirmed by the server. Finally, the client
uses the DATA command to send the entire email followed
by a single line containing “.”. The arrival of the email is
confirmed by the server.

The main problem to emulate a SMTP server is to cor-
rectly reply to the mandatory SMTP commands [38]. In our
prototype, we implemented a simple solution based on regular
expressions. When a TCP segment arrives, we check whether
its payload matches one of the regular expressions of table II.
If so, a TCP segment containing a positive reply is sent and
the received segment is acknowledged. Otherwise, we assume
that the received segment is part of the body of an email
message being received after a successful DATA command and
we simply acknowledge the segment.

We verified that this implementation based on regular
expressions was sufficient to interact correctly with several
SMTP clients. This accuracy in the SMTP emulation is
probably sufficient to track simple spammers trying to exploit
vulnerable SMTP servers. But since no state is maintained, a
human attacker can easily detect that he is interacting with
a fake SMTP server. For example, our server will accept a
DATA command even if it is not preceded by a MAIL FROM
and RCPT TO command. Similarly, if the string “RCPT TO:�
n” appears in the DATA section of a mail our server will

sent a “250 OK” reply rather than ignore it.
The regular expression approach is sufficient to emulate a

simple SMTP server. However, its behaviour is far from a
normal server maintaining state. To emulate such a stateful
server without maintaining any state in the HoneyTank, we
need to determine the state of the emulated server from each
TCP segment received from the client.

With the normal TCP protocol we used until now, it is not
possible. However, the TCP timestamps can be used to store
the state of the SMTP in the client as follows.

We will use the TSval field of the TCP timestamp to store
information about the state of the emulated server. When a
packet is received by the server, the TSecr field contains the
last value of the TSval field which has been received by the
client. In order to respect the TCP timestamp specification,
the TSval value must be strictly increasing between each
packets.

To achieve this, we consider that the first 24 most significant
bits of the field are seen as a counter that will be incremented
by one each time a packet is sent. We call this the “counter”
part of Tsval. This counter is incremented for each TCP
segment sent. The last 8 least significant bits are used to store
the state of the emulated server. We call this the “state” part
of Tsval

First, we place the value 1 in the state part of TSval in
the TCP segment containing the banner. This timestamp value
indicates that the server is expecting the HELO command.
Upon arrival of a TCP segment with the state part of TSecr
set to 1, the SMTP server will only accept a HELO. The
reply message sent in response to this command will contain a
state set to 2. This timestamp indicates that the STMP server
is expecting a MAIL FROM command. A state value of 3
is used when the SMTP server expects the first RCPT TO
command. After this command (state=4), the client can either
send another RCPT TO command or an email by using the
DATA command. During the transfer of the email message,

7

TABLE II

EMULATION OF SMTP WITH REGULAR EXPRESSIONS

Regular expression Reply
HELO .* � n 250 Requested mail action okay, completed
MAIL FROM:.* � n 250 Requested mail action okay, completed
RCPT TO:.* � n 250 Requested mail action okay, completed
DATA � n 354 Start mail input; end with � CRLF � . � CRLF �

� n. � n 250 Requested mail action okay, completed
NOOP � n 250 Requested mail action okay, completed
QUIT � n 221 Closing
TURN. . . 502 Command not implemented

TABLE III

EMULATION OF SMTP WITH TCP TIMESTAMPS

State received Regular expression State sent Reply message
1 HELO .* � n 2 250 Requested mail action okay, completed
1 MAIL � RCPT � DATA 1 503 Bad sequence of commands
2 MAIL FROM:.* � n 3 250 Requested mail action okay, completed
2 HELO � RCPT � MAIL � DATA 2 503 Bad sequence of commands
3 RCPT TO:.* � n 4 250 Requested mail action okay, completed
3 HELO � MAIL � RCPT � DATA 3 503 Bad sequence of commands
4 RCPT TO:.* � n 4 250 Requested mail action okay, completed
4 DATA � n 5 354 Start mail input; end with � CRLF � . � CRLF �
4 HELO � MAIL 4 503 Bad sequence of commands
5 � n. � n 2 250 Requested mail action okay, completed
5 !(� n. � n) 5 no reply, received segment is acknowledged

� 5 QUIT � n 999 221 Closing
� 5 VRFY � EXPN � HELP. . . TSecr 502 Command not implemented

the server sends TCP segments with the state part of TSval
set to 5. In any state besides the email message transfer,
the server will correctly reply to a QUIT and an invalid
command. Table III shows an emulated SMTP server using
TCP timestamps.

The TCP timestamps can also be used to recover from some
segment losses and reordering of TCP segments. For example,
consider a SMTP client sending the MAIL FROM: command
in two segments, the first containing MAIL and the second
FROM: a@a.com. If the first segment is lost, the HoneyTank
will receive a segment with the state part of TSecr set
to 2 that does not match. The received segment should be
ignored (and thus not acknowledged) by the HoneyTank. As
the TCP implementation on the client maintains state, it will
retransmit the two missing segments. Furthermore, as TCP
implementations support the Nagle algorithm, the client will
retransmit all its unacknowledged data in a single segment.

E. TCP connection clearing

A TCP connection is composed of three phases : the three-
way handshake, the data transfer phase and the clearing phase.
TCP supports two types of connection clearing : a graceful
clearing with the exchange of segments with the FIN flag set
and an abrupt clearing with the utilization of the RST flag.

In the current version of HoneyTank, we do not emulate
the clearing of a TCP connection. When a TCP segment is
received with the RST flag, this segment is ignored. Honey-
Tank does not send TCP segments with the FIN flag set and
we choose to also ignore the TCP segments received with the
FIN or RST flag set.

Most worms are implemented as applications that interact
with the TCP implementation on the infected operating system.
A worm will typically first call the connect system call
to verify whether the target responds to TCP connection
establishments. The infected operating system maintains TCP
state for this established connection. Then, the worm will
send its exploit by using usually up to a few send system
calls and will either wait for an answer or close the TCP
connection by using the close system call. On most TCP
implementations, the default behavior of this system call is
that the operating system will first try to gracefully clear the
TCP connection by sending FIN segments. As the HoneyTank
does not reply to those segment, the infected operating system
will retransmit the FIN segment several times before abruptly
closing the connection and sending a RST segment. During
those retransmissions, the current thread of the worm is
blocked on the close system call. This could slowdown the
propagation of worms.

V. EXPERIMENTAL RESULTS

To evaluate the benefits of using a HoneyTank to collect
malicious activities, we attached our prototype HoneyTank to
a campus network’s router. The campus network is a class B
network. This experiment was made on June 25th 2004. The
router was configured as described in figure 1. Requests sent
to IP addresses belonging to unused subnets were thus routed
to the HoneyTank. At the time of the experiment, more than
40000 IPv4 addresses were in unused subnets of the class B
campus network.

The HoneyTank was configured to emulate HTTP and

8

SMTP1 as shown in tables I and II and to accept TCP
connections and acknowledge all received segments on the
other ports. Due to the architecture of the campus network, it
was unfortunately impossible to place the HoneyTank outside
of the firewall while collecting all those addresses. The campus
firewall used simple rules to block traffic on classical ports
used by worms, trojans, P2P applications and NetBIOS 2.

Despite the campus firewall, the HoneyTank received a
lot of malicious traffic. As an example, we consider the
operation of the HoneyTank during 5.5 hours3. During this
period, the HoneyTank received 3.433.579 TCP segments from
12859 distinct IP addresses and sent 1.936.767 TCP segments.
1.702.632 received TCP segments contained data. The amount
of traffic collected is much more important than expected.

Figure 3 shows ports that are the most targeted in our trace.
The well known ports are annotated with the registered name at
IANA. We have noticed during our different experiments that
the port distribution was rapidly changing over time, but that
HTTP port (80) was always in the top 10. The most attacked
port in our trace (6129) is attributed to the Dameware Mini
Remote Control Protocol for which an exploit exists since
December 2003. The second top port in our trace (9898) is
probably the Dabber worm which uses a vulnerability in the
FTP server component of the Sasser worm. HTTPS arrives
at the third place but this service was not emulated by the
HoneyTank. The fourth port, 2745, is commonly known as a
backdoor port set up by the Beagle worm. The 1025 port is
used by the Microsoft Remote Procedure Call (RPC) service
and it is the only Microsoft specific port that was not filtered
by the campus firewall. Maybe the attacks on the port 19150
were targeted at gkrellmd which is a system monitor (CPU,
mail, memory, . . .).

To compare the HoneyTank with a Darknet [8], we built two
different packet traces. The first one is the libpcap trace of all
TCP packets sent and received by the HoneyTank. The second
is the trace that would have been collected by a Darknet. As
a Darknet does not respond to any received packet, we built
this trace by extracting from the HoneyTank trace only the
received TCP SYN segments (a Darknet could receive non
SYN segments but they are rare. During our experiment, 6.5%
of the TCP flows did not start with a SYN).

We used Snort on the two libpcap traces with all default
rules enabled and the bleeding rules from [39]. In the Hon-
eytank trace (table IV), we see that the most active rule
used by Snort is ”SHELLCODE x86 NOOP”. It is a generic
rule which searches for a stream of 14 consecutive NOP
instructions (0x90) in the payload of the packets and which
indicates potential buffer overflows. We also see a lot of web
attacks (prefixed by http inspect) based mostly on classical
bugs in Microsoft IIS. The rule called ”SCAN Proxy Port

1During this experiment, we used the stateless implementation (without
TCP Timestamps trick) of the SMTP server. The implementation using TCP
Timestamps was used during another experiment which is not described here.

2TCP ports : 12345-12346, 27374, 16959, 27374, 10008, 12378, 1433,
3127-3198, 4751, 5554, 9996, 6346-6347, 1214, 1285, 1299, 1331, 1337,
3135-3137, 4242, 4661-4663, 4665, 4881, 6257,6699, 8875-8876, 6881-6889,
135-139, 445.

3An anonymized version of the collected trace can be obtained by contact-
ing the authors via email.

6129

9898

443 - https

2745
80 - www

1025

19150

7748

21 - ftp

110 - pop3

other

Fig. 3. Destination port distribution of TCP SYN segments

1080 attempt” only checks for a SYN on the tcp port 1080.
We do not think that it was really related to SOCKS (1080) as
the received data was not a valid SOCKS command. Instead,
we think that it is used by trojans such as SubSeven 2.0 which
also uses the 1080 port, although we have no proof of it. The
”typot trojan” rule is triggered every time a SYN segment is
seen with a TCP window size of 55808 bytes and is generated
by the Linux typot trojan. Note that for most cases, several
machines are responsible for the attacks.

The right column in table IV shows whether the same rule
was also triggered by Snort in the Darknet trace. Clearly,
Snort detects many more attacks when we let the worm or
the attacker go further than a single SYN segment. Obviously,
all HTTP attacks and SHELLCODE attacks are only seen in
the HoneyTank trace. In the Darknet trace, the HTTP attacks
cannot be distinguished from port scans. With this additional
information, we can decide with more certainty that the source
is malicious.

We also evaluated the flow length distribution on the Hon-
eytank trace. 62% of the 312.464 flows contained less than
10 packets and 25% contained between 10 and 20 packets.
In terms of TCP payload, about 50% of the flows contained
no data and about two thirds contained less than 10 bytes of
payload.

VI. LIMITATIONS OF THE HONEYTANK

In this section, we evaluate the limitations of the HoneyTank
and the stateless approach.

The HoneyTank was designed to fool computer worms
but it is not intelligent enough to fool a human intruder. A
human interacting with the HoneyTank could easily detect
that the servers are emulated. A solution to this problem is
to emulate servers accurately by maintaining state using the
TCP timestamps solution discussed in section IV-D. However,
TCP timestamps are optional and if the remote client does not
offer the TCP timestamp option in its initial SYN packet the
HoneyTank cannot use this option in its replies.

Nevertheless, when interacting with worms, this kind of
behavior from the HoneyTank is not a strong limitation.

9

TABLE IV

SNORT ALERTS ON THE HONEYTANK TRACE

Snort Rule Name Unique sources Occurrences Found in Darknet trace
SHELLCODE x86 NOOP 461 910996 no
(http inspect) BARE BYTE UNICODE ENCODING 772 10720 no
WEB-MISC WebDAV search access 368 8719 no
(http inspect) OVERSIZE REQUEST-URI DIRECTORY 376 8701 no
SCAN SOCKS Proxy attempt 99 4378 yes
(http inspect) DOUBLE DECODING ATTACK 64 2603 no
WEB-IIS cmd.exe access 441 2385 no
WEB-IIS unicode directory traversal attempt 64 2357 no
WEB-IIS ISAPI .ida attempt 401 606 no
(http inspect) NON-RFC HTTP DELIMITER 406 604 no
(http inspect) U ENCODING 402 600 no
Portscans 323 435 yes
WEB-IIS CodeRed v2 root.exe access 80 345 no
WEB-MISC http directory traversal 58 312 no
BAD-TRAFFIC tcp port 0 traffic 28 266 yes
BACKDOOR typot trojan traffic 160 222 yes
SCAN Proxy Port 8080 attempt 86 192 yes
WEB-MISC robots.txt access 5 6 no
SCAN FIN 1 2 no
(http inspect) OVERSIZE CHUNK ENCODING 1 1 no

Worms often rely on the infected operating system and use
the standard socket system calls to infect remote computers.
This implies that the worm is usually not able to send raw TCP
segments. Most current TCP implementations support the TCP
timestamps option. Furthermore, the timestamp options found
in the received segments are not exposed by the operating
system to the application. Thus, a worm could only rely on
the messages received from the distant server to detect whether
it is a real server or a HoneyTank. By sending appropriate
banners and responses, it is possible to fake different server
implementations [17].

As the HoneyTank does not maintain any state, it is not
vulnerable to DoS attacks such as a TCP SYN flood. On
the contrary, honeypots maintaining state are vulnerable to
such attacks. For example, Honeyd [17] maintains state for
each TCP connection and launches a process to handle each
connection or supports it via a python interpreter. Faced with
a SYN flood attack or simply a TCP worm spreading from a
large number of machines, a honeyd using processes would
saturate the process table of its host operating system. On
many Unix variants, up to 32.000 processes can run at the
same time. Faced with a SYN flood attack, the HoneyTank
would simply send the required SYN+ACK replies. If the load
on the access link of the HoneyTank becomes too high, we
could limit the amount of reply segments sent by responding
only to a subset of the received segments.

A potential problem with the HoneyTank is that it could be
used by an attacker as a packet amplificator to flood distant
networks. For example, consider an attacker sending spoofed
TCP segments containing GET a.html to a HoneyTank em-
ulating a HTTP server as described in table I. The HoneyTank
will reply to those segments with TCP segments containing a
HTTP header and the beginning of an HTML file. To reduce
the impact of this problem, we limit the size of the TCP
segments sent by the HoneyTank and try to ensure that the
reply sent by the HoneyTank is not much larger than the

received segment. We can also configure the access router to
do shaping on the packets sent by the HoneyTank in order to
limit the output bandwidth.

As the HoneyTank does not maintain any state, it cannot
correctly handle IP fragments. In the current prototype, the
received fragments are silently discarded.

Currently, the HoneyTank cannot handle compressed or
encrypted connections as they require to maintain some state.
By using the TCP timestamp options, it could be possible,
at least in theory, to place the value of the key required to
decrypt the segment in the TSval field so that each received
encrypted segment contains the decryption key. Unfortunately,
the timestamp fields are only 32 bits wide and most encryption
keys, both public and private, are much larger. However, this
limitation does not mean that the HoneyTank could not, at least
partially, emulate application-level protocols using encryption
to slowdown the spreading of worms.

Finally, the HoneyTank, like many implementations, could
suffer from buffer overflow problems. However, it is very
unlikely to happen since the HoneyTank only treats TCP seg-
ments individually, and the maximum size of each segment is
limited by the LAN interface of the HoneyTank. Furthermore,
the only operations performed by the HoneyTank are regular
expression matches and simple computations. The content
of the received segments is never stored in variable-length
buffers.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have first discussed several methods
which can be used to efficiently collect malicious traffic
in operational ISP and campus or enterprise networks. For
campus networks, we have shown that Mobile IPv4 can be
used to efficiently collect information about local scans. Once
deployed, a collector should be able to collect and analyze
both UDP and TCP-based malicious activities.

10

Then we have proposed two methods to emulate a large
number of TCP-based services without maintaining any state
in the workstation receiving the malicious traffic. Our first
method replies to all TCP SYN segments to accept all TCP
connection establishment attempts and matches the payload of
the received data segments to determine a plausible reply. Our
second method relies on the TCP timestamp option supported
by most TCP implementations and uses it to “store” the state
of the emulated server in the distant client. This provides a
more accurate emulation of the TCP services.

We have implemented a prototype HoneyTank in the ASAX
IDS. We have used it to emulate TCP services on about 40,000
IPv4 addresses. During a short period of time, it was able to
capture many types of malicious activities.

The approach described in this paper could be expanded in
several ways. Firstly, new TCP-based services should be added
to the prototype. Most clear-text application-level protocols
can be easily supported. We believe that using the high-level
RUSSEL language can ease the implementation of new pro-
tocol responders. Secondly, the prototype should be deployed
in various locations, including on existing network telescopes
or on Darknets operated by large ISPs to collect and analyze
malicious traffic during large periods of time. Thirdly, a large
deployment of HoneyTanks could slowdown the spreading of
worms as they would try to infect many non-existing machines.

Finally, it would be useful to compare the performances
between our stateless implementation and a stateful implemen-
tation. This comparison should measure both the scalability
of the implementations and the quality of the malicious traffic
captured.

REFERENCES

[1] APWG, “Anti phishing working group,” http://www.antiphishing.org/.
[2] Darrell M. Kienzle and Matthew C. Elder, “Recent worms: a survey and

trends,” In Proceedings of the 2003 ACM workshop on Rapid Malcode
[40], pp. 1–10.

[3] Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert Cunning-
ham, “A taxonomy of computer worms,” In Proceedings of the 2003
ACM workshop on Rapid Malcode [40], pp. 11–18.

[4] Marty Roesch, “Snort,” http://www.snort.org.
[5] CERT, “CERT Advisory CA-2001-26 Nimda Worm,”

http://www.cert.org/advisories/ca-2001-26.html.
[6] CERT, “Code Red II : Another Worm exploiting buffer overflow

in IIS indexing service DLLAdvisory CA-2001-26 Nimda Worm,”
http://www.cert.org/incident notes/in-2001-09.html.

[7] Mark Fullmer, “flow-dscan : Detect scanning and other suspi-
cious network activity,” http://www.splintered.net/sw/
flow-tools/.

[8] The Team Cymru, “The team cymru darknet project,” http://www.
cymru.com/Darknet/index.html, June 2004.

[9] V. Yegneswaran, P. Barford, and D. Plonka, “On the design and use of
internet sinks for network abuse monitoring,” in RAID 2004 Symposium,
September 2004.

[10] IPMON, “Packet trace analysis,”
http://ipmon.sprint.com/packstat/packetoverview.php, 2004.

[11] Cisco, “NetFlow services and applications,” White paper, available from
http://www.cisco.com/warp/public/7 32/netflow, 1999.

[12] E. Gauthier, “Life on a university network: An architecture for auto-
matically detecting, isolating, and cleaning infected hosts,” NANOG30,
http://www.nanog.org/mtg-0402/gauthier.html, February 2004.

[13] Vinod Yegneswaran, Paul Barford, and Johannes Ullrich, “Internet
intrusions: global characteristics and prevalence,” in Proceedings of
the 2003 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems. 2003, pp. 138–147, ACM Press.

[14] DShield-team, “Distributed intrusion detection system,”
http://www.dshield.org/.

[15] David Moore (CAIDA), “Network telescopes: Observing small
or distant security events,” http://www.caida.org/outreach/
presentations/2002/usenix_sec/, August 2002.

[16] David Moore, Geoffrey M. Voelker, and Stefan Savage, “Inferring
internet Denial-of-Service activity,” in Proceedings of the 2001 USENIX
Security Symposium, 2001, pp. 9–22.

[17] Niels Provos, “Honeyd,” http://www.citi.umich.edu/u/
provos/honeyd/.

[18] E. Kohler, R. Morris, B. Chen, J. Jannotti, and F. Kaashoek, “The click
modular router,” ACM Transactions on Computer Systems, August 2000.

[19] The Honeynet Project, Know Your Enemy: Revealing the Security Tools,
Tactics, and Motives of the Blackhat Community, The Honeynet Project,
2002.

[20] Marc Dacier, Fabien Pouget, and Hervé Debar, “Honeypots: Practical
means to validate malicious fault assumptions,” in Proceedings of
the 10th IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC’04). 2004, pp. 383–388, IEEE Computer Society.

[21] M. Dacier, F. Pouget, and H. Debar, “Attack processes found on the
internet,” in NATO Symposium IST-041/RSY-013, Toulouse, April 2004.

[22] Vincent Berk, George Bakos, and Robert Morris, “Designing a frame-
work for active worm detection on global networks,” in Proceedings
of the First IEEE International Workshop on Information Assurance
(IWIA’03). 2003, p. 13, IEEE Computer Society.

[23] C. Kreibich and J. Crowcroft, “Honeycomb - Creating Intrusion
Detection Signatures Using Honeypots,” 2nd Workshop on Hot Topics
in Networks (HotNets-II), 2003.

[24] G. Huston, “Bgp table report,” http://bgp.potaroo.net, 2004.
[25] C. Perkins, “Rfc 3344 : IP Mobility Support for IPv4,” http://www.

ietf.org/rfc/rfc3344.txt, August 2002.
[26] P. Biondi, “Scapy,” http://www.cartel-securite.fr/

pbiondi/projects/scapy.html.
[27] N. Habra, B. Le Charlier, A. Mounji, and I. Mathieu, “ASAX:

Software Architecture and Rule-based language for Universal audit
trail analysis,” in Proceedings of the third European Symposium on
Research in Security (ESORICS’92), Toulouse, Nov. 1992, Lecture Notes
in Computer Science, Springer-Verlag.

[28] A. Mounji, B. Le Charlier, N. Habra, and D. Zampuniéris, “Distributed
Audit Trail Analysis,” in Proceedings of the Internet Society Symposium
on Network and Distributed System Security (ISOC’95), San Diego,
California, Feb. 1995, IEEE.

[29] A. Mounji, Languages and Tools for Rule-Based Distributed Intrusion
Detection, Ph.D. thesis, Institute of Computer Science, University of
Namur, Belgium, September 1997.

[30] Tcpdump-team, ,” http://www.tcpdump.org/.
[31] Mike D. Schiffman, “The libnet packet construction library,” http:

//www.packetfactory.net/Projects/Libnet/.
[32] J. Postel, “Transmission control protocol,” Request for Comments 793,

Internet Engineering Task Force, Sept. 1981.
[33] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high

performance,” Request for Comments 1323, Internet Engineering Task
Force, May 1992.

[34] R. Fielding, UC Irvine, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee, “Rfc 2616 : Hypertext Transfer Protocol
– HTTP/1.1,” http://www.ietf.org/rfc/rfc2616.txt, Au-
gust 1982.

[35] CERT, “CERT Advisory CA-2001-19 ”Code Red” Worm Exploiting
Buffer Overflow in IIS Indexing Service DLL,” http://www.cert.
org/advisories/CA-2001-19.html.

[36] R. Srinivasan, “RPC: remote procedure call protocol specification
version 2,” Request for Comments 1831, Internet Engineering Task
Force, Aug. 1995.

[37] R. Srinivasan, “Binding protocols for ONC RPC version 2,” Request
for Comments 1833, Internet Engineering Task Force, Aug. 1995.

[38] J. Postel, “Simple mail transfer protocol,” Request for Comments 821,
Internet Engineering Task Force, Aug. 1982.

[39] “Bleeding snort ruleset,” http://www.bleedingsnort.com.
[40] ACM, Proceedings of the 2003 ACM workshop on Rapid Malcode,

Washington, DC, USA, Oct. 2003. ACM Press.

