

IEEE 802.3az: The Road to Energy Efficient Ethernet

K. Christensen, P. Reviriego, B Nordman, M. Bennett, M. Mostowfi, J.A. Maestro

Presented by: Jordi Cucurull

Department of Computer and Information Science (IDA) Linköpings universitet Sweden

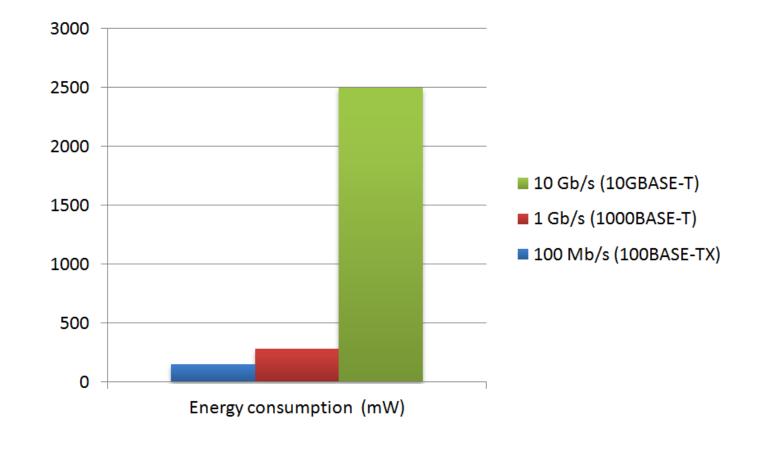
panding reality

Outline

- Why Energy Efficient Ethernet?
- The 802.3az Standard
- Packet coalescing
- Evaluation

Outline

- Why Energy Efficient Ethernet?
- The 802.3az Standard
- Packet coalescing
- Evaluation



Energy consumption of Ethernet

- Ethernet interfaces are highly spread
 - Present on desktops, notebooks, servers, TVs...
 - 1 billion in US and 3 billion worldwide (2010)
- Four different data rates on UTP cable
 - 10 Mb/s (10BASE-T)
 - 100 Mb/s (100BASE-TX)
 - I Gb/s (1000BASE-T)
 - 10 Gb/s (10GBASE-T)

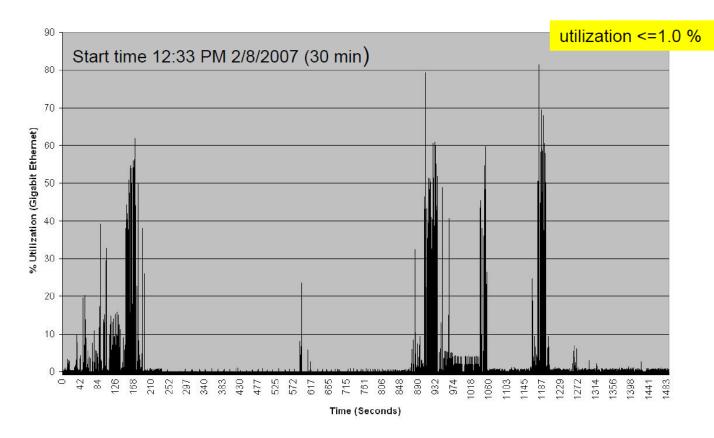
Energy consumption of Ethernet

5

Department of Computer and Information Science (IDA) Linköpings universitet, Sweden

April 2, 2012

Source: Marvell Semiconductor Inc.



Energy consumption of Ethernet

- Energy consumption dependent on link data rate
 - Higher data rate more complex physical interfaces
 - To increase speed
 - To keep low bit error rate at 100m distance
- Energy consumption independent on link usage
 - When no data to send an IDLE signal is transmitted

Low utilisation of server links

File server with 1Gb/s Ethernet

H. Barrass, M.Bennett, W.W.Diab, D.Law, B.Nordman, G.Zimmerman. Tutorial Energy Efficient Ethernet. 2007

Outline

- Why Energy Efficient Ethernet?
- The 802.3az Standard
- Packet coalescing
- Evaluation

History of the standard

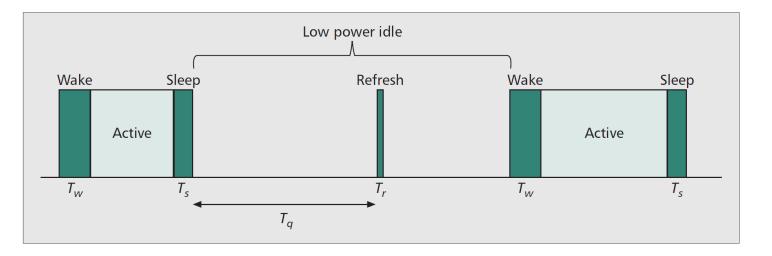
- July 2005 Idea of creating Energy Efficient Ethernet (EEE)
- November 2006 Panel presentation in 802.3 Working Group to describe rationale for EEE
- September 2007 P802.3az Task Force is formed
- October 2008 First draft of the standard produced
- September 2010 IEEE Std 802.3az approved

Department of Computer and Information Science (IDA) Linköpings universitet, Sweden

Two approaches to save up energy

- Low Power Idle
 - Switch ports to low power mode during idle periods
 - Adaptive Link Rate
 - Modify the link rate during periods of low traffic

Both search for energy proportionality!



Low Power Idle (LPI)

- Smart switching of interface to low power mode
 - LPI replaces the continuous IDLE signal
 - Energy consumption around 10% of active mode
- Synchronisation is kept with signalling during short periodic refresh intervals (T_r)
- Trade-off energy for latency
 - Transitions between active/sleep modes take time
 - T_s Time to go to low power (sleep) mode
 - T_w Time to wake up link

Low Power Idle (LPI)

 T_s : Time to low power idle (sleep) T_w : Time to go to active (wake) T_q : Interval without signalling T_r : Refresh signalling interval

Overhead of Low Power Idle

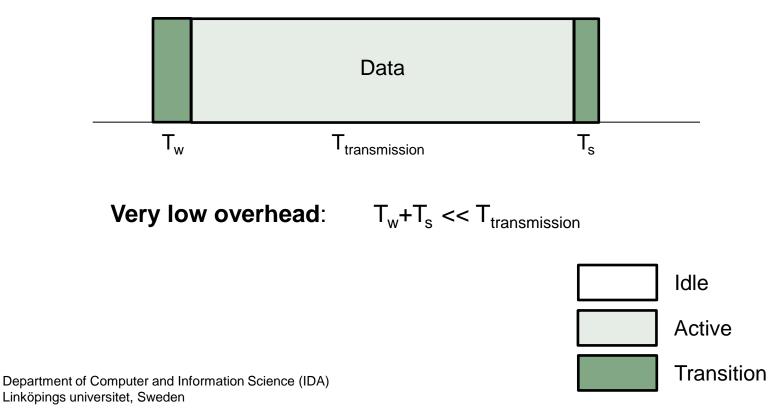
- Overhead is characterised by T_s and T_w
- Example of overhead for 10 Gb/s Ethernet:

	Value
Time to sleep (T _s)	4.48 µs
Time to wake up (T _w)	2.88 µs
Time to send packet of 1500 bytes (TCP DATA)	1.2 µs
Time to send packet of 64 bytes (TCP ACK)	0.0512 µs

Outline

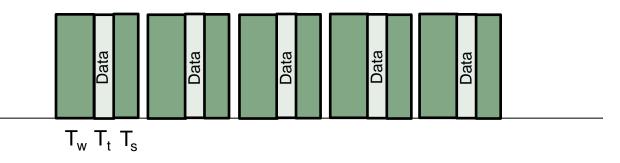
- Why Energy Efficient Ethernet?
- The 802.3az Standard
- Packet coalescing
- Evaluation

Performance trade-offs

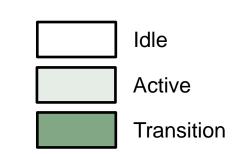

- EEE Energy efficiency as a function of
 - Link utilisation
 - Packet transmission time
 - Distribution of packet interarrival times

Department of Computer and Information Science (IDA) Linköpings universitet, Sweden

A two-case TCP download example


Transmission of large block of packets

A two-case TCP download example


Transmission of small packets with gaps between them

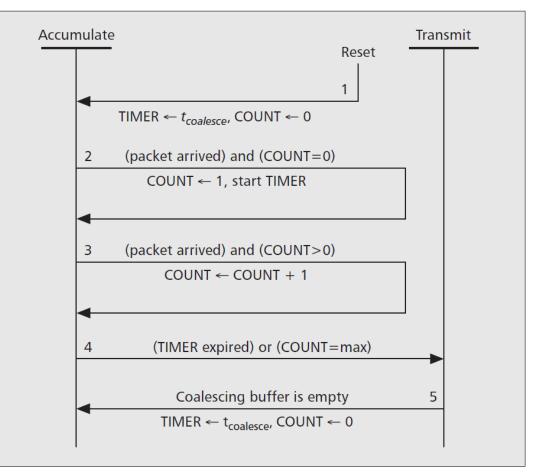
Very high overhead: $T_w + T_s > T_{transmission}$

- More latency
- Less energy reduction

Department of Computer and Information Science (IDA) Linköpings universitet, Sweden

How to reduce overhead?

- Buffering packets before sending them
- Packet coalescing
 - Proposed technique to reduce overhead
 - Not part of the standard, but compatible with it



Packet coalescing

- FIFO queue in the Ethernet interface
 - Collects (or coalesces) multiple packets to be sent
 - Packets are sent as a burst over the link
- Coalescing approaches can be based on
 - Packet count
 - Time from first packet arrival
 - Combination of both

Packet coalescing

Finite state machine for packet coalescing

Department of Computer and Information Science (IDA) Linköpings universitet, Sweden

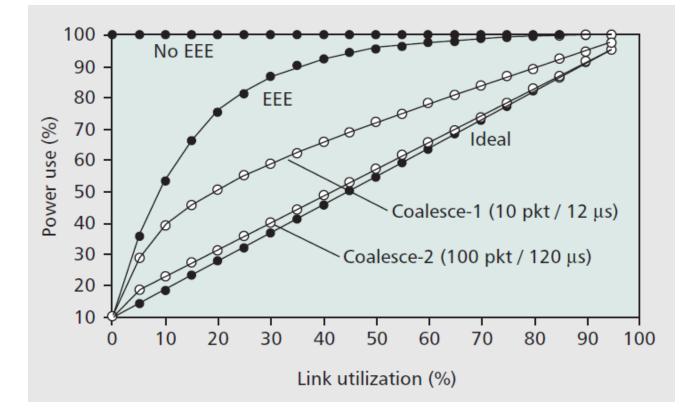
Outline

- Why Energy Efficient Ethernet?
- The 802.3az Standard
- Packet coalescing
- Evaluation

Link simulation

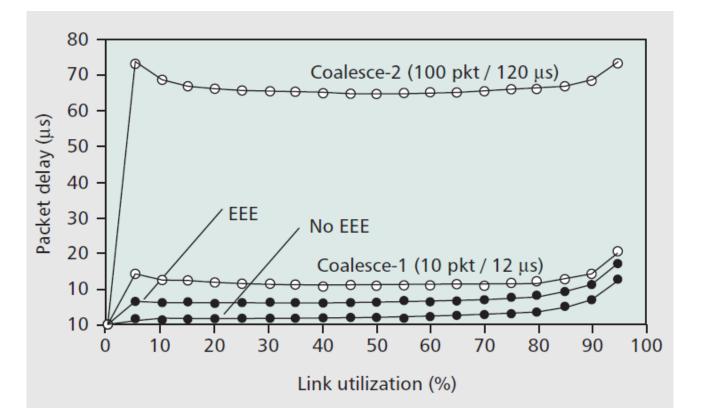
- Packet coalescing analysed on 10 Gb/s simulated link
 - Packets arriving as a Poisson process
 - Packet length of 1500 bytes ($T_{pkt} = 1.2 \ \mu s$)
 - Low power mode consumed 10% of active mode
- Effects measured with different link utilisation
 - Power usage
 - Mean packet delay

Link simulation


- Different parameters selected
 - Energy Efficient Ethernet link
 - No coalescing
 - Coalescing with two different configurations (timer/counter)
 - Coalesce-1: $t_{coalesce} = 12 \ \mu s$ and $max_packets = 10$
 - Coalesce-2: $t_{coalesce} = 120 \ \mu s$ and $max_packets = 100$

Regular Ethernet link

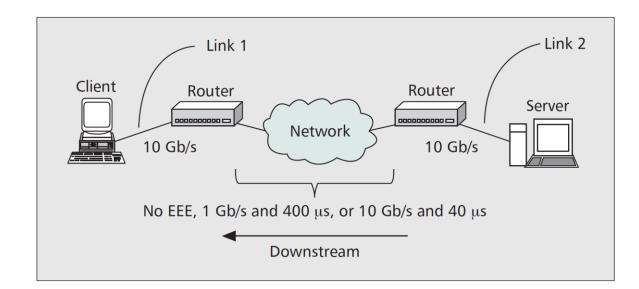
Department of Computer and Information Science (IDA) Linköpings universitet, Sweden


Link simulation results

Department of Computer and Information Science (IDA) Linköpings universitet, Sweden

Link simulation results

Department of Computer and Information Science (IDA) Linköpings universitet, Sweden



What is the significance of these delays?

- Internet round trip time is around 10-100 ms
 - An increase of a few tens of microseconds not significant
 - But some time critical applications could be affected
- And if this technology is deployed in the whole network?
 Then it must be studied.

Network simulation

- Network simulated with NS-2
 - Two core networks (different speed/delay)
 - Buffer of 100 packets at each router
- 1 GB file downloaded with TCP connection
 - 400 packets window size

Department of Computer and Information Science (IDA) Linköpings universitet, Sweden

Energy calculation

Formula used to compare energy in simulations

$$E = T_w + T_s + T_{transmission} + 0.1 \times T_{idle}$$

Department of Computer and Information Science (IDA) Linköpings universitet, Sweden

Results obtained

10 Gb/s core network with 40 μs of delay

	Download time	Usage Link 1 Up	Energy Link 1 Up	Usage Link 1 Down	Energy Link 1 Down
No EEE	0.843 s	4.0 %	100.0 %	94.9 %	100.0 %
EEE	0.843 s	4.0 %	99.9 %	94.9 %	99.9 %
EEE coalesce-1	0.843 s	4.0 %	50.6 %	94.9 %	99.9 %
EEE coalesce-2	0.847 s	4.0 %	21.3 %	94.5 %	99.5 %

- Download time is almost not affected
- Significant energy savings in up link (ACK channel)

Results obtained

1 Gb/s core network with 400 μs of delay

	Download time	Usage Link 1 Up	Energy Link 1 Up	Usage Link 1 Down	Energy Link 1 Down
No EEE	8.28 s	0.4 %	100.0 %	9.7 %	100.0 %
EEE	8.28 s	0.4 %	65.6 %	9.7 %	74.4 %
EEE coalesce-1	8.28 s	0.4 %	38.0 %	9.7 %	46.7 %
EEE coalesce-2	8.34 s	0.4 %	17.8 %	9.7 %	25.8 %

- Download time is almost not affected
- Significant energy savings in up/down links

Network performance

- Network performance almost not affected
 - But different parameters can lead to worse performance
- Two conditions required for good performance
 - Burst size much smaller than
 - Intermediate buffers in routers and NICs
 - TCP window
 - Coalescing timer much smaller than round trip time

Conclusions

- 802.3az is a fully approved and functional standard
 - Many devices implement the standard
- Energy efficiency of 802.3az devices can be easily improved with packet coalescing
- Millions of dollars can be saved up
 - \$410 million savings per year in US (\$80 additional millions with coalescing)
 - \$1 billion savings per year globally