
OpenORB Programmers Guide
Jerome DANIEL [jdaniel@intalio.com]
Chris WOOD [wood@intalio.com]

O P E N O R B (www.openorb.org)

Table Of Contents

1 Introduction

2 OpenORB overview

2.1 What is OpenORB ?
2.2 OpenORB Features

3 Compilation of OpenORB

4 Installing OpenORB

4.1 Quick Start
4.2 Overview of the configuration and deployment

5 OpenORB Configuration

5.1 The OpenORB root element.
5.2 OpenORB Modules
5.3 Importing dependencies.
5.4 OpenORB Profiles
5.5 Bootstrapping OpenORB
5.6 Java Properties.
5.7 The Command Line.

6 The OpenORB IDL Compiler

7 IDL reflection

7.1 How to use the IDL reflection
7.2 Building the compilation graph
7.3 How to use the compilation graph

8 The OpenORB Naming Service

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 2

9 The Any type

10 OpenORB Error Codes

11 Frequently Asked Questions

11.1 Before starting an application
11.2 During the bootstrap
11.3 While the application is running

12 OpenORB License

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 3

1 Introduction
This document provides a set of information required to use OpenORB. It mainly

describes how to install, configure and use OpenORB, but also explains how to use some

tools provided with OpenORB. (for example the IDL compiler or the naming service).

For any comments or questions about this documentation and OpenORB, please send an

email to the OpenORB mailing list openorb-dev@exolab.org.

Status of this document

Date Author Comment

10/03/00 Jerome DANIEL Creation

11/06/00 Chris WOOD Completion on some

information (IDL compiler,

error codes, Naming

Service)

27/04/01 Jerome DANIEL Description of the extended

configuration system

This document is the first version of the OpenORB Programmers Guide, it will be

completed step by step. Contributions would be really appreciated.

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 4

2 OpenORB overview

2.1 What is OpenORB ?

OpenORB is a CORBA Object Request Broker fully developed in Java. It fully complies

with the CORBA 2.4.2 specification and provides a lot of features, services and

extensions.

OpenORB has been designed to provide a reliable foundation for distributed applications.

It combines all CORBA features with implementation specific extensions, with the aim of

being the most powerful and complete CORBA implementation in Java.

OpenORB is the successor of JavaORB which is already widely used all over the world,

in Europe, America, China, Australia, and other places. A large number of deployed

applications, research projects, and study projects are using JavaORB. By taking

experience of JavaORB, the OpenORB team has redesigned a complete new

architecture to define and to develop OpenORB. That's why OpenORB is the best

solution for high scalability and high performances.

CORBA technology is becoming increacingly complex, and has a growing feature set.

Many users don't require all these features to be present in every ORB deployment.

OpenORB is the most complete CORBA implementation but not the biggest one! Why?

Because OpenORB can be configured to fit only the users requirements. Indeed,

OpenORB is not a monolithic middleware, it is a truly modular ORB.

It means that users can define what mechanisms are needed by their applications, and

this way, OpenORB will be loaded in memory with these mechanisms only. OpenORB

contains a kernel that has the ability to load only required parts during the bootstrap time.

Thus, OpenORB is the best way to have the best implementation, the most complete

solution and the most adaptive platform!

2.2 OpenORB Features

The current implementation of OpenORB has the following features:

- Fully compliant with CORBA 2.4.2

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 5

- Fully developed in Java

- Fully multithreaded ORB

- Compliant with JDK 1.2 and 1.3

- Truly modular ORB

- XML Configuration file

- Multiple Object Adapters : BOA and POA

- IIOP 1.2, Bi Directional GIOP

- Portable Interceptors

- Interoperable Naming Service

- DynAny, DII, DSI

- Code set support

- Reusable IDL compiler

- Several tools : IDL to HTML, IDL to RTF

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 6

3 Compilation of OpenORB
OpenORB is provided with a build script for the Ant build tool. This tool is available in the

OpenORB distribution (in the lib directory). So, to compile OpenORB, you just have to

start the build script corresponding to your Operating System : build.bat for Windows

or build.sh for Unix.

The build script provides several targets (to see all targets, just start the build script with

the targets option) :

- devel : Build main packages in debug mode. Does not depend on idl.

- idl : Compile all IDL descriptions. Execute this target whenever idl descriptions

are changed when using devel target.

- main : Build main packages in debug mode.

- main-r : As above, in release mode.

- test : Build test packages in debug mode.

- examples : Build example packages in debug mode.

- jar : Create jar files from main packages compiled in release mode.

- jar-all : Create jar files from main, test and examples packages.

- javadoc : Create javadoc from main packages.

- doc : Build documentation.

- source : Builds the source tarball in the dist directory

- tarball : Builds the binary distribution in the dist directory

- all : Clean and build main, test and examples (default option)

- clean : remove all compiled and generated files

The default way is to simply start the build script (without any option.

Remark

After building the jar files, the dist directory contains several bundled extension jar files

which are required with OpenORB.

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 7

4 Installing OpenORB

4.1 Quick Start
The first step is to compile OpenORB in order to generate the OpenORB jar files.

OpenORB is composed of two jar files :

- openorb-X.X.X.jar : this jar file contains all parts of the ORB

- openorb_tools-X.X.X.jar : this jar files contains some tools for OpenORB :

mainly the IDL compiler

Note :

X.X.X is the OpenORB version number.

The first jar, openorb-X.X.X.jar, must be installed on each host that runs a CORBA

application. It contains the core openorb runtime, including all the client and server side

code. OpenORB depends on the XML parser xerces, which is found in the lib directory.

This file must be copied to the same directory in which the OpenORB jar resides, it can

be found in the lib directory of the distribution.

The second jar, openorb_tools-X-X-X.jar, must be installed on development hosts.

It is dependent on the openorb core, which must be installed in the same directory as the

tools jar file.

These jar files must be added to the classpath when running an orb application in java.

For information on how to do this, please see your JDK documentation. Note that

OpenORB jar files may be used as installed extensions.

To run an ORB application using OpenORB it is required to customize your Java platform

in order to use OpenORB instead of the default JDK ORB. A file named

orb.properties must be created in the lib subdirectory of the directory specified by

the java system property java.home. The location of the java.home directory is

dependent on your Java runtime.

The orb.properties file contains the following lines:

org.omg.CORBA.ORBClass=org.openorb.CORBA.ORB

org.omg.CORBA.ORBSingletonClass=org.openorb.CORBA.ORBSingleton

The two property values are:

- org.omg.CORBA.ORBClass : this property identifies the class name for the ORB

class.

- org.omg.CORBA.ORBSingletonClass : this property identifies the class name

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 8

for the ORB singleton class.

The simplest way to create the orb.properties file is to run the OpenORB installer,

using the following command:

java -jar openorb-X.X.X.jar

At this point, OpenORB is ready to be used. For many users there is no need to further

configure the orb.

4.2 Overview of the configuration and deployment
The OpenORB Jar files embeds a configuration file. This configuration file named

OpenORB.xml provides all default features to use OpenORB. If you browse the content

of the OpenORB jar file, you will find OpenORB.xml in the org/openorb/config

subdirectory.

This configuration file imports another configuration file named default.xml. This file

contains descriptions and reasonable default for all properties used to manage the

OpenORB behavior.

When a OpenORB user develops an application or deploys on a certain site, it may be

neccicary to customize OpenORB.xml in order to specify some property values. After the

customization, the configuration file can be included in the OpenORB Jar file. This allows

simplified deployment for the CORBA applications.

A following chapter explains more in depth how to use and to customize the OpenORB

behavior through the configuration files. The OpenORB.xml file does give several

examples for configuration.

The default.xml file is also available in the org/openorb/config subdirectory. This

file is the definitive reference on which items can be configured. It describes all available

configuration items and sets sensible defaults for them. This file should be used as

documention for the configurable items.

If you are using OpenORB for the first time, we advise you to stop your reading at this

point. Try out OpenORB by starting examples and developing some test applications.

Come back to this point to continue your reading and to understand more in details about

OpenORB configuration.

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 9

5 OpenORB Configuration
This chapter describes the configuration mechanism of OpenORB, it explains how

configuration works, not what is configured.

OpenORB is configured through a set of XML documents. These documents have their

form described in a DTD, which is contained in the OpenORB jar file in the location

org/openorb/config/OpenORB.dtd.

The default.xml file is available in the org/openorb/config subdirectory of the

OpenORB jar file. This file is the definitive reference on which items can be configured. It

describes all available configuration items and sets sensible defaults for them. This file

should be used as documention for the configurable items.

The configuration file loaded first by OpenORB is known as the master configuration file.

This master file may reference other configuration files, which may in turn reference other

config files. This feature allows fast installation of extensions to OpenORB, and the ability

to centraly define an OpenORB configuration across an organization. The master config

file can be stored in a range of locations, the config file used is the first one found in the

following list:

- The value of the OpenORB property config in the openorb module. This

property can be set using the command line or Java properties. For details see

Bootstrapping OpenORB" below.

- OpenORB.xml in the directory located from the java system property, user.dir.

This is typicaly the working directory which the application is started in.

- The directory located from the Java system property user.home is searched next

for a file named OpenORB.xml or .OpenORB.xml. The user.home directory is

the home directory of the current user. This location is system dependant.

- OpenORB.xml in the directory located from the java java.home system property

- Finally the subdirectory config is searched from the location obtained from the

OpenORB property openorb.home for the OpenORB.xml file.

The last of these locations deserves further explanation: The usual setting of the

OpenORB property openorb.home is within the openorb jar file. As this property is

usualy left as the default, the file named org/openorb/config/OpenORB.xml acts as

a default master config file for OpenORB. So if you don't copy the OpenORB.xml file to

the user.dir, user.home or java.home directories, OpenORB will use the embedded

configuration file.

This system is very powerful because OpenORB is able to directly embed its own

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 10

configuration. If you need to customize OpenORB, you have to edit the OpenORB.xml

file to apply your changes and place it in one of the locations mentioned above. The

OpenORB.xml file is available in the src/config directory of the OpenORB source

code and in the config directory for the prebuilt OpenORB versions.

After customization of the OpenORB.xml file, it's possible to replace the embedded

OpenORB.xml file with the new one. It means that your configuration will be directly in the

OpenORB Jar file. This is very convenient and useful if you need to deploy an application

that uses OpenORB, since all specific requirements for the OpenORB configuration will

be located in the OpenORB jar. So, you will not waste your time to configure OpenORB

on each machine where you are deploying your applications.

To replace the embedded configuration by the new one, the following procedure is used:

- If you are using the OpenORB source code, the Ant build script contains a target

named config that does this. Use the build config command in the root

directory of the source distribution. Ant will replace the embedded configuration of

the OpenORB Jar (the Jar file must be in the dist directory of the OpenORB

distribution) by the OpenORB.xml available in src/config.

- If you are using the pre-built version of OpenORB, a script named setConfig is

available in the config directory. This script will replace the OpenORB

configuration file embedded in the OpenORB Jar (this Jar file must be in the lib

directory of the OpenORB Pre-Built distribution) by the OpenORB.xml available in

config.

The embeded configuration file distributed with OpenORB references the default.xml

file found in the config subdirectory of openorb.home for most of its settings, so

OpenORB uses the default configuration when it is first installed.

5.1 The OpenORB root element.
Setting the doctype for an OpenORB configuration file is optional, however some users

may prefer to add it when developing a configuration, as it allows validation of the

document. When the doctype is used it can be set as follows:

<!DOCTYPE OpenORB

PUBLIC "-//www.openorb.org//OpenORB Config//EN"

"http://www.openorb.org/config/OpenORB.dtd">

The non-public identifier will never be used by the OpenORB configuration mechanism,

so can be set to any URL that the user has installed the DTD for their own validation. The

URL shown above will also be valid.

The OpenORB XML file's root element is named OpenORB. The root element should

contain two namespace definitions which are used in the OpenORB config file:

<OpenORB xmlns="http://www.openorb.org/config"

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 11

xmlns:xlink="http://www.w3.org/1999/xlink" >

Note that currently the namespace prefixes must defined as displayed above.

The root OpenORB element may contain an optional default profile attribute, this declares

which profile is used by default if the config file is selected as the master config file.

Profiles are explained in detail below.

The OpenORB element may also define a base URL for resolving relative URLs used in

import statements which are also defined below.

5.2 OpenORB Modules
Each individual subsystem of openorb, for example the iiop subsystem or the POA, is

controlled by a module defined in a configuration file as an immediate child element of the

OpenORB root element. Modules are usualy defined only in configuration files which are

contained in a jar file; all of the modules affecting the OpenORB core are defined in the

default.xml file.

Modules have the following responsibilities:

- Define properties affecting the subsystem

- Define the subsystem's initializer, a class which is used to set it up

- Define the subsystem's dependencies

A property is a name, value pair used in configuring the orb. In the config file the values

of properties are always simple strings, however each property usualy has an accepted

range of legal values which is documented in the module which defines it. When a

module defines a property it also defines a default value for it, which is used in the

absence of any overrides. Here is a typical property definition:

<module name="one" >

<property name="name" value="value"/>

</module>

Each module defines a namespace for it's property definitions, that is if a property is

defined in two differently named modules with the same property name then these are

distinct properties. Each defined property has an expanded name, which is found by

concatenating it's defining module, a '.' and the property name. For example the above

module would define a property with expanded name one.name. If two modules

contained in different files are given the same name then the expanded names of their

properties may collide. For this reason it's important to ensure module names are unique.

Module and property names are not case sensitive.

A module may also declare property sets; a set of related properties. All the properties in

a property set have names which are prefixed with the same value. Here is a typical

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 12

property set definition, with a few properties defined in it:

<propertyset prefix="pfx" />

<property name="pfx.a" value="value1"/>

<property name="pfx.b" value="value2"/>

Some very commonly used properties are given a special alias which can be used on the

command line as a shortcut. These are defined in the module as follows:

<propalias name="prop" value="Alias"/>

For details of command line setting of properties, see the section below.

A module may define an initializer, this names a class which is loaded by the orb runtime

when the orb is created and is used to initialize the module's subsystem. The initializer

class must implement one or both of the portable interceptor ORB initializer interface,

org.omg.PortableInterceptor.ORBInitializer, and the OpenORB feature

initializer interface, org.openorb.PI.FeatureInitializer. An example of a

module with an initializer is the POA module:

<module name="POA"

initializer="org.openorb.adapter.poa.POAInitializer" />

Here is a typical module definition for a module which defines some properties and an

initializer:

<module name="foo" initialzer="org.myorg.foo.FooInitializer" >

<property name="size" value="5"/>

<property name="length" value="10"/>

<propertyset prefix="color" />

<property name="color.white" value="1"/>

</module>

Some subsystems require other subsystems be loaded in order that they can be used.

This is a dependency. Modules declare their dependencies by using import statments,

which are described in the following section.

5.3 Importing dependencies.
It is common for a subsystem to require another subsystem be loaded and modified in

some way. This is achieved by using import elements. Import elements are defined as

children of the module which defines them. They declare the target module for the

dependency, and optionaly a set of overrides for the module's properties. Here is an

example import statment which could be used in a different module defined in the same

configuration file as the foo module defined above. It loads the foo module defined and

overrides the setting of some of the properties:

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 13

<import module="foo" >

<property name="length" value="11"/>

<property name="color.white" value="0"/>

<property name="color.black" value="1"/>

</import>

Each module is only ever visited once during configuration. This allows a module to be

imported as a dependency of multple other modules without the property overrides being

reset to their default values: If the above import statment were to be run, and then

another import of foo occoured in a different location which overrode different properties,

then the properties overriden in the above import would remain overriden. However, if the

later import overrode some of the same properties as the above import, these properties

would be changed.

Imports may also target modules in external files. Typicaly this is done with modules

which are defined in well known, permanent locations, for example the modules defined

in the default.xml file are in a well known location, the config subdirectory of the

openorb.home directory. The import attribute used to declare imports from an external

file is the xlink:href attribute.

The following statement imports the module named 'mod' from the config file obtained

from the given URL.

<import xlink:href="http://www.example.com/orb/cfg.xml#mod" />

The target of an href attribute does not have to be an absolute URL, it may be defined

relitave to the document's base URL. The base URL for the document will either be a href

to the document itself, or whatever is set by the xml:base attribute of the root OpenORB

element. For example:

<import xlink:href="#mod" />

<import xlink:href="../cfg.xml#mod" />

In addition to the URL protocols normaly defined by java, OpenORB defines an extra

URL protocol, the resouce protocol. The resource protocol attempts to load it's target by

using the java getSystemResource function, allowing things to be loaded off the

classpath. For example the following URL would import the 'mod' module from the default

config file contained in the openorb jar:

<import

xlink:href="resource:/org/openorb/config/default.xml#iiop"/>

An alternative version of the resource protocol uses the getResource function on the

Class object named org.openorb.ReleaseInfo to generate the URL for the target. This

uses the Class's class loader to load the resource. The following two resource URLs

point to the same file as the above URL: (note: these lines have been split to allow them

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 14

to be typeset, this should not occour in the XML file)

<import xlink:href="resource://org.openorb.ReleaseInfo

/config/default.xml#mod" />

<import xlink:href="resource://org.openorb.ReleaseInfo

//org/openorb/config/default.xml#mod" />

The references used in import statements are subject to property expansion, any part of

the reference enclosed in ${...} is attempted to be expanded. The expanded names of

properties from modules which have been defined previously to the import statement will

be used first for this property expansion, and if this fails then the expansion will be

attempted from java system properties. In the following example the ${user.name} part of

the reference is expanded using the java system property, which is equal to the name of

the current user:

<import xlink:href="http://www.example.org

/openorb/${user.name}.xml" />

If the property expansion appears at the beginning of the URL and it expands to a

property which can be parsed as a URL, then the property's URL is used as a base URL

for resolving the argument. If this fails, but the property can be parsed as a file then the

file is converted to a URL and again used as the base URL. For example, in the following

import statment ${openorb.home} gets expanded into the URL property setting of

openorb.home, which is generaly "resource:/org/openorb/", and the remainder of the href

is resolved relative to it:

<import xlink:href="${openorb.home}config/default.xml#boa" />

The final method of importing properties is from a java properties file. Property file imports

have two forms, the first defines the module that the properties in the file override in the

URL's fragment. For example, the following import statement would set the properties

defined in InitRef.properties in the user's home directory:

<import xlink:href="${user.home}InitRef.properties#InitRef" />

The second form of property import does not use fragment identifiers, but assumes that

the properties defined in the file use expanded property names. This style of import

cannot define property overrides as sub elements, as there is no module to define the

properties within. For example:

<import xlink:href="${user.home}extra.properties" />

5.4 OpenORB Profiles
Profiles are a useful way of grouping related modules together. Whenever an ORB

application is loaded a profile is used to collect the required orb subsystems.

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 15

Profiles are very useful to define several ORB configurations and to select the

configuration to use when starting an application. For example, if you download

OpenORB services or extensions, a profile is very useful collect specific OpenORB

services configuration parameters. For example, you could define a transactional profile

when using applications with transactions, or a database profile for use with the

persistent state service.

Profiles act like modules that contain only import statments; They may override properties

defined in modules that they import, but they do not define a namespace for properties,

and so do not have property, property set, property alias child elements. Profiles also

cannot define initalizers as they don't correspond to an orb subsystem.

Here is an example profile:

<profile name="large">

<import module="chips"/>

<import module="sauce">

<property name="flavor" value="tobasco"/>

</import>

</profile>

Profiles may be imported both from other profiles and from modules in a similar way to

which modules are imported, however when importing a profile it is not possible to set

property overrides since the profile does not define a namespace for properties. For

example:

<import profile="large"/>

Each OpenORB config file specifies a special default profile. To import this profile the

import statement does not define a fragment in the url, for example:

<import xlink:href="${openorb.home}config/OpenORB.xml" />

The profile used as the default profile is the first one found by the following algorithm:

- The associations section of the config file, if present, is searched for a match

with the java user.name property.

- The value of the profile attribute of the root OpenORB element in the config file is

used if specified.

- The profile named "default" is used.

The associations section is used to associate users with profiles. This section optionally

appears as the first child of the OpenORB root element.

The following example config file would select "joes-profile " if the user was joe,

flintstones" if the user was fred, barney or pebbles, or or "unknown-user " otherwise:

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 16

<OpenORB profile="unknown-user"

xmlns="http://www.openorb.org/config"

xmlns:xlink="http://www.w3.org/1999/xlink" >

<associations>

<association user="joe" profile="joes-profile" />

<association user="fred barney pebbles"

profile="flintstones" />

</associations>

5.5 Bootstrapping OpenORB
When OpenORB is first initialized it first sets three special openorb properties, config,

profile and home are from the openorb module. These properties are used when

locating the master config file, and the master profile within it. The following locations are

searched for the value of these properties, the first location containing a value is used:

- The command line arguments passed to the ORB.init function are examined for a

match, for example the openorb.config property is set on the command line

using -ORBopenorb.config=URL

- Command line aliases are defined for all the special properties, the alias for

openorb.config is Config , using the command line argument

-ORBConfig=URL would set this property. The aliases for openorb.profile

and openorb.home are Profile and OpenORB, respectivly.

- The property set passed to the ORB.init function is searched for a match. For

applications this is set by the application itself, for applets the properties may be

sourced from the applet tag.

- The java System property set. System.getProperty is used to find each value, if

available and readable.

- The properties contained in the orb.properties file.

- The default values are used.

The openorb.home property should generaly not be changed from it's default setting. It

is normaly set to the URL resource:/org/openorb/ which is a location within the

OpenORB jar files. This directory acts as a base directory for locating openorb resources.

Sub directories include the config directory, which contains configuration files for the

OpenORB core and extensions, and the idl directory, which contains all the system idl

includes. Note that this property, as with all other OpenORB location properties, is set as

a URL rather than as a file. This allows this property to be set to any location reachable

over a network.

The openorb.config property is used to set the location of the master config file. The

OpenORB setup program can be used to set this property in the orb.properties file.

This may be useful when installing OpenORB with a centrally managed configuration. An

example command line for setting a new value for openorb config is:

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 17

java -jar openorb-X.X.X.jar -config http://www.example.com/cfg.xml

If openorb.config is not set to any value, the master config file location is determined

by searching in the following locations, the first of which to get a match is used:

- OpenORB.xml in the directory located from the java system property, user.dir.

This is typicaly the working directory which the application is started in.

- The directory located from the Java system property user.home is searched next

for a file named OpenORB.xml or .OpenORB.xml. The user.home directory is

the home directory of the current user. This location is system dependant.

- OpenORB.xml in the directory located from the java java.home system property

- Finally the subdirectory config is searched from the location obtained from the

openorb.home property for the OpenORB.xml file.

After finding the master configuration file, the profile to use within it is determined by the

setting of the openorb.profile property. This property can be set to the name of any

of the profiles within the master config file. If this property is not set, the profile is selected

as it would be if it were by an import without a fragment, described above

5.6 Java Properties.
The properties set in the configuration file may not be appropriate in all situations. Certain

applications may require that certain modules be loaded, and it may be desirable to

modify some properties from the command line. It is possible to use command line

options to set or override any configuration item which could be set through the

configuration file, including adding initializers, setting properties and importing modules

and profiles.

OpenORB properties may be overriden by setting java properties in one of three

locations, with locations later in this list overriding earlier locations:

- The orb.properties file located in the lib subdirectory of the Java system

directory, java.home. This location is useful to set properties which should be

used by all orbs running on the current host.

- The property set obtained by the java operation System.getProperties(). This

location is useful if multiple orbs are used in an application, or if the application

does not pass the command line to the orb initialization. Properties in this set can

be set using the java interpreter argument -D.

- The property set passed to ORB.init. This location is useful for setting up an orb

statically for a certain application.

The property name used in these locations is the expanded name of the property, that is

the module name concatenated with a '.' and the property name. Extra module imports

may be added by setting properties prefixed with ImportModule.

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 18

It is possible to add extra initializers by setting properties prefixed with

org.omg.PortableInterceptor.ORBInitializerClass or

org.openorb.PI.FeatureInitializerClass. All extensions and services created

by the openorb project will be distributed with modules, however third party extensions

may use the portable interceptor specification.

To set the property hostname in the iiop module to the value example.com for all

orbs on a particular machine, the following line would be added to it's orb.properties

file:

iiop.hostname=example.com

To ensure that the BOA is always used in a particular application the orb could be

initialized as follows:

void main(String [] args) {

java.util.Properties props = new java.util.Properties();

props.setProperty("ImportModule.BOA",

"${openorb.home}config/default.xml#boa");

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB(args, props);

To use a third party portable interceptor, distributed with the ORB initializer named

org.example.corba.Initializer, an application which uses OpenORB could be

started using the -D java argument to define a system property:

java -Dorg.omg.PortableInterceptor.ORBInitializerClass.\

example=org.example.corba.Initializer app-name

5.7 The Command Line.
As well as overriding properties via Java properties, they may also be set in the

command line arguments passed to the ORB when it is initialized. Properties set in this

way override all other property settings, so setting properties on the command line is

useful when the configuration may change between each execution of the application.

The reccommended way to set OpenORB properties on the command line is to use the

module name immedatly following -ORB, followed by an argument setting the property to

the correct value. For example to the the port property in the iiop module to the value

5566 the following command line could be used:

java app-name -ORBiiop port=5566

The other available ways of specifying the same property are:

java app-name -ORBiiop.port=5566

and:

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 19

java app-name -ORBiiop.port 5566

Some commonly overriden properties have special aliases set to allow easy command

line modification. These are specified in the module defining the property as detailed in

the module secition above. An example property which is aliased is the port property in

the iiop module. This allows another alternative to the three above examples:

java app-name -ORBPort=5566

It is possible to add extra module imports, in this case it is often important to quote the

command line argument to avoid the shell expanding it:

java app-name -ORBImportModule \

"${openorb.home}config/default.xml#boa"

Portable interceptor initializers can also be specified on the command line. To use a third

party portable interceptor, distributed with the ORB initializer named

org.example.corba.Initializer, an application which uses OpenORB could be

started using:

java <app> -ORBorg.omg.PortableInterceptor.ORBInitializerClass \

org.example.corba.Initializer

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 20

6 The OpenORB IDL Compiler
OpenORB provides an IDL compiler that can be reused by user applications (see next

section). This IDL compiler is named org.openorb.compiler.IdlCompiler

Here is the list of the compiler options :

- -release : Shows version number

- -d directory name : Provides a way to specify the ouput directory. This option

will not use the 'generated' directory.

- -package package : Generates files in package_name.

- -I directory : Specifies an include directory.

- -D symbol : Defines a symbol (it is equivalent to #define)

- -nostub : Doesn't generate stub.

- -noskeleton : Doesn't generate skeleton.

- -notie : Doesn't generate TIE classes for delegation mode.

- -native native_name native_mapping : Defines native type mapping.

- -boa : Generates skeletons for BOA

- -dynamic : Generates stubs with DII and skeletons with DSI approaches

- -all : Generates mapping for included files.

- -noprefix : Doesn't use prefixes as packages names.

- -portablehelper : Generate slower, but more portable any extractions in

helpers.

By default, the IDL compiler has the following behavior :

- Generates skeletons for POA

- Generates TIE classes

- Generates all files into a directory named 'generated'

- Uses prefix as package names.

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 21

7 IDL reflection
The IDL reflection is a powerful and simple mechanism that provides CORBA developers

with the ability to reuse the OpenORB IDL compiler. Actually, it means that an IDL

description is still compiled by the OpenORB compiler, but there is no code generation.

The developers reuse the compilation graph thanks to the reflection API which gives

them the ability, for example, to generate some special code artifacts from an IDL

description.

7.1 How to use the IDL reflection
The IDL reflection mechanism is divided into two parts :

- the first step is to run the IDL parser to build the compilation graph,

- and the second step is the use of the compilation graph.

Now, we are going to describe more precisely the two previous steps.

7.2 Building the compilation graph
The first step is very simple. To run the IDL parser, you need to use the

org.openorb.compiler.idl.parser.idlParser class. This class provides the

next operations :

- compile : this operation runs the compiler. This operation takes as argument a

PrintWriter which corresponds to the stream where the compilation message

errors are displayed. It returns the number of compilation errors detected into the

IDL description.

- content : returns the compilation graph content. The content is returned as an

enumeration (java.util.Enumeration).

This class contains a constructor that takes as arguments an array of strings. This array

is the equivalent of the command line arguments for the IDL compiler. You can specify

into this array the same parameters like on the command line (-I, -D, ...) and the IDL

files to compile.

The following lines show how to use the IDL parser :

String [] arguments = new String[1];

arguments[0] = "example.idl";

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 22

org.openorb.compiler.idl.parser.idlParser parser =

new org.openorb.compiler.idl.parser.idlParser(arguments);

int nb_error = parser.compile(System.out);

if (nb_error != 0)

{

System.out.println("There are : " + nb_error +

" compilation errors !");

System.exit(0);

}

java.util.Enumeration content = parser.content();

7.3 How to use the compilation graph
The reflection API provides a large set of classes to browse the compilation graph. The

graph is organized like an IDL description, there are the containers and the contents.

Each graph node is a sub type of

org.openorb.compiler.idl.reflect.idlObject. The following classes are

available :

idlArray, idlAttribute, idlConst, idlEnum, idlException, idlFactory, idlInterface, idlModule,

idlNative, idlOperation, idlParameter, idlSequence, idlState, idlString, idlStruct,

idlStructMember, idlTypeDef, idlUnion, idlUnionMember, idlValue, idlValueBox,

idlWString, idlIdentifier, idlPrimivite and idlType

Please consult the HTML API documentation to get information about all operations

provided by these classes.

The idlObject class provides a lot of useful operations, for example to find specific

objects or to find out an object type.

The following example shows how to browse the compilation graph:

java.util.Enumeration content = parser.content();

while (content.hasMoreElements())

{

org.openorb.compiler.idl.reflect.idlObject obj =

(org.openorb.compiler.idl.reflect.idlObject)

content.nextElement() ;

switch (obj.idlType())

{

case org.openorb.compiler.idl.reflect.idlType.MODULE :

// The current object is a module

System.out.println("Module name : " + obj.idlName());

// ...

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 23

break;

// ...

}

}

To manipulate IDL generation to Java, a useful class is also available

org.openorb.compiler.idl.util.tools. This class provides several operations (

consult the HTML API documentation) as for example :

- javaName that returns the Java name for a IDL object according to the translation

rules (IDL to Java mapping).

- javaType that translates an IDL object to a Java type (accordind to the IDL to Java

mapping rules).

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 24

8 The OpenORB Naming
Service

The core OpenORB distribution provides a simple, transient name service which locally

implements the java SortedMap interface and can be used directly as a map within

applications, as well as as a standallone naming service with all the normal name service

features.

To start a standalone naming service, the org.openorb.util.MapNamingContext

class is run.

If the -default argument is used, then the name service will register itself as a corbaloc

resolvable address, the object reference corbaloc::1.2@localhost/NameService

can be used to find a reference to the naming service. If this behavior is not desired use

the -print option to print an IOR format address to stderr.

To start the naming service on a specific port number, use the orb argument -ORBPort.

If the nameservice was started with -ORBPort=5566 then the corbaloc URL

corbaloc::1.2@localhost:5566/NameService could be used to resolve it.

Another standalone server option is available, -shutdown. Using this option allows the

destroy operation on the root naming context to shutdown the server, otherwise

attempting this will result in a NO_PERMISSION standard system exception to be thrown.

The SortedMap interface on the MapNamingContext allows for simple manipulation of the

namespace at the server side. Accquiring the synchronization lock on the

MapNamingContext will stop any incoming request being processed, this is useful when

map's contents must be manipulating atomicaly.

The keys of the map are stored as stringified names, the values must be CORBA object

references. The Map.put operation will implicitly create any required subcontexts when

inserting an object reference. To create a new empty reference, use a stringified name

which ends with a '/' and a null value. The contexts created in the Map.put operation are

known as virtual contexts.

Virtual contexts have certain usage limitations. Attempting to use the Map.remove

operation on a virtual context can result in undefined behavior, use the removeContext

operation instead. Attempting to use any nameservice operations which would result in

virtual context being unbound will result in a CannotProceed exception being thrown.

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 25

Virtual contexts can be created using the bind_new_context nameservice operation.

Nonvirtual contexts can be created by using the new_context operation. Any context

created by the new_context operation has its lifetime constrained by the nonvirtual

parent contexts of the context which created it; successfully calling destroy on the

nonvirtual parent of the creator context will also result in any context created with the

new_context operation being destroyed. Other than this constraint, no checks are

performed to ensure the context is not orphaned.

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 26

9 The Any type
Helper classes generated by the OpenORB IDL compiler insert and extract by reference

all complex types: structs, unions, and exceptions. This is useful as it avoids excess

copying of data and increaces performance. Whenever a helper class is used to insert a

value into an Any the Any stores a reference to the inserted value. Whenever the extract

operation is used on an Any containing a non-reference representation of it's contents,

the contents will be replaced with a reference to the returned value.

The helper classes will always have this exact behaviour when used with the OpenORB

runtime. If a non-OpenORB orb is used the extract operation may only extract by value.

More effort is made by the helper classes to extract by reference if the -portableref

argument is used to the compiler, this will work on any orb which defines the

extract_Streamable operation on it's Any class, however the extract operation will be

slower.

To insert a complex type into an any by value use the following code:

any.type(SHelper.type());

SHelper.write(s, any.create_output_stream());

To extract a copy of the contained complex type use:

if(!any.type().equals(SHelper.type())

; // perform some remedial action

s = SHelper.read(any.create_input_stream());

The above code fragments will not work with valuetypes, these are always stored by

reference.

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 27

10 OpenORB Error Codes
The following list provides the explanation of each OpenORB minor error codes for

CORBA System exceptions :

- 1146056705 : Attempt to access incomplete typecode containing recursive

- 1146056706 : Invocation order when using DSI

- 1146056707 : Invocation order when using streaming stubs (Delegate)

- 1146056708 : ORB is not initialized

- 1146056709 : Server invocation order

- 1146056710 : Attempt to extract wrong type from Any

- 1146056711 : Object class cannot be instantiated or is incorrect type

- 1146056712 : Type mismatch in list streams with fixed type

- 1146056713 : Object class cannot be instantiated or is incorrect type

- 1146056714 : Attempt to insert value into Any with incorrect typecode

- 1146056715 : Array index out of bounds

- 1146056716 : Object class cannot be instantiated or is incorrect type

- 1146056717 : No primative typecode of that kind

- 1146056718 : Object class cannot be instantiated or is incorrect type

- 1146056719 : Unable to find interface repository

- 1146056720 : Unable to find interface in interface repository

- 1146056721 : Unable interface from repositoy is the wrong type

- 1146056722 : Sequence length exceeds limit in typecode

- 1146056723 : Attempt to overread input stream

- 1146056724 : Type mismatch for list stream

- 1146056725 : Bounds mismatch for list stream

- 1146056726 : Buffer overread

- 1146056727 : Buffer underread

- 1146056728 : Invalid buffer position or format.

- 1146056729 : Attempt to insert native type into Any

- 1146056730 : Problem with union discriminator

- 1146056731 : Unable to extract valuebox type from Any, missing helper

- 1146056961 : IIOP version does not support primative

- 1146056962 : Object class cannot be instantiated or is incorrect type

- 1146056961 : Typecode is not fixed typecode

- 1146056963 : Object class cannot be instantiated or is incorrect type

- 1146056964 : Null valued strings cannot be transmitted

- 1146056965 : Array index out of bounds

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 28

- 1146056966 : Object class cannot be instantiated or is incorrect type

- 1146056967 : Connection to client has been lost before reply can be sent

- 1146056968 : No route to server

- 1146056969 : No connection to server, server is not listening or connection

refused

- 1146056970 : Unable to find host in DNS

- 1146056971 : Invalid tag for IIOP profile

- 1146056972 : IIOP profile data is corrupted

- 1146056973 : Component data is corrupted

- 1146056974 : Component data is corrupted

- 1146056975 : Problem with marshalling / unmarshalling char data

- 1146056976 : Problem with marshalling / unmarshalling wchar data

- 1146056977 : Recursive typecode offset does not match Any known typecode

- 1146056978 : Typecode kind unknown

- 1146056979 : Problem with fixed type

- 1146056980 : Problem with valuetype encoding

- 1146056981 : Failed to close encapsulation layer before calling close operation

- 1146056982 : Problem with valuetype encoding

The following list provides the OMG error codes for the CORBA System Exceptions.

UNKNOWN

- 1 : Unlisted user exception received by client

- 2 : Non-standard System Exception not supported.

BAD_PARAM

- 1 : Failure to register, unregister, or lookup value factory.

- 2 : RID already defined in IFR.

- 3 : Name already used in the context in IFR.

- 4 : Target is not a valid container.

- 5 : Name clash in inherited context.

- 6 : Incorrect type for abstract interface.

- 7 : string_to_object conversion failed due to bad scheme name.

- 8 : string_to_object conversion failed due to bad address.

- 9 : string_to_object conversion failed due to bad bad schema specific part.

- 10 : string_to_object conversion failed due to non specific reason.

- 11 : Attempt to derive abstract interface from non-abstract base interface in the

Interface Repository.

- 12 : Attempt to let a ValueDef support more than one non-abstract interface in the

Interface Repository.

- 13 : Attempt to use an incomplete TypeCode as a parameter.

- 14 : Invalid object id passed to POA::create_reference_by_id.

- 15 : Bad name argument in TypeCode operation.

- 16 : Bad RepositoryId argument in TypeCode operation.

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 29

- 17 : Invalid member name in TypeCode operation.

- 18 : Duplicate label value in create_union_tc.

- 19 : Incompatible TypeCode of label and discriminator in create_union_tc.

- 20 : Supplied discriminator type illegitimate in create_union_tc.

- 21 : Any passed to ServerRequest::set_exception does not contain an exception.

- 22 : Unlisted user exception passed to ServerRequest::set_exception.

- 23 : wchar transmission code set not in service context.

- 24 : Service context is not in OMG-defined range.

- 25 : Enum value out of range.

IMP_LIMIT

- 1 : Unable to use Any profile in IOR.

INV_OBJREF

- 1 : wchar Code Set support not specified.

MARSHAL

- 1 : Unable to locate value factory.

- 2 : ServerRequest::set_result called before ServerRequest::ctx when the operation

IDL contains a context clause.

- 3 : NVList passed to ServerRequest::arguments does not describe all parameters

passed by client.

- 4 : Attempt to marshal Local object.

BAD_TYPECODE

- 1 : Attempt to marshal incomplete TypeCode.

- 2 : Member type code illegitimate in TypeCode operation.

NO_IMPLEMENT

- 1 : Missing local value implementation.

- 2 : Incompatible value implementation version.

- 3 : Unable to use any profile in IOR.

- 4 : Attempt to use DII on Local object.

BAD_INV_ORDER

- 1 : Dependency exists in IFR preventing destruction of this object.

- 2 : Attempt to destroy indestructible objects in IFR.

- 3 : Operation would deadlock.

- 4 : ORB has shutdown

- 5 : Attempt to invoke send or invoke operation of the same Request object more

than once.

- 6 : Attempt to set a servant manager after one has already been set.

- 7 : ServerRequest::arguments called more than once or after a call to

ServerRequest:: set_exception.

- 8 : ServerRequest::ctx called more than once or before ServerRequest::arguments

or after ServerRequest::ctx, ServerRequest::set_result or

ServerRequest::set_exception.

- 9 : ServerRequest::set_result called more than once or before

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 30

ServerRequest::arguments or after ServerRequest::set_result or

ServerRequest::set_exception.

- 10 : Attempt to send a DII request after it was sent previously.

- 11 : Attempt to poll a DII request or to retrieve its result before the request was

sent.

- 12 : Attempt to poll a DII request or to retrieve its result after the result was

retrieved previously.

- 13 : Attempt to poll a synchronous DII request or to retrieve results from a

synchronous DII request.

TRANSIENT

- 1 : Request discarded due to resource exhaustion in POA.

- 2 : No usable profile in IOR.

OBJ_ADAPTER

- 1 : System exception in POA::unknown_adapter.

- 2 : Servant not found [ServantManager].

- 3 : No default servant available [POA policy].

- 4 : No servant manager available [POA Policy].

- 5 : Violation of POA policy by ServantActivator::incarnate.

DATA_CONVERSION

- 1 : Character does not map to negotiated transmission code set.

OBJECT_NOT_EXIST

- 1 : Attempt to pass an unactivated (unregistered) value as an object reference.

- 2 : POAManager::incarnate failed to create POA.

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 31

11 Frequently Asked
Questions

This section will be gradually completed to provide frequently asked questions about

OpenORB.

We divided the F.A.Q. into three parts :

- Before starting the application : this part provides answers to common questions

before starting an application

- During the bootstrap : this part groups all questions about problems that occur

during the application startup

- While the application is running : this part provides answers about problems that

occur while the application is running

11.1 Before starting an application
How to specify a port number for an application ?

A simple solution is to use the -ORBPort from the command line. Example :

java org.openorb.util.MapNamingContext -ORBPort=2001

11.2 During the bootstrap
COMM_FAILURE Exception

Exception in thread "main" org.omg.CORBA.COMM_FAILURE: minor code:

1398079490 completed: No

at com.sun.corba.se.internal.iiop.IIOPConnection.writeLock(Unknown

Source)

...

Solution : Check the orb.properties file (see the 'How to install' section), this file is

probably missing in the java home.

org.omg.CORBA.COMM_FAILURE: minor code: 1 completed: No

at

com.sun.CORBA.iiop.ConnectionTable.get(ConnectionTable.java:101)

com.sun.CORBA.iiop.GIOPImpl.createRequest(GIOPImpl.java:74)

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 32

Solution : This is the same problem than the previous exception.

INTERNAL Exception

Exception in thread "main" org.omg.CORBA.INTERNAL:

org.omg.CORBA.ORBPackage.InvalidName: Object not found : RootPOA

minor code: 0 completed: No

Solution : There are two reasons for this exception :

- The 'OpenORB.xml' file was not found. Please check this file and its location (see

the 'How to install' section).

- You specified an unknown profile name with the '-ORBProfile ' command line

option. In this case, check your profile name.

11.3 While the application is running
IncompatibleClassChangeError

Exception in thread "main" java.lang.IncompatibleClassChangeError

Solution : The JVM uses the JDK ORB classes instead of the OpenORB classes. In this

case, you have to start your application with the 'Xbootclasspath' java option.

I don't succeed to access the Naming Service

Solution : there are several possibilities to solve this problem. First check, the following

topics :

- Your Naming Service is running

- Your OpenORB.xml configuration file contains a property named NameService,

and this property is imported in your current profile thanks to a module

If all the previous topics are checked, the probable reason is in the corbaloc URL used

to specify the naming service.

The corba loc has to contain the following elements :

- the host name where the naming service is running

- and the port number where the naming service is listenning

If the port number is not specified, it means that you are using the default port number. In

this case, the naming service must be started with the -default flag.

If the port number is provided, it must be the same port number that the one used to start

the naming service with the -ORBPort flag.

How can I use corbaloc style addresses for my application?

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 33

Firstly, you're often better off using bindings in the name service to specify initial

references, this allows you to relocate your server without all the clients having to be

notified of the change, and to use transient server references. If you want to be able to

use resolve_initial_references to get your object reference, use a default intial reference

pointing to your name service. By default the DefaultRefs subcontext of the default

naming service is used to store initial references.

If you must use default initial references, have a look at the way it is done in the

MapNamingContext, you will need the OpenORB sources for this. Note that this is to be

considered an undocumented feature, and is subject to change without notice.

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 34

12 OpenORB License
Copyright 2000 (C) Intalio Inc. All Rights Reserved.

Redistribution and use of this software and associated documentation ("Software"), with

or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain copyright statements and notices.

Redistributions must also contain a copy of this document.

2. Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

3. The name "Exolab" must not be used to endorse or promote products derived from this

Software without prior written permission of Intalio. For written permission, please contact

info@exolab.org.

4. Products derived from this Software may not be called "Exolab" nor may "Exolab"

appear in their names without prior written permission of Intalio. Exolab is a registered

trademark of Intalio Inc.

5. Due credit should be given to the Exolab Project (http://www.exolab.org/).

THIS SOFTWARE IS PROVIDED BY INTALIO INC AND CONTRIBUTORS ``AS IS''

AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTALIO INC OR

ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 35

OpenORB Programmers Guide

11/06/00

Copyright (c) 2000, Exolab. O P E N O R B (www.openorb.org) 36

