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A COMPARATIVE ANALYSIS OF DISFLUENCIES
IN FOUR SWEDISH TRAVEL DIALOGUE CORPORA

Robert Eklund
Telia Research AB, Farsta, Sweden

ABSTRACT

This paper reports on ongoing work on disfluencies carried out
at Telia Research AB. Four travel dialogue corpora are
described: human—*“machine”-human (Wizard-of-Oz); human-
“machine” (Wizard-of-Oz); human-human and human-machine.
The data collection methods are outlined and their possible
influence on the collected material is discussed. An annotation
scheme for disfluency labelling is described. Preliminary results
on five different kinds of disfluencies are presented: filled and
unfilled pauses, prolonged segments, truncations and explicit
editing terms.

1. INTRODUCTION

Current automatic speech recognition (ASR) and human—
computer dialogue systems have attained a technological level
that allows use in every-day commercial applications, as long as
the tasks are suffiently constrained. In order to allow more open-
ended speech input, certain phenomena typical of spontaneous
speech need to be modelled. One such phenomenon is the
processing of disfluencies (pauses, truncations, prolongations,
repetitions, false starts etc.), or DFs for short, where more basic
knowledge is needed in order to acquire more accurate
modelling of spontaneous speech. To obtain such basic
knowledge, a first necessary step is thus to study DFs in
application-like situations. This paper describes ongoing work at
Telia Research AB, where DFs in the travel booking domain are
studied.

2. METHOD

Travel booking dialogues in four different corpora are studied.
The data were collected as a part of the Spoken Language
Translator (SLT) project at Telia Research AB [1]. Since the
SLT project work was carried out within the Air Travel
Information Service (ATIS) domain [4], Swedish ATIS data
were collected for language modelling and recognizer training
purposes.

2.1. General Set-up and Subjects

The bookings were made over a telephone line, but high quality
recordings were also made in order to facilitate acoustic
analyses. The subjects were all Telia employees and were used
to business travel bookings. As far as possible, the subjects were
balanced over gender and age.

2.2, Corpus 1: WOZ~-1 / Human—*“Machine”-Human

In order to avoid too strong a colouring effect from instructions,
the tasks were given in a mixture of written and pictorial form
(cf. Figure 1). A more detailed description of this data collection
session is found in [6].
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Figure 1: Task sheet number two (of ten) for the WOZ-1
corpus. The text reads: “After almost a week in New York you
are told that your favourite artist is going to perform in Boston
on May 10, at eight o’clock in the evening. You can leave after 1
p.m. on May 10. You want to know the times, whether there are
any stopovers on the way to Boston, and moreover, you want to
travel as inexpensively as possible. Make the call and do the
booking!” The subjects were allowed to scribble down
supporting notes prior to the call.

2.3. Corpus 2: WOZ-2 / Human—“Machine”

During a later phase in the SLT database (SLT-DB) project, it
was decided to expand the domain from ATIS to business travel
bookings. This meant that data encompassing hotel information,
car rental and so on were needed. Thus, the goal was here to
record business travel dialogues between users and a simulated
database application. The user was given the tasks in almost
exlusively pictorial form (cf. Figure 2). A more detailed
description is found in [5].
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Figure 2: Task sheet number one (of three) for the WOZ-2,
Nymans and Bionic corpora. The header reads: “Client visit in
Bjorboholm (twenty kilometers north-east of Gothenburg)
between June 6 and June 9.” Arrows indicate departure and
arrival, and icons and question marks indicate that inquiries
should be made concerning the prices of trains and flights,
accomodation and car rental. On this task sheet, dates and hours
are given in figure format, whereas on other task sheets, icons of
calendars and clocks were used.

2.4. Corpus 3: Nymans / Human-Human

In order to get a better grasp of general linguistic phenomena
(grammatical, disfluencies, prosodic etc.), it was decided to
collect authentic human-human dialogues. The subjects were
given the same tasks as in WOZ-1 (cf. Figure 2).

2.5. Corpus 4: Bionic / Human—Machine

The goal of this data collection was to obtain authentic human—
machine data. The word ‘bionic’ is used since authentic
components were used to the extent that it was technically
feasible. Since the recognizer did not cover some Swedish cities,
a wizard was used to simulate recognition. Once again, the
subjects were given the same instructions as were used in WOZ-
2 and Nymans (cf. Figure 2).

2.6. Summary

The data thus collected are summarized in Table 1. All corpora
were first transcribed orthographically by a transcription agency,
but are presently being re-transcribed by the author to adhere to
the annotation system described in section 3.

~

Table 1: Summary Statistics. The top row figures are based on
the transcriptions made by the the transcription agency and are
given to indicate the full size of the corpora. The bottom row
(and slightly smaller) figures are based on the retranscribed and
labelled material. Notes: ¢ = Only 23 subjects are labelled so
far. * = Not fully transcribed. T = Note that there are eight
subjects and two travel agents. § = Only the subjects are
transcribed and labelled, not the travel agents.

WOZ-1 | WOZ-2 | Nymans | Bionic
Method Script | Picture | Picture | Picture
No. subjects 39 474 10t 16
Male/Female 19/20 31/16 13 97
No. dialogues 390 131 24 *
Labelled 79 55 20% 16
No. utterances 3,722 3,602 2,899 *
Labelled 957 1,632 13231 517
No. words 29,645 | 27,277 | 21,611 *
Labelled 6,181 12,142 7.1591; 3,117

In all corpora there are a large number of one-word utterances,
e.g. confirming utterances like “ja” (yes) and so on. Since one-
word utterances are less likely to be disfluent, the relative rates
of these affect the number-of-DFs/number-of-utterances ratio.
There is reason to believe that one-word utterances are more
common in Nymans than in the other corpora, since conversation
support is more likely to occur in human-human conversation.
However, we have presently not developed a reliable way of
excluding one-word utterances, so all figures given include one-
word utterances.

3. ANNOTATION

All corpora are labelled according to an annotation scheme first
presented in [2]. This system is based on the annotation scheme
developed by Shriberg [7], with some extensions and minor
changes. The biggest differences are the explicit labelling of
prolonged segments and that durations are explicitly given for
filled and unfilled pauses, as well as for prolongations. The
rationale of this system is two-fold. First, the aim was to use a
system that could be easily mapped between languages, in order
to facilitate cross-linguistic comparisons. Preliminary results
from a cross-language study of Swedish and American English
are presented in [3]. Second, since the annotation scheme in
Shriberg is pre-theoretical, it could be assumed that it is easily
portable other languages. Although Swedish is typologically
very close to English, using a method similar to that of Shriberg
could serve as test case for the generality of the labelling
method. If the labelling method is indeed portable between
languages, we would be one step closer toward a general tool
and method for disfluency labelling across languages, which is a
desideratum in the quest for deeper knowledge of human speech
production.

3.1. Basic Annotation Scheme
The following disfluency categories are described in this paper:

f£< .. >f Filled pause (FP) Marks the beginning and end of
filled pauses, most often realised as “eh” or “6h” in Swedish.
The filler word is written between the £< ... >£ markers.




u< ... >u Unfilled pause (UP) Marks the beginning and end of
unfilled pauses, i.e., silence. If heavy inhalations, exhalations or
other similar phenomena occur during an unfilled pause, they
are labelled between the u< ... >u markers.

p< .. >p Prolengation (PR) Marks prolonged segments.
Hesitations can be realized as prolonged segments. i.e., a word
might be pronounced with one or more segments markedly
longer than in normal, fluent speech (e.g., “I want a fffffffflight
to...”). The prolonged segment is indicated within curly
brackets, and it is also indicated whether it is word-initial,
word-medial or word-final. For instance the label {£-}
indicates that the prolonged segment is a word-initial [f].
Swedish makes extensive use of productive compounding, and
word boundaries within compounds are indicated using a hash
sign # .

e Explicit Editing Term (EET) Words like “Sorry”, “No,
wrong”, “I mean” and so on. EETs can be labelled in two ways:
Either each word is counted, e.g. “Sorry” = 1; “I'm sorry” = 2
(or 3), or each “EET unit” is counted “I'm sorry” = 1. Although
there are arguments in favour of the latter method — DFs rarely
occur within such “packages” — we have opted for the former

in this paper.

/ Truncation (TR) Marks an interrupted word, either in
repairs or caused by an intervening system or agent. The former,
i.e., self-induced truncations, are of greater interest for our
purposes, but the distinction is not made in this paper.

3.2. Repairs

Repairs are also labelled but both the labelling and the analyses
of repairs are in a preliminary phase and a full discussion of
these topics will have to await further work.

4. RESULTS AND ANALYSES

In this paper, we focus on FPs, UPs, PRs, EETs and TRs. The
reason for choosing these types of DFs is not that they
necessarily form a natural group, but rather to provide a general
description of the material. Moreover, there might be more or
less strong interaction between some of these types (e.g., FPs
are often followed by UPs), and there is surely interaction
between these types and repairs, which we have not looked at
yet. The overall rates of the said DFs are shown in Table 2.

4.1. General observations

We first summarize some general observations on FPs, UPs,
EETs and TRs. Since PRs is the hitherto least described DF
type, these are treated in section 4.3.

4.1.1. Overall differences The first observation to be made is
that the Bionic corpus exhibits the largest number of
disfluencies, except for EETs. In fact, the ratio of the number of
the included DFs and the number of labelled utterances is higher
than 1, which indicates that there is a higher-than-100% chance
that an arbitrary utterance will be in this corpus. Since the tasks
were the same for WOZ-2, Nymans and the Bionic corpora, we
may assume that this difference is not due to task details. It may
be the case that the actual quality of the feedback—simulated
synthesis in WOZ-1 and WOZ-2, human being in Nymans and

real synthesis in Bionic—is the decisive factor. Even if the
actors portraying the synthesizer spoke in a monotone voice and
used a fixed set of standardized utterances, they did not exhibit
jitter and similar phenomena associated with a real synthesizer.
From this follows that one could possibly expect a larger
number of disfluencies in real applications than in WOZ
simulations.

Table 2: Summary of DF Rates. For each corpus, the
percentages for the labelled material (as indicated in Table 1)
are given, broken down by DF type. The figure is then divided
by the number of labelled utterances and words in the corpus
(multiplied by 100 to give percentages).

WOZ-1 | WOZ-2 | Nymans | Bionic
Total no. FPs 225 400 182 145
No. FPs / no. uits 235 24.5 13.7 28.0
No. FPs / no. words 3.6 32 25 4.6
Total no. UPs 440 990 435 370
No. UPs / no. utts 46.0 60.7 329 71.6
No. UPs / no. words 74 8.1 6.0 11.9
Total no. PRs 04 84 107 67
No. PRs / no. utts 9.8 5.1 8.1 13.0
No. PRs / no. words 1.5 0.7 1.5 2.1
Total no. EET 20 42 10 10
No. EETs / no. utts 2.0 2.5 0.7 19
No. EETs / no. words 0.3 0.3 0.1 03
Total no. TRs 57 T4 218 70
No. TRs / no. utts 6.0 45 16.1 135
No. TRs / no. words 0.9 0.6 3.0 22
¥ of included DFs 836 1,590 947 662
No. DFs / no. utts 874 974 71.6 128.0
No. DFs / no. words 13.5 13.1 13.2 21.2

4.1.2. Filled and Unfilled Pauses FPs and UPs are far more
common than the other types of DFs, and UPs are generally
twice as common as FPs.

4.1.3. Explicit Editing Terms and Truncations A somewhat
surprising result is the low number of EETs in Nymans. One
would assume that EETs were more common in human-human
communication than to an inanimate system, but this is not the
case. (Once again, the Bionic corpus is slightly different.) One
possible explanation, however, could be related to the larger
number of TRs; in Nymans the subjects are more often
interrupted, and thus do not have either the opportunity (or
reason) to put in EETs, since the experienced travel agent reacts
to inconsistent information with a question. It must be pointed
out that EETs are rare in all the corpora.

4.2. Durational DFs

In the set of DFs we look at in this paper, FPs, UPs and PRs
stand out from EETs and TRs by being durational in nature, i.e.,
an FP, UP or TR can be stretched in time. Preliminary
durational observations for these three types of DFs are
presented in Table 3. The general tendency is that for all DFs
and corpora, the pattern is PRs < FPs < UPs. Two things need
be pointed out. First, whereas UPs can be stretched to great
lengths, this does not occur for FPs or PRs. This explains the
high standard deviation for UPs in the WOZ~2 corpus, where
extreme outlier values occur, which was possible since the
wizards were not instructed to take the initiative after a
specified number of seconds.




Table 3: Mean Durations (in seconds) for FPs, UPs and PRs.
Standard deviations are given in small figures.

Mean FP Mean UP Mean PR
WOZ-1 0.53 0,62 0,25
sd 0,28 0,52 0,16
WOZ-2 0,44 1,01 0,30
sd 021 2,57 0,15
Nymans 0.49 0,54 0,29
sd 024 0,62 0,12
Bionic 0,43 0,62 0,25
sd 024 0,62 0.15
All 0,48 0,60 0,27
sd 0,25 074 0,14

Second, a distinction must be made between short UPs and very
clear, computer-directed speech, where each word is uttered in
isolation, but in a fluent manner. We are here dealing with two
distinct speech styles. The durational values for FPs, UPs and
PRs are fairly stable across the corpora, which leads us to
believe that they are not that sensitive to either task details or
general settings, but rather originate at lower levels in the
speech production system.

4.3. Prolongations

There are basically two questions one can ask with regard to
PRs: First, what kind of segments are prolonged? Second, what
position in the word is favoured? Preliminary observations
answering these questions are shown in Table 4.

Table 4: Phone Type and Position of Prolongations. For each
corpus the percentages of phone position is given. Within each
class, the percentages of phone class is given.

WOZ-1 | WOZ-2 | Nymans | Bionic
%0 Initial phone 26.6 28.6 25.2 37.3
% vowel 1.0 0.0 149 8.0
% cons +sonorant 1.0 29.1 48.1 40.0
% cons —sonorant 24.6 70.9 37.0 520
% Medial phone 19.1 25.0 15.0 23.9
% vowel 9.6 38.1 250 312
% cons +sonorant 53 48 18.8 250
% cons —sonorant 4.2 57.1 56.2 43.8
% Final phone 54.2 46.4 59.8 38.8
% vowel 9.6 17.9 344 26.9
% cons +sonorant 30.8 71.8 53.1 61.8
%0 cons —sonorant 13.8 10.3 12.5 11.5

In the WOZ corpora and Nymans, initial, medial and final phone
prolongations occur in the (roughly) 30-20-50 proportions
mentioned in [3]. Once again, the Bionic corpus behaves slightly
differently, however. Oddly enough, in no case is a vowel the
preferred segment. This could depend on labelling, since there is
a certain risk of judging prolonged vowels as “normal”. The
most important observation, however, is that all kinds of
segments can be prolonged, including voiceless stops. In fact,
examples like “flyge...... t” (the fligh...... t) — where the
occlusion phase is prolonged — are quite common. A general
problem with labelling PRs occurs at the bottom end of the
durational scale. While there are clear cases of very marked
prolongation, it is quite often hard to say when a segment is
prolonged slightly. However, since PRs undeniably exist, one
would need to develop a method of labelling them consistently.

@

5. DISCUSSION

Although most of the material remains to be labelled and
analyzed, some tendencies are clear. First, the data collection
method and set-up clearly influences the material. Thus, it
seems to be the case that the use of a real synthesizer in the
Bionic corpus yielded a higher rate of DFs than the two WOZ
collections. An interesting preliminary result, still needing
corroboration, is that WOZ simulations appear to give results
that are closer to human-human interactions than to human—
machine interactions, underscoring the fact that human—human
control data, in this case the Nymans corpus, are important for
an accurate understanding of the processes involved in human—
machine interaction. Second, PRs occur in all corpora in similar
proportions, and arguably serve the same function as do FPs and
UPs. Third, UPs and FPs are by far the most common DFs in all
corpora, while EETs, TRs amd PRs are less frequent. A final
point to be made is that it seems that Shriberg’s approach to DF
labelling is indeed portable to Swedish.
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WHICH SPEAKERS ARE MOST DISFLUENT IN CONVERSATION, AND WHEN?

Heather Bortfeld®, Silvia D. Leon®, Jonathan E. Bloom*, Michael F. Schober*, and Susan E. Brennan®*
* Brown University, Providence, RI; *New School for Social Research, New York, NY: *State
University of New York at Stony Brook, Stony Brook, NY

ABSTRACT
We examined disfluency rates in a corpus of task-oriented
conversations [1] in which several factors were manipulated
that could affect fluency rates. These factors included:
speakers' age (young, middleaged, and older), task roles
(director vs. matcher), difficulty of domain (abstract geometric
figures or tangrams vs. photographs of children's faces),
relationship between speakers (married vs. strangers), and
gender (each pair consisted of a man and a woman). Older
speakers produced only marginally higher (combined)
disfluency rates than young and middleaged speakers. Overall,
disfluency rates were higher both when speakers took the
initiative and when they discussed tangrams, associating
disfluencies with an increase in planning difficulty. However,
fillers (such as uh) were distributed somewhat differently than
repetitions and restarts, supporting the idea that fillers may be a
resource for or a consequence of interpersonal coordination.

1. INTRODUCTION

Speech is notoriously disfluent [2]. Although disfluencies may
not thwart speech comprehension, they are interesting for several
reasons. First, they pose a problem for most theories of parsing,
which are designed to handle only grammatical or "well-formed"
utterances [3]. Second, by demonstrating how speech planning and
articulation break down, disfluencies provide useful data about the
architecture of the speech production system and the constraints
upon it [4,5,6,7,8,9,10,11, 12, 13, 14]. Third, in certain
circumstances, disfluencies can display metalinguistic information
to listeners about a speaker’s confidence [15], inform listeners about
a speaker's planning difficulties [16, 17], or, possibly, serve as
devices for coordinating conversational interaction [18, 19, 20, 21].
Last but not least, spontaneous human speech contains disfluencies
that create problems for speech recognition systems [22, 23, 24, 25,
20, 26, 27].

In this paper we investigate various situational and demographic
factors that have been argued to affect speakers’ disfluency rates.
Rather than comparing disfluency rates across different corpora,
where differences in rates might reflect differences in the
circumstances of data collection or in coding criteria, we examine
disfluency rates within one corpus of conversations [1].

WHAT MAKES SPEECH DISFLUENT?

Processing load. Speech errors and disfluencies produced by
normal speakers have been studied as a window into the
intermediate linguistic products and cognitive processes of speech
planning since the 1950s [e.g., 4, 5,6, 7, 8,29,9,10, 11, 12, 13, 14,
30, 19]: these studies provide systematic evidence of how
articulatory processes break down under increased processing load.
Recently, additional evidence associating disfluencies with
increased processing load has turned up in descriptive studies of
speech corpora. In Oviatt's [25] study of disfluencies in six types of

task-oriented conversations, long utterances had higher disfluency
rates than short ones. This finding is supported by Shriberg's [20]
study of disfluencies in three different task-oriented conversational
corpora; the longer the sentence, the higher the rates of repeated or
deleted words. The association of disfluencies with planning load is
consistent with findings that disfluencies are more likely near the
beginnings of tumns or sentences, where planning effort is
presumably higher (Boomer [31] found more fillers and silent
pauses, and Shriberg [20] found more fillers, repetitions, and
deletions).

The topic or domain of a conversation is another way in which
the planning load of utterances may vary. In one study, social
science lectures contained more disfluencies of one sort—fillers—than
hard science lectures, and humanities lectures contained the most of
all [32]. These findings were not due to individual differences,
because rates for individual speakers did not differ when speakers
all addressed the same topic. Schachter and colleagues [17]
suggested that speakers use more fillers when they must choose
from a larger vocabulary.

Coordination functions. A function that has been proposed for some
types of disfluencies is a communicative one: Certain disfluencies
may provide information that enables two people in conversation to
better manage their interaction or coordinate their mental states [16,
15,9, 20]. For instance, fime is a resource that people manage
jointly in conversations, and managing resources involves making
tradeoffs. If a speaker takes a long time to produce an ufterance, siic
risks losing her addressee's attention or her speaking tumn; but if she
rushes to produce one that is defective, she risks being
misunderstood [32). So she may warn her addressee of a delay in
producing a word by uttering a filler such as wm, uh, ah, and er
[33]. There is evidence that fillers can perform this sort of function:
Speakers answering general knowledge questions display accurate
information about their mental search processes [15, 36]; that is,
they pause longer and use more fillers before producing an answer
that they lack confidence in (and that is more likely incorrect) than
before one that they have a strong feeling of knowing (and that is
more likely to be correct). And they pause longer and use more
fillers before a non-answer (e.g., "I don't know") when they actually
do know the answer but are just unable to retrieve it. This
metacognitive display is a communicative one because listeners can
use it to judge how likely the speaker is to know the correct answer
[15].

A filler may also warn a listener that the speaker has just
mispoken. Listeners were faster and more accurate in
comprehending utterances like Move to the yel- uh, orange square
when the interrupted word was followed by w1k than when it was not
[16]. Comprehension was also faster with the disfluency (e.g., yel-
uh) than when it was replaced with an unaccounted-for pause of
equal length.




There is at least one other way in which fillers may help
coordinate conversation, fillers may help people 10 manage tum-
taking. Perhaps they act as a turn-keeping cue by blocking listeners
from interrupting the speaker with a new speaking turn [19]. The
story of how fillers affect turn-taking may be more complicated than
one where an uh simply helps a speaker keep an addressee from
interrupting. In Wilkes-Gibbs's corpus of conversational
completions (where one speaker spontaneously completed another's
utterance), it appeared that fillers were sometimes interpreted as
displays of trouble and requests for help, as in this example [33, 21}]:

A: and number 12 is, uh, ..
B: chair.
A: with the chair, right.

Here B may have taken uh to be a request by A for help in
producing the right word, if this is so, then the disfluency was used
as an interactive tool. If fillers warn addressees that the speaker is
still working on the utterance, then this may result in the addressee
chiming in (if he can help with the speaker's problem), and
otherwise waiting for the speaker to continue (if he cannot).

The idea that fillers display speakers’ difficulties to addressees is
not incompatible with Schachter et al's [17] finding of higher filler
rates in domains with more indeterminacy. That is, when choosing
words is more difficult, a speaker's need to account to her audience
for any delays is presumably greater.

The idea that fillers may serve (at least in part) as a resource for
interpersonal coordination is consistent with Kasl and Mahl's
(unexpected) finding of a 41% increase in fillers (but not other kinds
of disfluencies) in audio-only conversations between people in
different rooms over conversations in the same room with visual
contact [34]. Consistent with this, Oviatt [25] found that people
talking on the telephone produced more disfluencies than those
talking face-to-face, 8.83 to 5.50 (although she did not present filler
rates separately from total disfluency rates, which also included
corrections, false starts, and repetitions). Differences in disfluency
rates in conversations conducted over different media may, then, be
influenced by the resources these media offer for coordination.

Additional evidence that certain disfluencies are associated with
coordination between speakers and listeners is gleaned from their
relative distributions in speech with and without interactive partners.
For instance, conversational speech is more disfluent than
monologue speech; in Oviatt's [25] study there were more
disfluencies in dialogues (5.50-8.83 disfluencies per 100 words)
than in monologues (3.60 per 100 words).

Familiar vs. strange conversational partners. The Schober &
Carstensen corpus allows us to examine whether people are more or
less disfluent when talking to strangers than when talking with their
spouses. The predictions to be made are unclear. On the one hand,
one might expect people to be more disfluent with strangers than
with intimates, because they might be more anxious with strange
partners; higher disfluency rates are associated with anxiety [47).
On the other hand, to the extent that disfluencies are coordinating
devices, one might expect people to be more disfluent with
intimates; perhaps intimates are more likely to display their planning
problems to each other and perhaps strangers plan what they say to
each other more carefully.

Age. Age-related changes in cognitive, motor, and perceptual
functioning may affect speech in several relevant ways. During
naming tasks, speakers in their sixties have more difficulty and are
slower at retrieving words than younger speakers, although the
ability to define words remains intact and may even improve with

age [35]. And speakers over fifty appear to use more elaborate
syntactic forms than younger speakers [35]. Such age-related
changes seem likely to make conversation more effortful and to
generate more disfluencies. The Schober and Carstensen corpus
allows us to examine how age affects disfluency rates over a fairly
wide range of ages.

Gender. In Shriberg's [20] study, men produced more fillers than
women did, but the sexes were equal with respect to other types of
disfluency rates. Shriberg cautiously suggested that using more
fillers may be a way for men to try to hold on to the conversational
floor, but pointed out that in her corpora, gender was confounded
with occupation and education level. In the Schober and Carstensen
corpus, socio-economic status was balanced across gender, and so
we can examine whether Shriberg's observation is corroborated.
Effects of these variables upon disfluencies. 1t is likely that the
mapping of factors like cognitive load, addressee characteristics or
relationship, communication medium, or speaker characteristics
(such as state of arousal, age, or gender) onto disfluent speech is not
a simple one. These factors may not operate independently to
produce disfluent speech, but may do so in concert.

Another way in which cognitive, social, and situational factors
may relate to speech production in a complex way is that different
disfluencies may arise from quite different processes and situations.
As we proposed earlier, perhaps some disfluencies serve an
interpersonal function, such as displaying a speaker's intentional or
metacognitive state to a partner, while others simply represent
casualties of an overworked production system.

METHOD
Design

The corpus contained approximately 200,000 words uttered in
48 conversations, transcribed in detail, and double-checked for
accuracy. In these conversations, 16 pairs of young speakers (mean
age, 28.8 years), 16 pairs of middle-aged speakers (47.9 years), and
16 pairs of older speakers (67.2 years) discussed objects from a
familiar domain—photographs of children--and an unfamiliar
domain--black and white abstract geometric forms known as
tangrams. These 48 pairs of speakers comprised 24 pairs of male
and female strangers and 24 married couples, divided equally by
age. They were recruited through the Stanford Alumni Association
to participate for pay in a referential communication study [1]. All
were married and college educated, none had significant hearing
loss, and the three age groups were no different in years of
postsecondary education.

There were two sets of picture cards, one for each domain (12
children and 12 tangrams). There were 4 trials; with each trial, the
members of a pair alternated in the roles of director and matcher.
During a trial, each member of a pair had an identical copy of a sel
of picture cards; the task was for the matcher to get all 12 picture
cards lined up in the same order as the director's cards. Members of
a pair were visually separated but could communicate freely. Hall
of the time, they matched children first, and half of the time,
tangrams. Half of the time, females performed as the first director,
and half of the time, males did. Each of the two sets of pictures
were matched twice. In sum, the factors that varied systematically
included the relationship between the speakers (married/strangers).
age (young/middle-aged/older), topic domain (familiar/unfamiliar
objects), role (matcher/director), and gender.



Coding

Speech disfluencies were categorized using a compuler soflware
program; Sequence, a HyperCard-based program for the Macintosh
that enables segmenting and coding types, numbers, and sequences
of behavioral events. Speech was coded as disfluent if it contained
any of the following: Repeats ("just on the left left side™), restarts
(e.g., "imme- just below the left side”), fillers (e.g., uh, ah, um, er),
or other editing expressions (e.g, [ mean, rather, that is, sorry,
oops). Each repeat or restart was coded as one disfluency, even if
the repeated or repaired phrase consisted of more than one word.
When none of these kinds of disfluencies were present, a phrasc was
coded as fluent; when it was unclear whether a phrase contained a
disfluency, it was coded as unknown.

The corpus transcript was divided into halves based on the
number of words, and a different team of coders coded each half. In
addition, each team coded an additional 6 trials from the other
team's half; these comprised Trials 2 and 4 from one pair from each
of the 6 between-subjects cells of the experimental design
(Relationship X Age). So 12.5 % of the trials were double-coded.
The coders were blind to which cells of the experimental design the
speakers were in. Interrater reliability was excellent; there was
02.8% agreement, with a Cohen's Kappa of .91.

RESULTS

We began by examining word counts for the different types
of speakers and conversations in this corpus; word counts in
referential communication are assumed to be related to
cognitive effort or task difficulty [33, 36]. Then we tested the
effects of task role, topic, age, relationship, and gender on
disfluency rates.

Word counts

Directors produced over twice as many words as did matchers,
F(1,82) =99.23, p < .001. This is as we expected, since in the
director role, people typically took the initiative for establishing the
identity and location of target cards and spent most of their time
describing the target object, while in the matcher role, people spent
much of their time giving feedback and searching for the target.

The domain of discussion mattered as well; pairs of speakers
used over two and a half times as many words when discussing
tangrams than pictures of children, F(1,82) = 252.18, p < .001. This
domain difference was greater for matchers than for directors,
interaction, F(1,82) = 14.97, p <.001. Another way to look at this is
that in conversations about tangrams, the more taxing domain,
matchers appeared to take on more responsibility for getting things
understood, uttering 34% of the words as opposed to only 27% in
conversations about faces.

There was no difference in the number of words uttered by men
vs. women, F(1,82) = .03, n.s., nor for married couples vs. strangers,
F(1,82) = 1.26, n.s. However, there were reliable word count
differences by age: fewer words per round were uttered by younger
(363) than by middle-aged (549) and middle-aged than by older
(580) people, linear trend, F(1,82) = 13.01, p < .001. And there was
a strong age-by-domain interaction: word counts increased more
sharply with age in conversations about langrams than conversations
about children, linear trend, F(1,82) = 11.04, p = .001.

Disfluency rates
The overall disfluency rates we report are per hundred words
and consist of repeated words or phrases, restarts, and fillers, unless

otherwise noted. Speakers produced, on average, 5.77 of these types
ol disfluencies every 100 words. This is within the range found by
previous studies for these types of disfluencies.

As predicted, disfluencies increased when speakers were faced
with heavier planning demands. This difference emerged in two
ways: first, for the task roles of director vs. matcher, and second, for
unfamiliar vs. familiar domains. In the role of director, speakers
produced about 6.76 disfluencies per 100 words vs. 4.78 in the role
of matcher, F(1,82) = 95.87, p <.00]. To break these disfluencies
down further: directors produced more fillers than matchers, 3.22 vs
1.77, F(1,82) = 106.72, p < .001, more restarts, 2.06 vs. 1.64,
F(1,82) = 21.46, p <.001, and slightly but not reliably higher rates
of repetitions, 1.48 vs. 1.37, F(1,82) = 1.81, n.s. When speakers
discussed tangrams, they produced greater rates of disfluencies than
when they discussed pictures of children, 6.16 vs. 5.38, F(1,82) =
13.47, p < .001. This effect was due mainly to repetitions (1.72 vs.
1.13, F(1,82) = 8.31, p = .005) and to a lesser extent, restarts (2.13
vs. 1.58, F(1,82) = .84, n.s.). For fillers, the difference was in the
opposite direction: speakers produced slightly but reliably higher
filler rates while describing faces than tangrams, 2.67 vs. 2.32,
F(1,82) =7.85,p< .0l

Older speakers produced only marginally higher disfluency rates
(6.42, with repetitions, restarts, and fillers combined) than middle-
aged (5.46) and younger (5.43) speakers, linear trend, (F(1,82) =
3.61, p=.06). The important factor appeared to be whether the
speaker was in the older group (which ranged from 63 to 72 years ol
age) as opposed to in one of the other two age groups; there was no
difference between the younger and middle-aged groups. This was
despite that fact that the middle-aged pairs uttered more words than
the young pairs and similar amounts as the older pairs.

Married couples were no more fluent in their conversations than
were strangers; there were no differences by relationship in rates of
restarts, repetitions, or fillers. This is contrary to what would be
expected if experience or comfort with a partner were to increase
fluency, or if anxiety evoked by conversing with an unfamiliar
partner were to increase disfluencies. It is also contrary to whal
would be expected if strangers planned their speech more carefully
than intimates, or if certain disfluencies are coordination devices
that only intimates can use to elicit help from their partners.

Recall that Shriberg [20] found that men produced more fillers
than women did. To see if our data would replicate this finding, we
included speaker's gender in our comparisons. We found that while
men produced no more words than women did, they had a higher
rate of disfluencies overall, 6.57 to 4.97, F(1,82) = 13.74, p= .001.
Why should men be more disfluent than women? When we broke
this difference down further, it was due mainly to higher rates of
fillers, 2.96 to 2.03, F(1,82) = 12.86, p = .001 and repetitions, 1.67
to 1.18, F(1,82) = 8.31, p = .005.

Although men produced more repetitions and more fillers than
women did, these two types of disfluencies did not pattern the same
with respect to other variables. Gender did not interact with role fo
repetition rates as it did for filler rates. And while overall, filler
rates were lower when speakers discussed tangrams than when they
discussed faces (2.32 to 2.67), both repetition rates and restart rates
were higher (1.72to0 1.13 and 2.12 to 1.58). These distributions
support the notion that fillers arise from different processes than the
other types of disfluencies we coded.



GENERAL DISCUSSION

The corpus of conversations we examined balanced task role
(director vs. matcher), difficulty of domain (abstract geometric
[igures vs. photographs of children’s faces), relationship between
speakers (married vs. strangers), and gender (each pair of speakers
consisted of a male and a female). This design enabled us to make
direct comparisons of disfluency rates across conditions, unlike
studies that have made comparisons across corpora [25].

From our data, we advance two main conclusions. First, the
distributions of disfluencies in this corpus support the idea that some
but not all disfluency rates increase as heavier demands are placed
on the speech planning system. Second, fillers were distributed
somewhat differently than repetitions and restarts, suggesting that
they may also be related (o processes of interpersonal coordination.
If fillers help speakers coordinate with their addressees {e.g., by
displaying delays in producing utterances and perhaps by soliciting
help), then we should expect directors, who take most of the
initiative in a matching task, to produce more fillers than matchers,
and this was consistently true across both domains and for both
sexes.
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- WHY DOES SPONTANEOUS SPEECH UNFOLD IN TEMPORAL
CYCLES, SOMETIMES?

Kim Kirsner, Benjamin Roberts & Yong-Heng Lee
University of Western Australia

ABSTRACT

Spontaneous speech typically consists of alternating
periods of continuous fluency, where fluency refers to
the ratio of speech to pausing. Individual differences
in fluency are substantial, with mean pause per minute
ranging from less than 20 to more than 40 sec per
minute in our sample of English and Mandarin
speakers. While pauses have been regarded as critical
clues for psycholinguistic analysis for decades, the
existence of temporal cycles have been subject to
extensive debate. The results of our experiments
provide strong support for the presence of temporal
cycles in spontaneous speech, and demonstrate in
particular that fluency declines and increases prior and
subsequent to topic shifts respectively. The source of
temporal cycles is unclear, however. The prevailing
assumption is that they reflect alternating periods of
high level macro-planning, associated with low
fluency, and low level micro-execution, associated
with high fluency. However, a variety of alternative
explanations merit consideration.

How do we talk to each other? Are the critical
processes implemented automatically, or does speech
depend on the allocation of scarce cognitive resources?

This paper is concerned with discourse. Spontaneous
speech typically consists of alternating periods of
continuous speech and pauses where fluency is used to
refer 1o the speech : pause ratio. However, while
pauses have been regarded as critical clues for
cognitive and psycholinguistic analysis for decades,
the further claim that spontaneous speech consists of
alternating phases of high and low fluency has been
the subject of extensive debate. The general
interpretation, cautiously endorsed by Garrett [5] and
Levelt [8] is that temporal cycles reflect alternating
periods of conceptualization or macro-planning, an
activity that is associated with low fluency, and low
level micro-planning or execution, an activity that
involves high fluency. The challenge to temporal
cycles has been formidable however, including
suggestions that the observed effects reflect random
variation in fluency.

The first experiment was implemented to test the
validity of temporal cycles. The analylic procedures
were developed to test the null hypothesis, that
fluctuation in fluency stems from random processes.
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Historically, the evidence for and against temporal
cycles has been substantially based on subjective
methods involving the slopes of successive functions
depicting the relationship between pause duration and
speech segment duration for speech units in
spontaneous discourse. Fluency was calculated by
reference to the proportion of speech in successive 200
msec samples, the time method, or by reference to
differences  between standardized durations of
segments of continuous speech and the standardized
durations of the pause segments which preceded the
speech segments, the speech unit method. Analysis of
34 two - three minute discourse samples from eight
subjects revealed that in approximately 70% of cases a
cyclical pattern based on autocorrelation involving the
relationship between fluency and either time or speech
units explained a significant proportion of the
variance, with a mean period of 19,1%7.4 seconds.

Figure 1 depicts temporal cycles in fluency for a
discourse sample of approximately 50 speech units
over a period of about 90 seconds. The text boxes
show the speech associated with each of the seven
successive speech segments that straddled the marked
topic shift,

‘The second experiment was implemented with six
Mandarin first language speakers. The speakers
provided seven minute discourse samples on each of
three routine topics of conversation. Autocorrelation
was used to examine the relationship between fluency
and the time-based samples and a significant
proportion of the variance was explained by a cyclical
pattern in the majority of samples. The results with
Mandarin therefore support those obtained with
English, and suggest that temporal cycles in
spontaneous speech may be observed in a language
that is etymologically remote, a finding which suggests
that the phenomenon is universal.

Topic shift has been identified as the critical
determinant of fluency cycles. The assumption is that
cognitive work on macro-planning peaks during topic
shifts, and that macroplanning competes for scarce
cognitive resources with  some  micro-planning
processes. To explore the relationship between topic
shift and fluency, we used two independent readers to
identify the topic shifts in the discourse from
Experiment 1 (percent agreement = 81%, kappa =
0.73, p <0.01), and then explored the fluency dynamics
of the speech segments adjacent to topic shifts. With



consideration restricted (o cases where

cven micro-planning or execution is not automatic, or
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Figure |. Topic Shift and fluency with quadratic function fitted to speech units surrounding topic shift. Numbers
represents speech units relative to topic shift in the marked quadratic.

there were at least three independent speech units
including a speech segment and pause on either side of
the segment that included the topic shift, a quadratic
function was fitted to mean fluency for the seven
critical segments for each subject. The shape of the
quadratic therefore reflects the presence or otherwise
of fluency minima at the topic shifts. The topic shifts
coincided with the minima for all subjects. The mean
squared term of the quadratic functions for eight
subjects was 0.063, and this value differed
significantly from zero, t(7) = 8.6, p<0.01. There is
therefore a systematic trend for fluency to increase and
decrease before and after each topic shift, respectively.
This result is also summarized in Figure |. The figure
shows the fluency analysis for a single sample of
speech, including a short temporal cycle, a topic shift,
and the gquadratic function for the relevant discourse
sample.

This mode of analysis is also being implemented with
Mandarin, and, given evidence that the structure of
Mandarin is dominated by the distinction between
lopic declaration and topic elaboration, analyses are
also being implemented with a classification based on
this variable.

According to the modal explanation of temporal
cycles, the reduction in fluency around topic shifts
reflects competition for scarce cognitive resources, an
account which involves the additional assumption that
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else it would not compete with macro-planning.
However, for this explanation to be valid, it must also
be assumed that macro-planning and micro-planning
compete for the same pool of cognitive resources, or
else the reduction in fluency associated with macro-
planning would not be evident.

Perhaps the clearest evidence that spontaneous speech
involves cognitive work comes from a study
implemented by Greene and Lindsey [7]. The critical
manipulation in this study involved the contrast
between single and dual goal conditions. In the former,
subjects simply explained to a job applicant that their
application was unsuccessful, whereas, in the dual task
condition, they were required to convey concern and
encouragement to the applicant at the same time as
they were informing them that their application had
been unsuccessful. Greene and Lindsey reported a
significant reduction in fluency under dual task
conditions. Perhaps the most vexing problem with the
analysis of fluency varation in normal speakers
involves the possible impact of style. Thus, although it
is possible that the dual goal manipulation used by
Greene and Lindsey, it is also possible that the effect
reported by them reflects manipulation of style rather
than workload. Duez [2]. for example, in a study
involving French politicians, reported that fluency was
significantly reduced when the politicians were
making a prepared speech in public as distinct from



answering questions.

A third experiment was implemented to test the
proposition that the generation of spontaneocus speech
is insensitive to cognitive workload. Sixty subjects
were shown a picture of the face of a person unknown
to them, for 20 seconds, and then expected to create a
story about the life of that person. Following the dual
goal manipulation used by Greene and Lindsey [7],
half of the subjects were warned that they would later
be asked to recall their story, and half were not. This
manipulation was designed to mimic the single and
dual goal manipulation used by Greene and Lindsey,
while avoiding the stylistic changes that might have
accompanied their manipulation. There is in addition
evidence from systematic dual task studies that
memorization is a cognitively expensive task [1]. The
results were clear. The additional memorization
required produced a small and non-significant
reduction in fluency, from a mean speech-to-pause
ratio of 1.91 to 1.85. The assumption that spontaneous
speech production involves cognitively expensive
workload, while intuitively appealing cannot be taken
for granted, and requires systematic analysis.

One additional finding of interest involves individual
differences in fluency. Although the distinction
between fluent and dysfluent aphasics was developed
more than 30 years ago, and early studies included
systematic analyses of fluency, there is virtually no
work on individual differences in fluency in
spontaneous speech, a remarkable comment given the
prominence of individual differences in this variable,
and its role in classification. While the experiments
reported here used different procedures for eliciting
spontaneous speech, the individual differences within
each study are substantial. Thus, on average, each
minute of discourse in Experiment 1 included a mean
of 32.7+6.4 sec of pause, and similar values were
obtained in Experiment 2, at 29.9£6.2 sec. Across the
lwo experiments, the mean values for this parameter
ranged from 19 to 40 sec. In future work we plan to
measure individual differences in fluency in order to
explore the relationship if any between this variable
and working memory, and to provide normative data
for the analysis of dysfluency in aphasia.

The research introduced in this paper has been
influenced by several broad issues. The first of these
involves the validity and generality of temporal cycles.
It is now evident that spontaneous speech unfolds in
alternating phases of high and low fluency. However it
is not yet clear whether the underlying pattern is
periodic or aperiodic., or whether non-detection under
certain conditions reflects variation in a component
process, involving working memory for example, or a
detection problem associated with the signal to noise
ratio of temporal cycles. It is possible for example that
the underlying phenomenon is aperiodic except when
the system approaches its boundary condition, when
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periodic effects may be observed.

The second issue involves the basis of temporal cycles.
The source is not clear. According to Levelt [8], for
example, temporal cycles reflect alternation between
(macro-)planning, a process that is under executive
control, and micro-planning, implementation of
formulation and articulation (Levelt, 1989, p 126).
However this claim is difficult to reconcile with the
assumption that formulation and articulation are
automatic processes, a claim made elsewhere by
Levelt [8, p2]]. There may be a paradox here. If
micro-planning involves automatic processes, it should
not compete with macro-planning, particularly if, as
seems likely, the latter involve qualitatively different
processes and, therefore, the processing conditions that
should minimize competition for scarce resources. The
assumption that temporal cycles in spontaneous speech
involve a scheduling problem -- between macro- and
micro-processes -- raises questions that stand outside
the mainstream on cognitive models of scheduling. For
one thing, such models have usually been applied to
problems that are resolved in less between 1/10th to
1/100th of the time associated with the low fluency
phase in spontaneous speech. For another, recent
evidence suggests that scheduling is provoked by
competition  between  peripheral information
processing systems rather than central systems, a key
element in Levelt’s account.

The assumption that language production depends on
voluntary control processes may also be inferred from
Garrett [5]. According to Garrett “non-fluent speech is
ever-present and breaks in fluency may be regarded as
indication that rate of speech output has overrun the
rate of decision making either about what we will say
or how we will say it. Hence idea that distribution of
hesitation types will reveal basic organizational
features of language” (ilalics supplied). According to
this  view then, language production involves
continuous competition between scarce resources of
various types, where fluency is a direct measure of the
efficiency of one or more decision processes.

Temporal cycles can be explained without reference to
competition between macroplanning and
microplanning, however. According to Greene for
example [7], pauses in the low fluency phase of
spontaneous speech reflect the operation of assembly
processes, processes. which determine the order,
content and timing of information extracted from a
mixture of more and less accessible records.
According to this account, then, declining fluency
before topic shifts reflect the fact that the next packet
is not ready for transmission, a state that might lead to
a lower speech to pause ratio if speaker s tried 1o
maintain control  while they were waiting for
completion of assembly operations. According to this
point of view, then, low fluency phases and therefore
lemporal cycles are more likely to occur when less



accessible or more complex records must be used in
production, an assumption for which there is
considerable support at the lexical levei at least.

Each of the first two accounts is consistent with the
assumption that the capacity of working memory is a
critical determinant of fluency, although the level of
the assumed relationship is unclear. One possibility
invelves the phonological loop [6] But the duration of
the units involved in this system correspond more
closely to the duration of speech segments than cycles.
A second possibility involves a model of working
memory more akin to that described by Ertksson and
Kintsch [3], where working memory includes cues to
information in more permanent storage systems.

A closely related question concerns the role of
consciousness in language production. But is
consciousness part of the explanation or part of the
data? According to one point of view, working
memory and by extension conscious planning and
decision-making play a critical role in language
production. For Garrett [5, p37] this is explicit, and
“voluntary intellectual effort coincides with subjective
experience of ‘decision making micro-crises’.
However this is not the only possible account. Another
possibility is that consciousness is relevant to the
selection of communication targets, and monitoring,
but that it plays no other direct role in the planning and
production of language. According to this point of
view then, conceptualization apart, we become aware
of what we have said after rather than we have said it.
This is, intriguingly, a point of view that has attracted
interest in research into artificial problem solving
systems. According to Michie [10], for example,
problem-solving is primarily the work of visualization
supported by automatized skills, and consciousness
operates at the level of goal-setting and monitoring,
and of the construction and communication of after-
the-event commentaries, not the critical problem
solver. Essentially the same idea can be extracted from
Fauconnier {4, pl], where he states that, “visible
language is only the tip of the iceberg of invisible
meaning construction that goes on when we think and
talk”.

We cannot answer the question posed in the title of
this paper. Temporal cycles could reflect scheduling
owing to competition between cognitively expensive
processes where cycles only emerge when load
exceeds some threshold, delay in the time required to
assemble  complex  production  processes, or
discontinuity in more basic processes concerned with
the management and control of effector systems
generally. And, finally, the role of consciousness is
unclear though of great interest. Are conscious
contributions  restricted to target selection and
monitoring, or are they an integral element in a broad
range of micro- and macro-planning processes”?
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Between-Turn Pauses and Ums

Jean E. Fox Tree
University of California, Santa Cruz

ABSTRACT

Pauses and ums are often treated as two versions of the same
thing, with the traditional label for wms, filled pauses,
emphasizing this seeming interchangeability. To explore this
hypothesis, I compared how overhearers interpreted a
speaker’s contribution to a conversation depending on whether
the speaker responded immediately, paused and responded, or
said um and responded. Overhearers answered a series of
questions about the turn exchanges they had heard. The
questions measured their interpretations of the second
speakers’ speech production difficulty, honesty, comfort with
the topic discussed, familiarity with the interlocutor, and desire
to have further contact with the interlocutor. In two
experiments, the type of turn exchange was found to influence
overhearers’ interpretations. Results supply information about
both the signalling properties of wms and the relationship
between ums and pauses of varying lengths in the environment
of a turn exchange.

1. INTRODUCTION
Researchers have identified a number of potential signals ums
could provide when classed together as a group with uhs. They
might aid in utterance processing by displaying information
about the upcoming utterance, such as its syntactic structure
[11, 12] or its discourse structure [20], or by displaying
speakers’ production difficulty [3, 5, 6, 8, 12, 14, 16, 18, 21].
They might aid in turn-taking by displaying a desire to hold or
gain a turn [11, 15, 17, 18]. Finally, they might provide
interpersonal information, such as indicating a speaker’s
anxiety level [9, 10, for extended review, see 2].

Usually, ums and uhs are considered to be different
pronunciations of the same thing. But there is reason to
suspect that wms and whs are functionally different. For one
thing, ums are more common before a long pause than uhs are
[19]. Ums are also more likely than uhs to occur at phrase
beginnings [20]. Ums and uhs also have different effects on
word monitoring [4]. To investigate the use of ums further, in
the current research I tested off-line interpretations of ums used
in trn exchanges.

I compared two kinds of turn exchanges, precisely
timed turns and turns separated by 3 s pauses. Long pauses
between turns are often viewed as a result of second speaker
error. But they can also be described as a product of both
participants. The person who left the floor may have done so
prematurely or inappropriately. The one who did not take it up
may have followed turn-taking cues or not. 1 focus in the
current research on how inter-turn pauses and ums affect the
perception of the second speaker.

In the experiments presented here, people heard turn
exchanges and then answered five questions probing (1) how
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well overhearers thought the two interlocutors on the tape
knew each other, (2) whether overkearers thought the second
speaker would be likely to seek further contact with the other
person, (3) how much speech preduction difficulty overhearers
thought the second speakers had, (4) how deceptive
overhearers thought the second speakers were being, and (5)
how comfortable overhearers thought the second speakers were
with the topics discussed.

Long inter-turn pauses should result in more negative
interpretations than short pauses [13]. But it is not clear how
um may influence these negative interpretations. More
specifically, there is reason to expect that adding ums will
cause no change in interpretations above and beyond the
pauses that follow them, so that an wm plus short pause will act
like a short pause and an wm plus long pause will act like a long
pause. There is also reason to expect that adding ums will
counteract negative effects of long pauses, so that both an um
plus short pause will act like a short pause, and an wm plus long
pause will act like a short pause. Finally, there is reason to
expect that adding wms will make effects more negative.

There are at least two reasons to expect ums not to
influence interpretations above and beyond the influences of
subsequent pauses. One is that ums may be filtered out and
ignored. The second is that ums may be equivalent to pauses,
and to the extent that ums are closer in length to brief inter-
turn pauses of under 1 s as opposed to long inter-turn pauses of
2 s or more, they may not engender negative interpretations,
just like brief pauses between turns do not engender negative
interpretations.

There are also at least two ways ums may counteract
the negative effects of long pauses. One is that they may
provide an explanation for upcoming pauses [1, 19]. For
example, by indicating that speakers are thinking about what
to say, a positive quality, ums may provide a more favorable
interpretation of upcoming pauses than listeners would have
come up with in the absence of ums. A second is that they made
add politeness. Ums enable speakers to maintain smooth
exchanges even when they are not ready to take the floor,
demonstrating speakers’ willingness to prevent awkward
silences and to do their part in keeping the conversational ball
rolling. This positive attribute may offset any negative
contributions of a subsequent long pause.

In contrast to predictions of no effect, there are at
least two reasons to expect that adding ums will make effects
more negative. One is that adding an wum before a long pause
rests all the responsibility for negative effects squarely on the
second speaker's shoulders. That is, instead of sharing
negative effects between speakers in the pause-alone
condition, adding an um before the pause may shunt all the
negativity to the second speaker. With this hypothesis, the
negative influence of ums may only appear when the ums are



followed by long pauses, as short pauses do nol have extra
negativity Lo split between speakers or load on one spcaker.
Another reason wums may make effects more negative is that
they may in themselves convey negative interpretations.

As a first test, | compared the three turn intervals of a
1 s pause, a 3 s pause, and a .5 s pause plus wm plus | s pause.
The 1 s pause is the amount of silence comfortably sustained
before a conversational participant tries to fill the gap, either
by the current speaker continuing or by the next speaker
beginning [7]. The 3 s pause is an uncomfortably long silence
[13]. A comparison of these two pause-alone conditions was
anticipated to replicate earlier rescarch that uncomfortably
long inter-turn pauses yield negative attributions. The third
condition, the .5 s pause plus wm plus 1 s pause, was chosen to
test whether adding an wm made any ditference to the
interpretations of a pause of acceptable length. More
specifically, would the um have no effect or a negative effect?
If a negative effect, would this effect be as great, or greater,
than that of a 3 s inter-turn pause? The um was preceded by a .5
s pause to make the turn-exchange sound natural, as an wm
coincident with the offset of the last speaker’s turn sounded
premature.

As a second test, [ compared the three turn intervals
of a.5 s pause, a 3 s pause, and a .5 s pause plus wm plus 3 s
pause. This test once again provides end-points for measuring
the effects of an um on the interpretations of pauses. But this
time, the um precedes an usually long pause. The | s inter-turn
pause was reduced to .3 s to more closely match the pause
preceding the um in the um condition and to assure the
perception of a smooth turn exchange in the .5 s condition.
This experiment explicitly contrasts a long pause by itself,
where part of the responsibility for it could be shared by first
speaker, to a long pause that follows an um, where
responsibility for the wm may be unambiguously attached to
the wm-producer.

The two experiments together will allow teasing
apart of the different predictions outlined above. For example,
if um plus | s patterns similarly to 1 s, it may be because um 1s
ignored. But if um plus 3 s also patterns similarly to a smooth
turn exchange, then wm can be taken to counteract the negative
effects of a 3 s pause. Alternatively, if um plus 1 s patterns like
3 s, this would suggest that both wms and 3 s pauses contribute
negalively towards interpretations. But if wm plus 3 s also
patterns similarly to 3 s, then an additional conclusion can be
reached: the negative contributions of ums and pauses are not
additive. Another possible outcome is that wm plus 3 s is worse
than 3 s, suggesting that effects of wms and pauses are additive.

2. EXPERIMENT 1
Thirty spontaneously produced turn exchanges were edited to
creale three versions. For example, the exchange “(Speaker A)
Are you here because of affirmative action? (Speaker B) It
helped me out a little bit.” was digitally manipulated so that
the turn interval consisted of either a | s pause, a .5 s pause
plus um plus 1 s pause, or a 3 s pause. Materials were presented
to overhearers in three counterbalanced lists such that a
particular person heard only one version of a turn exchange.
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After hearing each trial, overhearers responded to the five
questions using a 7-point Likert scale.

Results were that the type of turn exchange alfected
overhearers’ interpretations for every question. As expected, a
I s interval between turns always led to more positive
interpretations than a 3 s interval. With a shorter interval,
overhearers rated interlocutors as more familiar with each other
and more likely to scek out future contact, and rated the second
speakers as having less production difficulty, being more
honest. and being more comfortable with the topic discussed.

The um plus 1 s interval always fell within the
boundaries of the other two intervals. It was never more
positive than the | s interval, nor more negative than the 3 s
interval. With respect to judgements ol likelihood of future
contact, wm plus 1 s was more similar to a | s interval, but with
respect to judgements of familiarity, honesty, or comfort with
the topic, it was more similar to a 3 s interval. With respect to
judgements of speech production difficulty, um plus | s fell
between | s and 3 s, similar to neither. So, when making
judgements of likelthood of future contact, wms appear 1o be
overlooked, but when making other judgements, wns appear to
be taken into account, with three of the remaining four
questions having wm 1 s patterning with 3 s.

3. EXPERIMENT 2
The same thirty turn exchanges were edited to create three
versions. This time the turn interval consisted of either a .5 s
pause, a .5 s pause plus wm plus 3 s pause, or a 3 s pause. Other
aspects of the design and procedure were the same as before.

As with Experiment 1, the type of turn exchange
affected overhearers’ interpretations for every question asked.
Also as with Experiment I, the .5 s interval between turns
always yielded the most positive effects, this time more
positive than either other condition for every question.

Like Experiment [, the wm interval was at the 3 s
boundary for the familiarity and honesty questions. Having an
wm or a 3 s pause made interlocutors appear less familiar or less
honest, but having both did not boost the unfamiliarity or
dishonesty. For these questions, ums will have the same effect
whether they are followed by 1 s or 3 s. This would not occur if
respondents were seen as taking more responsibility for a
pause after an wm than a pause alone. If this were happening,
interpretations should be more negative in the um 3 s
condition than the 3 s condition.

Unlike Experiment 1, the wm interval was at the 3 s
boundary instead of the ! s boundary for the likelihood of
future contact question. This effect can be seen as a result of the
3 s pause alone; the same interpretations would be predicted
were um ignored.

Also unlike Experiment 1, the um interval did not fall
within the boundaries of the other two intervals for the speech
production and comfort with topic questions. In fact, for these
questions, interpretations appear to be additive. With either an
wn or a 3 s pause, interlocutors were though to have more
speech production difficulty or to be more uncomfortable with
the topic, and even more so with both.



4. GENERAL DISCUSSION

When people begin speaking after someone else has stopped,
they can choose to wait and then start speaking, or to say wm
and then wait, among other things. What implications does
each choice have? In two experiments, I compared a | s pause,
a .5 s pause plus wm plus | s pause. and a 3 s pause (Experiment
1), and a .5 s pause, a .5 s pause plus wm plus 3 s pause, and a 3
s pause (Experiment 2). In both experiments, precisely timed
turns were interpreted more favorably than turn exchanges with
3 s gaps. Smooth turn exchanges were taken to indicate greater
familiarity between participants and increased likelihood of
future contact, and also to indicate second speakers’ relative
ease of speech production, greater honesty, and greater comfort
with the topics discussed.

Ums before turns either had no effect relative to
smooth exchanges or made interpretations more negative. In
no case did wms make interpretations more positive than
smooth turn exchanges, nor did they ever counteract the
negative effects of 3 s pauses. In fact, in some cases, preceding
a 3 s pause by an um made the interpretations more negative.

Comparing across experiments, effects of wms and
pauses appeared additive for judgements of speech production
difficulty and comfort with the topic discussed, but nonadditive
for judgements of familiarity and honesty. That is, for the
additive questions, both an wn and a long pause contributed
negatively to interpretations, with both being worse than
either alone. For the nonadditive questions, adding an wm or a
pause contributed negatively, but having both did not push the
effects further into a negative direction. For the remaining
question on likelihood of future contact, having an wm seemed
to do nothing once the pause effects were taken into account.

Another way to summarize the results is that ums with
a short pause are interpreted as negatively as a 3 s pause when
it comes to judgements of respondents’ current motivations
and feelings (familiarity, honesty, comfort with topic). They
do not have this effect on predictions of future behavior
(likelihood of future contact) or on judgements of current
cognitive processes (speech production difficulty). Ums with 3
s pauses keep judgements of motivations and feelings on the
negative side, sometimes as additive effects with pauses,
sometimes not. They still do not have an effect on prediction
of future behavior, although they now do exacerbate
Jjudgements of production difficulty when added to a 3 s pause.

The experiments presented here and the kinds of
interpretations probed provide clear evidence that ums and
pauses are not the same thing. and that ums are not ignorable.
The experiments also provide evidence that ums can effect
inlerpretations at multiple Jevels and in different ways. For
example, ums may cause speakers to appear to have production
problems, a cognitive attribution, while at the same time
causing them to appear deceptive, an interpersonal attribution.
Said another way, ascribing wms to production problems
doesn’t appear to override the parallel association of wms 1o
deception.
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ABSTRACT

Speech  disfluencies are  generally —assumed to  harm
comprehension. Our studies investigated whether this is true, or
whether certain disfluencies might actually help comprehension
by marking for listeners which information the speaker intends to
repair. We tested two hypotheses: (1) whether an interrupted
word signals that the word was produced in error, and (2)
whether a filler such as wh after an interrupted word signals an
error. Listeners heard fluent instructions and disfluent ones
whose reparanda contained completed words, interrupted words,
or interrupted words with fillers, and then responded to these
instructions. Responses to mid-word interruptions were no faster
than to between-word interruptions, although there were tewer
errors when less of the unintended word was heard. Responses to
mid-word interruptions with uh were faster and more accurate
than controls without disfluencies. With more complex displays,
the response time advantage (but not the error rate advantage)
diminished, suggesting that an interrupted word followed by uh
tells listeners what the speaker does nor mean. A fourth
experiment showed that it is not the presence of the uh per se, but
the additional time after the interrupted word that is the source of
this “disfluency advantage.”

1. INTRODUCTION

Spontaneous speech is notoriously disfluent--speakers pause,
restart, repeat words, and produce non-words such as er, um, and
uh--and yet most psycholinguistic experiments and theories of
parsing are designed as if speech were entirely fluent [1]. On
mosl views of parsing, disfluencies should make utterances more
difficult to process. Speech repairs are assumed to pose a
continuation problem for listeners [2], who need to filter out or
ignore the disfluencies in a reparandum in order to determine
which part of an utterance was intended by the speaker. Indeed.
in studies using a gating task, disfluencies disrupted word
recognition; that a disfluency was present was detected before a
disfluent word was recognized [3].

Another possibility is that certain kinds of disfluencies may
not affect comprehension at all. For one thing, disfluencies are
difficult 1o detect and transcribe accurately; it has been suggested
that listeners are relatively deaf to the words in a reparandum, or
the part of a disfluent utterance that needs to be repaired [4].
Using a word monitoring task and spontaneously produced
utterances, Fox Tree [1] found that repetitions did not seem to
harm processing, while some false starts did. It is possible that
disfluencies such as fillers are produced with intonation that is
discontinuous from the rest of an utterance: this may help
listeners distinguish them [5]. So certain disfluencies might be
ignored during processing, along with  other surface
idiosyncracies of the speech signal.

Some have suggested that the form of disfluencies may
actually help listeners solve the continuation problem (e.g.. [6, 7,
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8, 2]). On a pragmatic level, disfluencies such as w/ and wn have
been demonstrated to be meaningful; they provide information
that listeners can use (o reliably discern the speaker's
commitment to an utterance [9].

In our experiments, we used a comprehension task to
investigate whether the form of certain disfluencies enables
listeners to solve the continuation problem, therefore helping (or
at least not harming) comprehension. Levelt [2] suggested that
"by interrupting a word, a speaker signals to the addressee that
that word is an error. If a word is completed, the speaker intends
the listener to interpret it as correctly delivered” (p. 481). This we
take as our first hypothesis: If a speaker intends a listener to
"move to the orange square” but instead says, “move to the vell-
orange square,” the interrupted word may let the listener know
sooner that the speaker is either having difficulty with or intends
to replace the color name, than if the speaker had said “move (o
the yellow- orange square. A second hypothesis is that fillers,
such as uh, er, or um, serve as editing expressions that "warn the
addressee that the current message is to be replaced” ([2], p.
481).

To test these hypotheses, we had listeners select target
objects on a simple display in response to fluent and disfluent
versions of the same and similar spoken instructions. We
measured comprehension in an indirect yet realistic way, by
seeing how quickly (relative to the onset of the target color word)
as well as how accurately listeners could select the target object.

2. METHOD

2.1. Subjects

Students at the State University of New York at Stony Brook
volunteered to participate either for research credit to fulfill a
course requirement or for a small honorarium. All were native
speakers of English and naive to the purpose of our experiments.
Disfluencies were elicited from a total of 32 speakers; 38
additional students made norming judgments, and 2 total of 180
others participated in one of the four comprehension
experiments.

2.2. Design and stimuli

Fluent and disfluent utterances were elicited by having naive
speakers perform an interference-intensive task, modified from
van Wijk and Kempen’s [10]: watching a computer display and
giving instructions about a highlighted target that occasionally
changed unexpectedly. We found that it was necessary to have an
addressee in the room, actually carrying out the instructions and
responding with backchannels, for the speaker's' instructions to
sound at all natural. The critical stimuli we collected were based
on three types of disfluent utterances (reparanda are in boldface):
(1) between-word replacements, e.g. Move 1o the purple- vellow
square, (2) interrupted words with replacements, e.g. Move 1o the
pur- vellow square, and (3) interrupted words with the filler wh,



c.g. Move to the pur- uh, yellow square). For cach spontancous
disfluency we created two types of edited controls: sanitized (the
reparandum was edited out) and pause-cdited (the reparandum
was replaced with a pause of equal length). Experiments 1-4 used
the same set of stimulus utterances: 68 f{luent instructions, 34
spontaneously disfluent ones (comprised ol 14 between-word
replacements, 14 mterrupted words with replacements, and 6
interrupted  words  marked with /i and  tollowed by
replacements), 34 sanitized versions, and 34 pause-edited
versions. So 1/5 of the utterances contained an overt lexical
disfluency and 4/5 did not; 3/5 were spontaneously produced and
2/5 were digitally edited. Experiment 4 used 12 additional items
hased on the mid-word interruptions marked with wh: half of
these had the interrupted word removed from the reparandum,
and half had the uh removed. For both these types of items. the
removed material was replaced with a silent pause of exactly the
same length.

The main set of 170 utterances was normed to make sure
that listeners could not hear the electronic edit points. A group of
listeners who did not participate in any of the other experiments
made ratings by listening once to each utterance and deciding
whether it had been played in its original form as the speaker
produced it, or whether it had been electronically edited.
Listeners could not tell the pause-edited utterances from the
naturally disfluent ones. In the analyses, we used the pause-edited
version of each naturally disfluent instruction as its own within-
item control.

Experiment | examined the speed and accuracy of responses
to these instructions, in the context of a 2-object display.
Experiment 2 replicated the findings from Experiment I,
counterbalancing for the side of the display that the target object
appeared on (in Experiment 1 there was a slight advantages for
objects on the left side of the display). Experiment 3 increased
the complexity of the display from 2 to 3 objects. Experiment 4
examined the nature of the cue behind the disfluency effect, to
see whether it was due to (1) the wh itself, (2) the combination of
the mid-word interruption with uh, or 3) the time after the mid-
word interruption that elapses while uh is being produced.

2.3. Procedure

For the comprehension experiments, each listener was
seated before a graphics display that, for each trial, presented
horizontally arranged circles or squares followed by a spoken
instruction of the form Move to the X. They were told to press a
response key corresponding to the target item the speaker
intended them to move to. The keys corresponded spatially to the
layout of the shapes on the screen. Listeners were told to respond
both quickly and accurately. After completing 15 practice trials
that contained both fluent and disfluent utterances, they did the
experimental trials. Each utterance was presented only once.

3. RESULTS
We compared error rates and response times relative to the onset
of the target color words for the naturally disfluent utterances and
the fluent, sanitized, and pause-edited versions. Of particular
interest were the comparisons of between-word to mid-word
interruptions, of disfluencies marked by uh to those not so
marked, and of naturally disfluent to pause-edited utterances.
With this last comparison, for each disfluent utterance that led to
a correct response, we subtracted reaction times Lo its pause-
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edited version from those to its unedited version. A positive score
constitutes a disfluency advantage.

The pattern of results was consistent across the experiments
(see Figure 1), By themselves, reaction Umes failed 1o supporl
Hypothesis |, that a mid-word interruption alone should act as a
better cue that a speaker intends to replace the interrupted word
than a between-word interruption. However, the error rates did
support this hypothesis; listeners made fewer errors after mid-
word than between-word interruptions. There was  stronger
support for Hypothesis 2: Mid-word interruptions marked by
speeded responses relative to mid-word interruptions without wh.
This did not happen at the expense of accuracy: responses to
interruptions with wh were just as accurate as responses to fluent
utterances. Disfluencies without wh had higher error rates than
any other kind of item (fluent. pause-edited, and sanitized). 1t is
not at all surprising that error rates to disfluent utterances were
higher, since listeners first heard all or part of a misleading color
word before hearing the correct target color word, and once they
committed themselves to a response they could not undo it. What
is worth noting is that this cost to accuracy disappeared in the
mid-word interruptions with u/i.

In Experiment 3, when the display included three rather than
two objects, listeners were slower overall in choosing targets.
There was still a response time advantage for mid-word
interruptions with u/ over their pause-edited versions, compared
to the disfluencies without wh, but this advantage diminished to
28 ms (down from 71 and 78 ms in Experiments |1 and 2, see
Figure 1). *Basically, when the disfluency was less informative
about what the speaker did not mean, interruptions with uh were
less disadvantaged than other distluencies, suggesting that in this
situation uh tells listeners what the speaker does not mean (rather
than achieving its advantage by acting as a more general alerting
signal). The error rates supported both hypotheses: mid-word
interruptions were again more accurate than between-word
interruptions, and mid-word interruptions with «h were more
accurate than those without (once again, no worse than tluent
utterances).



0 Between

B Mid-word

B Mid w/ uh

W+

Difference Scores
(Pause-edited minus Disfiuent RTs)

Expt1 Expt 2 Expt 3
2 objects 2 objects 3 objects

Figure 1: Disfluency advantage (pause-edited minus disfluency
difference scores) in ms.

Experiment 4 examined the disfluency cue more closely to
determine whether the disfluency advantage is due to uh, 1o the
combination of the interrupted word plus uh, or merely to the
extra time that elapses during wh after the interruption and before
the target word. This experiment included six additional controls
that edit out the wh and six that edited out the interrupted color
word preceding it (replacing the removed material with a pause
of equal length). As before, there was no disfluency disadvantage
in the response times. The comparisons of interest are the
response times and error rates for the unedited disfluencies with
wh vs. those with interrupted words or uhs edited out. When only
the wh was edited out and replaced with a pause of equal length
(leaving the interrupted color word with the same interval to the
target word), response times and error rates were the same as
those for unedited disfluencies with uh. When the interrupted
word was replaced with a pause, leaving the uh before the repair,
response times slowed by about 80 ms.

4. DISCUSSION
Consistent with Fox Tree’s findings [1]. our data show that
disfluencies need not harm processing; in fact, under some
circumstances they may be informative. In our experiments, the
disfluency advantage of mid-word interruptions marked with wh
appears to be due mainly to the additional time that elapses
during wh after the interrupted word, rather than to the presence
of uh itself. Apparently the interrupted word acts as a cue that
supports an inference by the listener about what the speaker did
rot mean, and when this cue is gone, the response lime advantage
goes too (Experiment 4). When the informativeness of the
disfluency cue is diminished, so is the disfluency advantage
(Experiment 3). Together, these data favor an inferential process
over an attentional one in this particular task: If the disfluency
advantage were due simply to alerting the listener to an UpPCoOMIng
repair or to heightening attention 1o the upcoming target word,
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then it should not have diminished with a 3-1tem display or when
the word fragment before an wh was removed.

When a speaker interrupts an unintended word rather than
completing it before a repair, this confers a distinct advantage on
the listener: The listener is less likely to make a premature
commitment to the wrong interpretation when she hears less
misleading information. And in a logically constrained context,
when there is sufficient time between the interrupted word and
the target word, response time is speeded. The pattern of data
supports our first hypothesis about interrupted words as potential
cues, as well as a modified version of our second hypothesis: uh
helps because it buys the listener time.

Qur studies have focused on listening to disfluent utterances
in a logically constrained context. We constrained the contexlt in
order 1o control the informativeness of the disfluencies, for this
first demonstration that speakers can use the cues available in
disfluencies to improve their performance in a behavioral task
requiring them to follow simple instructions. The elicited
utterances we used were semantically repetitive, which may have
led listeners to attend to the disfluencies in ways they would not
in the real world. This was probably not an issue for the filler uh,
since there were only 6 of these items in the set of 170
instructions (3.5%). But it may well have affected people’s
responses o the between- and mid-word interruptions, as the
speaker changed the color word in 20% of the utterances. It
remains 1o be seen whether an interrupted word in a more diverse
set would still cue listeners that the speaker intended to replace
the word (as Levelt [2] originally suggested). That is, interrupted
words might lose their value as cues if the instructions sometimes
included utterances like "Move o the yel- yellow square.”

While restarts such as this are not uncommon in naturalistic
speech corpora, they were surprisingly rare in our elicited
corpora. In the course of eliciting disfluencies, we recorded
spoken instructions from two sets of speakers who referred to
highlighted objects on a computer display. One of the speakers
from the first set of 12 (with a confederate acting as his
addressee) produced the fluent and disfluent utterances that we
used in the current experiments. The second set of 15 speakers
was recorded doing the same task, but with naive addressees who
actually carried out the task of moving a cursor to the geometric
objects in the instructions. In both of these corpora, there were
surprisingly few instances of disfluencies involving the same
color word repeated. This happened even though we programmed
the displays in a way we thought would elicit such disfluencies
(about 1/5 of the time the highlight on the object the speaker was
supposed to refer to flickered but reappeared in the same place;
about 2/5 of the time it jumped to another object. and about 2/5
of the uime it stayed put).

The possibility that listeners might be using a strategy
tailored to the discourse goals or context does not diminish the
relevance of our findings; if strategic processing is laking place,
then people have remarkable ability to discern the contextual
informativeness of paralinguistic cues in spontaneous spcech and
1o act on these cues.
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COMPARING HUMAN AND AUTOMATIC SPEECH
RECOGNITION USING WORD GATING

Robin Lickley, David McKelvie & Ellen Gurman Bard
Human Communication Research Centre, University of Edinburgh, Scotland

ABSTRACT

This paper describes a study in which we compare
human and automatic recognition of words in fluent
and disfluent spontaneous speech. In a word-level
gating study with confidence judgements, we examine
how the recognition and confidence of recognition of
words by humans develops over utterances and show
how disfluency disrupts the process. We give an
automatic recogniser the same task and compare its
performance with the humans’. With both systems,
subsequent context supports word recognition:
confidence in word recognition peaks after
subsequent words have been heard. With both
systems, disfluency adversely affects recognition of
words in the immediate vicinity of the disfluent
interruption (for repeats and repairs). disrupted
subsequent context disrupts the recognition process.

1. INTRODUCTION

Spontaneous speech is disfluent: speakers need time to
formulate utterances and often make changes on the
fly, so pauses, repetitions and restarts abound. Until
recently, models of speech recognition, both
psychological and computational, have focussed on
corpora of read or rehearsed speech and ignored the
problems posed by spontaneous speech and
disfluency. The most obvious way to characterise the
problems posed by disfluency is in terms of detection
and then resolution in order to produce a fluent
representation of what the speaker intended to say.
Specifically, following this view, we need to detect the
interruption point and remove the reparandum,
replacing it with the repair [5]. Under certain
experimental conditions, we can detect disfluency
reliably as soon as we hear the onset of the repair [7].
Yet, as listeners, we seem to filter out many
disfluencies with great ease. Perception experiments
have demonstrated that people regularly mistranscribe
disfluencies or even miss them altogether [2, 6, 8].

We have evidence that people miss disfluencies
because of the way they naturally process spontaneous
speech. People do not recognise words on the basis of
their acoustic shape alone, for words excerpted from
their running speech contexts can be extremely
difficulty to recognise. Instead, people depend on the
context in which the word appears. As a consequence,
people do not always recognise words one by one and
in the order in which they are produced. Word-level
gating studies have shown that many words - mostly
short, unstressed function words - can only be
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correctly recognised when subsequent stress-bearing
content words have been heard [3]. How far a word's
recognition is delayed beyond its offset is a function
of the inherent intelligibility of the word token, and of
both prior and subsequent material. Words at the
beginning of utterances are more difficult to recognize
by their own offsets, presumably because the listener
has less prior context to recruit to the task of
disambiguating the speech sounds. Words before
minor prosodic boundaries tend to be more delayed in
recognition than those before major boundaries [10].
Major boundaries usually follow stress-bearing
content words and end longer phrases or clauses, so
that semantic, syntactic, and prosodic considerations
will all tend to make such items consolidation points
for recognition of the earlier, weaker words.

Disfluencies disrupt human word recognition
because they disrupt this process. The interruption
points in disfluent speech leave words in reparanda
with truncated subsequent contexts. Any eventual
continuation may be non-contiguous, so that the usual
consolidation points may be lacking or so delayed that
the undeciphered material may be lost before it can be
resolved [2]. Delay is made more telling because the
repair portion of a disfluent utterance is like the
beginning of a new utterance: the words after the
interruption have a disrupted prior context and are
more prone to late recognition than words at the same
serial position in fluent utterances [2, 7].

The critical factor here is the dependence on
subsequent context, which we can measure in a
tendency toward delayed recognition. We report a
study in which we try to determine whether such a
tendency can be found in a standard phoneme-based
HMM automatic recognizer with a bigram language
model. We conjecture that if it can be, and if it
resembles the similar tendency in human listeners, we
may be able to adapt the model to edit out disfluencies
by failing to recognize them, just as people do.

In this study we compare human and HMM
performance on a word-level gating task with matched
fluent and disfluent utterances. Word-level gating
allows us to look at the effects of prior and subsequent
context on word recognition. Stimuli are presented in
chunks which increase in length by one word on each
presentation, beginning with just one word. Subjects
respond by typing what they think the latest word is
and making any desired alterations to previous word-
judgements. In this experiment, subjects were also
required to give a confidence score on a scale of 1 10 5
to show how sure they were of each word: 1
represented very low confidence and 5, certainty. In



previcus gating studies [2, 3], we have looked at
immediate, late and failed word recognition. In this
study, we focus on the point at which confidence
judgements for correctly guessed words reach their
maximum level: the consolidation point. One feature
of word-level gating which makes the recognition task
easier than it is in normal listening is that the word-
segmentation problem is solved: subjects know that
cach new presentation of any stimulus increases its
length by one word and they can assume that the
number of spaces on the current line of their answer
grid represents the number of words that they ought to
have transcribed. While this makes the task less
natural than continuous listening, it also makes the
demonstration of late and failed recognition all the
more striking.

2. EXPERIMENTS

2.1 Materials.

Materials were the same for both the human and
automatic recogniser tests: All stimuli were sampled
from the HCRC Maptask Corpus, a set of 128 task-
based spontaneous dialogues [1]. The corpus has time-
aligned word-level transcriptions and is fully
annotated for disfluencies (see [4] for some analysis of
disfluencies in the corpus).

A total of 360 utterances were sampled and
stored on a Sun Sparcstation:

e 120 disfluent utterances. These contained
repetitions, deletions, insertions,
substitutions or complex disfluencies were
first selected (e.g. along 1o the left towards
the left of the banana tree);

e 120 length controls. These were fluent
utterances matched for speaker and length
in words with the disfluent items formed
one set of controls, so that comparisons of
word recognition effects for serial position
could be made (e.g. keep going up wuntil
you're horizontally level with the rope
bridge).

e 120 word controls. These were fluent
utterances matched for speaker with the
disfluent set and containing the same
sequences of words as occurred in the
reparanda of the disfluent items formed the
second control set (e.g. move to the left
about an inch)

None of the stimuli contained filled pauses or other
non-words.

All stimuli were segmented at word level by hand
using signal annotation software: this provided the end
points of the words for use in the gating experiment.
Interruption points in the disfluent stimuli were also
marked, as were the equivalent points in the fluent
controls.

Word-level gating experiments take a long time
to run. For this reason, the stimuli were divided into 4
groups of 90 stimuli which were distributed by Latin
Square into 3 subgroups such that no subject would
hear both the disfluent stimulus and either of its fluent
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controls. Thus, the materials were split into 12 groups
of 30 items.

2.2 Procedure and Participants.

Human Subjects. Stimuli were presented over semi-
closed headphones in a quiet computer lab. The
experiment was run using a computer program and
responses were lyped into a graphical interface on Sun
Sparcstations. Each response was saved to a computer
file when the return key was hit. Null responses were
not allowed. Subjects were able to do the experiment
at their own pace and all completed it in one session
of about an hour.

Subjects were 72 students at the University of

Edinburgh, who participated either as a course
requirement or for a small fee. Six subjects were
assigned to each group. All subjects were native
speakers of English and none reported having any
hearing difficulty.
ASR. A phoneme-based HMM recogniser with a
bigram language model trained on a subset of the
HCRC Maptask Corpus was adapted to mimic the
human  perception experiment. Word-string
hypotheses were generated for each point in the gating
experiment and the recogniser was constrained to
produce hypotheses for the correct number of words at
each point: At end of the nth word, the best sequence
of n words found by the recogniser was determined
and its confidence measured by the probability
assigned to the path.

3. RESULTS

Results from the automatic recogniser were pretty
poor. So for the purposes of this study, we report
results for one quarter of the experiment: 90 stimuli,
consisting of 30 disfluent utterances and their two sets
of 30 fluent controls. The 30 disfluent utterances were
those which were best recognised by the automatic
recogniser. We compare the consolidation points for
correct word recognition by humans with those of the
automatic recogniser. For humans, we define the
consolidation point for a correct word as the point at
which total confidence scores across subjects peaked
for that word. For the automatic recogniser, we define
the consolidation point as the point at which the
HMM's hypothesis for that word reached its
maximum divergence over other word hypotheses.

3.1 Points of Recognition.

Previous studies [2, 3] would predict that
between 15 and 20% of words would be recognised
late. The confidence judgements allowed 2 more
refined test of when listeners were sure that they had
recognised a word. Whereas previous work suggests
that the large majority of words can be recognised on
first presentation in a gating experiment, this version
of the experiment shows that listeners’ confidence in
their guess does not usually peak until later. Only 168
of 788 non-final words (21.3%) formed their own
consolidation point for humans, showing full
confidence on first presentation. Interestingly, the rate
of immediate consolidation for the automatic
recogniser was very similar (166 (21.1%)) (Figure 1).

A
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Figure 1: Consolidation points are on later words in
most cases, for both human and automatic recognition

3.2 Consolidation Points

Consolidation points did not occur randomly, but
clustered, both for humans and for the automatic
recogniser: of 788 possible sites for consolidation (i.e.
the total number of non-final words) humans
consolidated at 351 sites and the automatic recogniser
at 347. Figure 2 illustrates the consolidation points for
the two systems for two fluent stimuli.

The examples in Figure 2 suggest that the
relationship between word types and consolidation
points and between consolidation points for people
and for the automatic recogniser is not
straightforward. There is some evidence of
consolidation points occurring at heads of phrases and
on content words, but closer analysis of where points
of consolidation occur is needed and planned.

3.3 Disfluency Effects

In the analyses that follow, we focus on the
words that matter most for the analysis of the effects
of disfluency on word recognition: the words closest
to the interruption point in the disfluent test items and
words in matched positions in the two sets of controls.
We discuss outcomes for the word which ended at the
interruption point and for the two words before and
the two words after that word.

People and the automatic recogniser are affected
by disfluency and in similar ways. Both take longer to
consolidate their word-hypotheses in disfluent
utterances than in length-matched fluent controls
around the interruption point (F(1,143)=6.71, p<.015).
Figure 3 illustrates, first of all, the tendency to greater
delays at early pars of the utterance, mimicking
curves for recognition [3, 9]. Mean delay to
consolidation from first presentation of a word
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Figure 2: Consolidation Points in two fluent stimuli

(“now head across 1o the rope bridge”; "come back so that
you're directly above the right-hand wheel of the sajari
truck”) for Human subjects and for the Automatic
Recogniser (read from bottom up).
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Figure 3: Disfluency delays Consolidation Points for Word
Recognition for both human and automatic recognition. Solid
lines are fluent stimuli, broken are disfluent; circles are for
Human listeners. crosses for ASR.

decreases with serial position in the fluent controls,
but hiccups across the interruption point in the
disfluent cases, for both recognition systems.

There is some difference between the human and
automatic recognisers. The point where consolidation
is most delayed for the automatic system is on the
word at the interruption point, where for humans the
delay to consolidation has its peak at the word
immediately after the interruption.

Similar results relating word recognition success
to serial position in the utterance were found for mean
human confidence scores on first presentation of each
word: words later in an utterance were given higher
confidence scores except around the interruption point
in disfluencies, where confidence dropped.

4. DISCUSSION

The work described here represents the first steps in

the analysis of a large scale recognition experiment

and this paper begs many more questions than it
addresses. However, a few things are clear from these
early results:

¢  Adding confidence judgements to the word-level
gating method gives a more refined view of when
words are recognised in running speech.

e Humans and our ASR reach confidence peaks
similarly late.

o Disfluency leads to lower confidence for the
words around the interruption point, for both
humans and ASR.

e Disfluency delays both human and ASR
consolidation relative to delays in fluent
utterances.

More detailed analyses will examine the roles of parts

of speech and syntactic and prosedic phrasing in the

locations of consolidation points and will take greater
account of actual recognition confidence levels.
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Use of a Postprocessor to Identify and Correct Speaker Disfluencies in Automated
Speech Recognition for Medical Transcription.

Sherri Page'
University of Minnesota, Minneapolis, USA

ABSTRACT

Medical practitioners speak in a quasi-spontaneous monologue
when they dictate a chart note, letter, or patient history. Prior
research has largely ignored the issue of disfluency in dictation,
arguing that speakers can control recording and start over if
necessary. In 550,000 words of hand transcribed medical
dictation, however, we find numerous filled pauses, repetitions,
and other self-repairs. This paper describes: a pre-theoretical
classification of disfluencies, developed to identify patterns
useful in automatic text processing: the patterns of disfluency
found in a corpus hand tagged with this classification, which
include repetitions in combination with substitutions, insertions,
and deletions; and, preliminary results of implementation of a
disfluency pattern matcher and filter in a postprocessor developed
for commercial use.

1. INTRODUCTION

While it is true that speaker disfluencies can reduce the quality of
automated speech recognition, that is not the focus of this paper.
Even when recognized with perfect accuracy, disfluencies
introduce extraneous text which must be removed when the
desired end product is not a verbatim transcript.  The aim of my
research is to identify the patterns of repair disfluencies in such a
way that they can be identified automatically and the extraneous
text removed. This paper represents a first step towards
developing an analysis that can be automated in a speech
recognition system.

2. CORPORA
This study uses two corpora consisting of hand transcribed
medical dictation, containing an estimated total of 550,000
words, including filled pauses. Many of the speakers are
represented in both corpora. All speakers are M.D.s or Nurse
Practitioners. The first corpus is used primarily for identifying
patterns of disfluency, and the second is for testing those patterns.

2.1. Corpus 1 (MED_TAG). Size: approximately 37,000
words. Number of speakers: 21; 6 female, 15 male. Corpus
consists of 338 files of digitized speech and hand transcribed,
aligned text. Each file represents a full or partial dictation
containing up 1o one minute of speech. Every file was hand
tagged for repairs by three different people while listening to the
recorded audio. Tagging methods are described further in section
3 below. Word fragments were added to these transcripts at time
of tagging.

2.2, Corpus 2 (BIG_MED). Size: approximately 495,000
words, after exclusion of approximately 20,000 words of tlext
shared with MED_TAG. Number of speakers: approximalely
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20. mixed gender. Corpus consists of 18 files of hand transcribed
speech, containing approximately 16,000 dictations, text only.
Word fragments are not transcribed in these files.

3. DISFLUENCY CLASSIFICATION

The classification system introduced below was developed
specifically for this research project, in an attempt to create
categories of repair disfluencies fitting the following criteria:
that they be mutually exclusive, for ease of both human and
machine classification of individual repair sites, and that they
allow for cross-comparison of repair types and further sub-
classifications. In this paper 1 use the term repair site to mean
something closely corresponding to Shriberg’s definition of
disfluency region [6]: it consists of an ill-formed first part, the
reparandum, followed by an interregnum (which Clark terms the
hiatus [1]) -- which may be empty or contain filled pauses or
editing expressions -- followed by the weli-formed part, the
repair. My analysis differs somewhat in that a site is considered
to include any filled pauses bordering it (i.e. directly adjacent to
either the reparandum or the repair).

3.1. Classification outline.

3.1.1. Exact repetition (category 1). This category includes
single or multiple word repetitions, separated optionally by
silence, filled pauses, editing expressions, or any combination of
these. E.g. "the um the", and "with a with a". The smallest
possible site is two words in length.

3.1.2. Exact substitution (category 2). This category includes
single or multiple word substitutions, separated optionally by
silence, filled pauses, editing expressions, or any combination of
these. E.g. "five correciion seven”. The minimal length for this
type of repair site is two words,

3.1.3. Repetition and substitution (category 3). This category
includes substitutions with repeated material to the left or the
right. E.g. "does not did not”, and "um for two for one”. The
smallest possible site for this type is four words.

3.1.4. Repetition and insertion (category 4). This category
includes repetitions with a new word inserted before or medially.
E.g. "to clean to try to clean”. Minimum size for this type is three
words.

3.1.5. Repetition and deletion (category 5). This category
includes repetitions with a word omitied either at the start of the
repeat or medially. E.g. "no spotting dysuria or abnormal
correction no spotting or dysuria”. The smallest possible site is
five words.



3.1.6. Editing expressions (categories A and B). Editing
expressions such as “correction”, "I'm sorry”, and sometimes
“or", are not considered words in this classification. They really
are words, of course, but they are excluded because they are not
intended to be part of the finished utterance. Rather, they arc
signals to the listener to replace something that was just said with
something else. Repair sites containing editing expressions are
classified as category B, and sites without them are category A.
All repair sites are classified with both a letter and a number.

3.1.7. Filled pauses. Filled pauses (FPs) are not considered
words in this classification, so two FPs in a row, for instance.
would not count as an exact repetition. Any FP occurring at the
edge of a site is analyzed as belonging to that site.

3.1.8. Word fragments. Word fragments are considered words
in this classification, although they are not considered identical to
the words they may be partial utterances of. For instance,
something like “dislo- dislocated” might be classified as a
fragment repear in some research [2], but under this system it is
analyzed as an exact substitution.

3.2. Hand tagging of MED_TAG corpus.

3.2.1. Insertion of textual markers. Three undergraduate

students were trained in the system of classification outlined

above. Listening to the digitized audio and reading the verbatim
transcripts (both of which had been sanitized to remove doctor or
patient identifying information), the taggers annotated the
transcripts of the MED_TAG corpus by inserting textual markers:

e al the beginning of a repair site (i.e. the left edge of the
reparandum), using a number and a letter to denote the
repair type, followed by >,

e al the point of resumption of fluent speech (i.e. the right
edge of the hiatus, or left edge of the repair proper), using
the character 1; and finally,

e at the end of the repair site, or the right edge of the repair
proper, using the same number and letter preceded by <.

3.2.2. Insertion of word fragments. Because word fragments
may signal that speakers are changing their minds about what
they have just said [1], the taggers were instructed to insert
orthographic approximations of any fragments they perceived,
ending each with a dash -’ As Shriberg notes, fragments are
difficult even for trained transcriptionists to notice, particularly
when adjacent to another disfluency [6], perhaps because of some
sort of pre-conscious filtering that applies to normal speech
perception. Thus it is possible that a few word fragments were
missed by the taggers. Because their spellings varied wildly, it
was difficult to assess the reliability of fragment transcription;
however in terms of location it appeared to be quite good. E.g.
one tagger’s "hydras-" was transcribed by another as "hydrasa-"
and the third as “hydros-". but all of these preceded
"hydrocortisone”.

3.2.3. Inter-tagger reliability. Reliability in general appeared
quite good. In the first pass of analysis, [ selected only the repair
sites identified by two or more taggers. Later | verified each site
by hand and found that almost every one of the sites identified by
Iwo or more laggers was in fact a repair site, whereas almost
none of the sites marked by only a single tagger were.
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4. ANALYSIS
The following notation is used in each of the analyses below:

Symbol Definition

wl w2 _wn |individual words

FP filled pause

EE cditing expression

? 7€ro or one

* a sequence of zero to three

point of resumption

Table 1. Pattern notation.

4.1. Pattern and distribution of repair types.

4.1.1. Exact repetitions. As shown in the table below, the vast
majority of repetitions found in MED_TAG involved a single
word, specifically: 75 sites out of 87, or 86%; and repetitions of
longer sequences diminish in frequency. Only | instance of a
repetition containing an editing expression was found, and it
involved a single word repeated once. In only 4 instances was a
(single) word repeated twice.

Words | Sites | Jotot Pattern
1 75 | 86% FP* w1? wl EE? FP* | wl FP*
2 ) 6% FP? wl w2 lwl w2
3 S 6% FP? wl w2 w3 FP*l wl w2 w3
4 2 2% wl w2 w3 wdlwl w2 w3 wd FP?
5+ 0 0% --
Total | 87 | 100% --

Table 2. Exact repetition.

As shown in the table above, filled pauses occurred optionally at
the beginnings and ends of disfluency regions, and at the
resumption point. It is interesting that FPs did not occur intra-
sequentially, i.e. between wl and w2, or between w2 and w3, in
any of the multi-word repetition sequences. However only 12 of
such longer sequences occurred, total. The next step is to look
for these sequences in BIG_MED, and see whether FPs exhibit
the same behavior in the larger corpus.

4.1.2. Exact substitutions. In Table 3, below, the 1st column
contains the number of distinct words in the reparandum portion
(RM) of the disfluency region, while the 2nd column contains the
number of distinct words on the repair side (RR). (In the table
above, "Words” denoted both RM and RR, because in exact
repetitions those numbers are always identical.) This category
unexpectedly accounts for half of all the repair sites identified in
MED_TAG: 192 out of 383.

RM RR| Sites| %tot
1 1| 140 73%

| 2 12 6%

1 3+ 8 4%

2 1 7 49

2 2+ 11 6%
Other 14 TG

Total| 192} 100%

Table 3. Exact substitution, counts.



Patterns Sites|  %otot

FP* wl FP? EE* FP? | w2 FP* 140 73%

FP* wl FP* | w2 FP? w3 FP? 12 6%

FP? w1 FP* EE? FP* | w2 w3 wd wn* 8 49
FP? w1 w2 FP* | w3 FP? 7 49

FP? w1 FP? w2 FP? EE* FP? | w3 FP?7 w4 wN* 11 6%
- 14 7%

-- 192{ 100%

Table 4. Exact substitution, patterns.

Nearly three-quarters of all the exact substitutions found in
MED_TAG were single word substitution (140 out of 192), as
shown in Table 3, above. Not shown is that over half of the
single word substitutions (75 out of 140) were simply "wl | w2",
containing no filled pauses or editing expressions. Also, nearly
two-thirds of all substitutions involved word fragments in the RM
(122 out of 192). Most surprisingly, less than 10% (19 out of
192) of the total substitutions contained any editing expressions.

4.1.3. Repetition with substitution. This category can also be
called anchored substitution. It differs from category 2 in that it
has extra material that helps "anchor” the new words in their
intended positions in some sense. As noted by Tannen,
repetitions in narrative allow a speaker to create a frame to slot
new information into [7]. Repetition can serve a similar function
in repairs.

Patterns Sites| %otot

FP? wl w2 FP? EE* | wl FP? w3 FP? 231 27%
FP? wl w2 FP? EE* | w3 w2 FP? 8 10%

FP? wl w2 FP? w3 FP? EE? | wl w2 FP? w4 8| 10%
-- 45| 54%

Total 841 100%

Table 5. Repetition with substitution.

As you can see in the table above, patterns in this category
(category 3) were much Jess homogenous than those in categories
1 and 2 (shown in 4.1.1. and 4.1.2., above). The three most
frequent patterns shown account for about half of the data; the
rest of the patterns (54%}) consist of wildly variant singletons.

4.1.4. Repetition with insertion.

Pattern Sites| %otol

FP wl FP? EE? | w2 wl FP? 6] 32%
FP? wl FP? I w2 w3 wl wn* 41 21%
= 91 47%

-- 191 100%

Table 6. Repetition with insertion.

Very much like 4.1.3., above, the two most common patierns
account for only half of the category 4 sites identified. The rest
of the patterns were likewise irreconcilable singletons,
completely dissimilar from the first two patterns and from each
other.
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4.1.5. Repetition with deletion. Only a single instance of
category 5, deletion, was found! The exact repair was:
"malignancies ah you should have a ah correction period ah |
malignancies period ah”. This appears to be a complex repair, in
fact, containing two separale attempts at deleting the same
elements. The speaker first tried to indicate a complete restart
(i.c. deletion of "you should have a") with the editing expression
“correction” followed by the punctuation word "period”, then
apparently felt a nced to make the deletion more explicit by
repeating the words "malignancy” and "period” with nothing in
between. This could actually be reanalyzed as a category 2
substitution embedded within a category 1 repetition, as follows:
"I A> malignancies 2A> ah you should have a ah correction |
period ah <2A | malignancies period ah <1A". The separale
category of anchored deletion might thus turn out to be
unnecessary. In any case, one category 5 site (out of 383) seems
to indicate a certain degree of rarity.

4.2, Summary of repair types found in MED_TAG.

Category Sites 9otype Dotot
1A 86 99% 22.5%

1B 1 1% 0.3%

Total | 87 100% 22.7%
2A 173 90% 45.2%

2B 19 10% 5.0%

Total 2 192 100% 50.1%
3A 56 67% 14.6%

3B 28 33% 7.3%

Total 3 84 100% 21.9%
4A 14 74% 3.7%

4B 5 26% 1.3%

Total 4 19 100% 5.0%
5A 0 0% 0.0%

5Bl 1 100% 0.3%

Total 5 1 100% 0.3%
Total A 329 - 85.9%
Total B 54 -- 14.1%
Grand Total 383 -- 100.0%

Table 7. Summary of repairs in MED_TAG.

This summary gives the ratios of absence (A) vs. presence (B) of
editing expressions in each of the 5 repair types, information not
included in the pattern tables of the previous section. See 4.4.,
below, for the actual words used in these EEs.

4.3. Pattern and distribution of filled pauses (FPs).

As can be inferred from all of the patterns listed in the previous
tables, filled pauses can and do occur: preceding the reparandum,
within the hiatus, and after the repair. They can also occur
between sequences of words either in the reparandum or the
repair, though this placement appears much less often (and not at
all in exacl repetitions). A more detailed analysis of the
distribution of FPs within repair sites is in progress.



4.4. Pattern and distribution of editing expressions (EEs).

As shown in Table 7, above. only 14% ol thc repair sites
identified in MED_TAG contained EEs. This is a bit lower than
Levelt reported [3], which is likely due o the exclusion of filled
pauses from consideration here as editing expressions. Certainly
a great many FPs do occur in the hiatus, with or without EEs.
Interestingly, two EEs sometimes occurred in a row (which is
implicitly stated in patterns containing "EE*"). The EE "or" for
instance, was found preceding "actually”". “correction”, and
"sorry”. Total occurrences of each EE are listed in the table
below. (Note: these do not correspond to the number of sites
containing EEs. because some sites contain multiple EEs.)

EE Instances %0EEs
"or" 26 42.6%
“correction” 18 29.5%
"I'm sorry” 7 11.5%
"sorry” 2 3.3%
"pardon me" 3 49%
"excuse me" 2 3.3%
"actually” I 1.6%
"make that" 1 1.6%
"lets see here"” 1 1.6%
Total 61 100.0%

Table 8. Editing expressions.

The most common EE was unfortunately "or", which of course is
not exclusively used in repairs. The word "correction” is a better
EE for repair identification purposes, although it can occur in
non-repair phrases such as “surgical correction". The best
indicators of repair are actually "sorry" and "I'm sorry™: all of
their occurrences in BIG_MED were found to be EEs, every one!

4.5. Testing repair patterns in BIG_MED.

The testing phase has only recently begun. Preliminary
indications are that repair patterns in MED_TAG also exist in the
much larger corpus, BIG_MED, but results are not ready at time
of writing.

5. DISCUSSION

As shown in the previous analyses, the majority of repairs found
in our corpus involved single words. This is consistent with the
findings of Levelt [3],[4] and Nooteboom [5], that repairs usually
occur immediately after an error. In addition, relatively few of
the repairs contained editing expressions, substantiating
Shriberg’s proposal that editing phrases may be less frequent in
disfluencies than previously thought [6].

6. POSTPROCESSOR IMPLEMENTATION

6.1. Exact repetitions.

A postprocessing program to identify single word repetitions has
already been implemented. If successful, this alone could filter
up to a fifth of the extraneous text introduced by speaker
disfluency. The program already suppressed identified filled
pauses; now it suppresses the first instance of a repetition as well.
Unfortunately, there are a number of cases where repetition is
actually desired. The obvious cases are "that that" and "very
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very”; slightly less obvious cases have been found to include
number series, such as “nine nine", and some pronouns, e.g. "her
her”. The latter case occurs with any word that can both end and
begin a sentence, il sentence boundaries are not explicitly
indicated (as they generally aren', in automated recognition,
unless they are dictated by the specker). Further research is
needed to determine which words or Lypes of words the exclusion
list must include in order to avoid mis-suppression of legitimate
repetitions.

6.2, Exact substitutions.

It is very difficult to identify exact single word substitutions
automatically, much less multiple ones. However, part-of-speech
(POS) might be used to filter some types of single word
substitution.  For example, series of determiners such as
possessives and articles can be filtered automatically, because
they normally cannot occur in a row: e.g. "the his leg". Certain
prepositions also have the property of not sequencing with other
prepositions, e.g. "at"; but identifying these would require further
subcategories of prepositions: POS alone is clearly insufficient to
identify allowable sequences.

6.3. Repetitions combined with substitutions, insertions, or
deletions.

Many of these patterns can be identified automatically, such as
"wl w2 wl w3", with the output to be filtered as "wl w3", but
constraints must be put on the kind of word that can be
considered the repair "anchor" (i.e. the repeated item). For
instance, "every hour every day" should not be assumed to
represent an intended utterance of “every day". More
investigation is needed to determine what types of words can
serve as reliable anchors.

AKNOWLEDGEMENTS
Sincere thanks to Joan Bachenko, Ph.D., and Professor Amy Sheldon, for
encouraging this project both at LTI and UMN, and for facilitating
undergraduate assistance (via UROP). 1 wish also to thank the taggers
themselves. Kristin Bergquist, JoElle Kangas. and Hannele Nicholson,
for their comments as well as painstaking attention to detail. This
research was partly supported by NIH grant HDO7151,

NOTES
The author can be reached via email at pagex016@tc umn.edu.
1. Also at Linguistic Technologies, Inc., 105 South 3" St., St. Peter, MN
56082,

REFERENCES

[1] Clark, H. H. 1996. Using language. Cambridge: Cambridge Univ.
Press.

[2] Clark, H. H. & Wasow, T. 1998. Repeating words in spontaneous
speech. Cognitive Psychalogy, 37, 201-242.

(3} Levelt. W. J. M. 1983, Monitoring and self-repair in speech.
Caognition, 14, 41-104.

[4] Levelt, W.J. M. 1989. Speuking. Cambridge, MA: MIT Press.

[5] Nooteboom, S. G. 1980. Speaking and unspeaking: detection and
correction of phonological and lexical errors in spontancous speech. In
V. A. Fromkin (Ed.), Errors in linguistic performance (pp. 87-95). New
York: Academic Press.

[6] Shnberg. E. E. 1994. Preliminuries to a theory of speech disfluencies.
Unpublished Ph.D. dissertation, University of California, Berkeley.

[7] Tannen. D. 1990. Talking voices: repetition, dialogue, und imagery
i cemversational discourse. Cambridge: Cambridge Univ. Press.
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ABSTRACT

Filled pauses (FP’s) are characteristic of spontaneous speech and
present considerable problems for speech recognition by often
being recognized as short words. Recognition of quasi-
spontaneous speech (medical dictation) is subject to this problem
as well. An wm can be recognized as thumb or arm if the
recognizer’s language model does not adequately represent FP's.
Representing FP’s in the training corpus substantially improves
recognition. Several techniques of conditioning a training corpus
with FP's were evaluated to show that a bigram probability
method, as well as a uniform distribution probability method,
centered around the average sentence length, yield better
recognition results. The best method of conditioning a training
corpus with FP’s may have to target clause boundaries despite the
fact that inserting FP’s at clause boundaries by using a limited set
of clause boundary anchors failed.

1. INTRODUCTION

Filled Pauses are not used at random but have a systematic
distribution and  well-defined functions in  discourse.
[1.2,3,58,9,16]. Cook and Lalljee [4] make an interesting
proposal that FP’s may have something to do with the listener’s
perception of disfluent speech. They suggest that speech may be
more comprehensible when it contains filler material during
hesitation: a FP may serve to preserve continuity and may serve
as a signal for drawing the listener’s attention in order for the
listener not to lose the onset of the following utterance. Perhaps,
from the point of view of perception, FP's are not disfluent
events at all. This proposal bears directly on the domain of
medical dictations. Some physicians who use old voice operated
equipment train themselves to use FP's instead of silent pauses so
that the recorder won’t cut off the beginning of the following
utterance.

Filled pauses. false starts, repelitions, fragments, are
characteristic of spontaneous speech and present considerable
problems for speech recognition. FP’s are often recognized as
short words of similar phonetic quality. Recognition of quasi-
spontaneous speech (medical dictation) is subject to this problem
as well. For example, in our system, an wm is recognized as
thumb or arm if the language model does not adequately
represent FP's. The FP problem becomes especially pertinent
where the corpora used to build language models are compiled
from text with no FP's. Shriberg [12] has shown that representing
FP’'s in a language model helps decrease the model’s perplexity.
She finds that when a FP occurs at a major phrase or discourse
boundary, the FP itself is the best predictor of the following
lexical material; conversely, in a non-boundary context, FP's are
predictable from the preceding words. Shriberg [10] shows that
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the rate of disfluencies grows exponentially with the length of the
sentence, and that FP's occur more often in the initial position
(see also Swerts [16]).

In a previous study, Pakhomov [9] shows that a language
model based on a training corpus populated with FP's using
bigram probabilities significantly improves recognition over a
language model that contains no FP’s. He also finds an
improvement with the bigram approach over the uniform
distribution model which represents FP’s inserted into the
training corpus at random with insertion points centered around
every 15" ward (empirically established average frequency of
FP’s).

In this paper we present a method of conditioning training
corpora with FP’s at clause boundaries in addition to the bigram
approach and four uniform distribution models. We suggest that,
although the method of inserting FP’s at clause boundaries does
not yield satisfactory recognition results, it may prove to be more
fruitful with an improved clause boundary identification
mechanism. We also show that using recognition accuracy as the
only gauge to determine the goodness of a FP model is not
sufficient due to FP overrepresentation effects. We also show
advantages and disadvantages of populating training corpora with
FP’s at random.

2. QUASI-SPONTANEOUS SPEECH

The term quasi-spontaneous speech reflects the fact that medical
dictations used for analysis in this study are very different from
unprepared monologues as well as read text and tend to retain
features of both. Family practice dictations are pre-planned and
follow an established SOAP format: Subjective (informal
observations), Objective (examination), Assessment (diagnosis)
and Plan (treatment plan). The Subjective part tends to resemble
unrehearsed monologues where the rest of the dictation is more
like read speech. Physicians are aware of their audience and
often address the medical transcriptionists directly by thanking
them and telling jokes.

3. TRAINING CORPORA AND FP MODELS
This study used three base and five derived corpora. Base corpora
are collections of medical dictations used for two purposes:
analyzing FP distribution and FP conditioning. Derived corpora
are collections of the same dictations after FP conditioning. Brief
descriptions of each follow in sections 3.1 and 3.2.

3.1. Base

= Balanced hand transcribed training corpus (BHT_CORPUS)
that has 75, 887 words of word-by-word transcription data
evenly distributed among 16 talkers. This corpus was used



to  build a bigram model, that controls the process of
populating a no-FP  corpus  with aruficial  FP’s
(BIGRAM_FP_MODEL). A more detailed description of
the model follows in section 3.3.1.

= Unbalanced hand transcribed training coTpus
(UHT_CORPUS) of approximately 500,000 words of all
available  word-by-word  transcription  data  from
approximately 20 talkers. This corpus was used only to
calculate the average frequency of FP use among all
available talkers and the average frequency of pronounced
punctuation.

=  Finished transcription corpus (NOFP_CORPUS) of
13,537,262 words contains all available dictations and no
FP's. It represents over 200 talkers of mixed gender and
professional status. The corpus contains no FP’s or any other
types of disfluencies such as repetitions, repairs and false
starts. The language in this corpus is also edited for
grammar,

3.2. Derived

= BI_FP_CORPUS is a version of the finished transcriptions
corpus  populated  with FP’s  based on the
BIGRAM_FP_MODEL. (FP count: 2, 294, 909)

= CBFP_CORPUS is derived from the NOFP_CORPUS
conditioned with FP’s via a method that favors clause
boundaries as discussed in section 3.3.3 (FP count: 1, 068,

938)

= RND_FP Corpora
Four corpora were derived from the NOFP_CORPUS by
populating it with FP’s uniformly distributed in four ranges.
The FP distributions correspond to our perception of average
syntactic phrase length and empirically determined average
sentence length and FP frequency. (see Table 1)

RND_FP Corpora - Motivation Range | FP count
RND_FP_CORPUS_3 Theoretical 0-6 3,867,789
8 S e : (short syntactic
: .20 7| phrase length)
RND_FP_CORPUS”S Theoretical 0-9 2,707, 842

it S TR (Jong syntactic

: s ~ | phrase length)
RND FP_CORPUS_10 | Empirical 0-19 1,289,796

PR S (Avg. Sentence
i length)
RND_.FP_CORPUS_15 | Empirical 0-29 873,538
: (Avg. FP
frequency)

Table 1: Uniform distribution based corpora.

3.3. FP conditioning methods

Three distinct methods of corpus conditioning were used in this
study: Bigram method, Random method and Clause Boundary
method. Description of each follows in sections 3.3.1, 3.3.2 and
3.3.3 respectively.
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3.3.1. Bigram method. Here a bigram model is constructed -
prior to conditioning the NOFP_CORPUS with FP's. This model
contains the distribution of FP's obtained from BHT_CORPUS
by using the following formula:

BRI -3 =22
W-1

P(FPICy +1)= S22
W+

Thus, each word in a corpus to be populated with FP's
becomes a potential landing site for a FP and does or does not
receive one based on the probability found in the
BIGRAM_FP_MODEL.

3.3.2. Random method. This method determines FP locations
using uniformly distributed random spacings. It allows to control
the overall frequency of FP’s by controlling the distribution
range.

3.3.3. Clause Boundary method. This is a pseudo-random
method that makes limited use of linguistic knowledge while
populating the NOFP_CORPUS with FP’s. Similar to the
Random method, Clause Boundary method involves distributing
FP’s uniformly in the range between 0-29; however, the insertion
points are shifted towards clause boundaries.

We used the following lexical items as clause boundary
anchors: “period”, “that”, “which”, “if’, “whether”, “who",
“when”, “what”, “where”, “why”, “how”, “because”, “so”,
“however”, “although”, “though.” This is a very limited set of
complementizers which can be expanded with a parser.

Using the word “period” as a clause boundary marker
presents a problem because the talker pronounce punctuation on
average only 20% of the time. Calculating this number is not
straightforward in the absence of corresponding literal and
finished transcription corpora. At our disposal we have 500,000
words of literal transcriptions (UHT_CORPUS) which contains
spoken ‘“periods” but no punctuation. We alse have a 13.5 mil
(NOFP_CORPUS) word corpus that is punctuated but does not
necessarily represent what was said. The average length of a
sentence in the NOFP_CORPUS turns out to be around 10 words.
This average length, when applied to the UHT_CORPUS, gives
us an estimate of about 50,524 sentences. Given that the word
“period” is found in the UHT_CORPUS 10,097 times, we can
roughly estimate that about 20% of sentences are terminated with
the word “period” actually spoken. This means that to insert a FP
al sentence boundaries, the program has to perform the insertion
around the “.” in NOFP_CORPUS prior to eliminating 80% of
punctuation for training the language model.

4. TRIGRAM LANGUAGE MODELS
The following trigram models were built using ECRL’s
Transcriber language modeling tools [6]. Bigram cutoffs were set
at 0 and trigram cutoffs were set at 1.



= NOFP_LM was built with the NOFP_CORPUS with no
FP%.

= BIFP_LM was built with the BI_FP_CORPUS.

= RNDFP_LM_3 was built with the RND_FP_CORPUS_3

= RNDFP_LM_5 was built with the RND_FP_CORPUS_3

= RNDFP_LM_10 was built with the RND_FP_CORPUS_10

= RNDFP_LM_15 was built with the RND_FP_CORPUS_15

. CBFP_LM was built with the CBFP_CORPUS.

5. EVALUATION METHODS
Three different evaluation methods were used in this study:
Recognition accuracy, FP correctness, False FP  measure.
Description of each follows.

5.1. Recognition accuracy
Recognition accuracy was obtained with ECRL’s HResults tool

and 1s summarized in Chart |.

5.2. FP correctness

This metric produces a percentage ratio of correctly recognized
FP’s to the total number of FP's in a given dictation. The results
are summarized in Chart 1.

5.3. False FP measure

This measure is computed by averaging the number of times a
real word or part of a word is recognized as a FP in any given
dictation by a talker across all dictations. For example, the word
“umbilical” may be recognized as “um build”. Chart 2 displays
the results.

6. RESULTS AND DISCUSSION
Speech data comes from 23 talkers selected at random represents
3 to 5 (1-3 mun) dictations for each talker. The talkers are a
random mix of male and female medical doctors and
practitioners.

_ Modeling FPs consistently increases total recognition results,
even for talkers who use no FP’s. All six FP models we built
recorded an increase in recognition accuracy 6.083% to 9.15%.
This is in accord with Pakhomov’s [9] report that LMs
incorporating FPs systematically decrease the models’ perplexity
and increase recognition accuracy.

FP Corrsctness and Recognition Accuracy
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Chart 1: Filled Pause correctness and Recognition accuracy by
Model

Total recognition results for the six FP models do not show
significant statistical difference (see Chart 1). To be able to
gauge the models’ performance in detail, we introduced an
additional measure — FP correctness (see Chart ). Measuring

correctness of FP recognition separately from overall recognition.
accuracy allows us to evaluate the FP component of the language
model. An increased FP representation in a language model may
lead 1o an increased recognition of previously misrecognized
words together with a substitution with FP's of previously
correctly recognized words. The overall recognition accuracy
may nol change, which makes it impossible to detect the
direction of recognition performance. It is important to single out
the FP component in order to evaluate a FP model’s recognition
performance more accurately.

Measuring FP correctness on the six models shows a
considerable difference among the models’ performance.
Naturally, NOFP_LM had 0% FP correctness. FP correctness
appears Lo grow proportionately with the frequency of FP's in the
training corpus. The top four FP models - RNDMFP_LM_3,
RNDMFP_LM_5, RNDMFP_LM_10 and BIFP_LM - do not
exhibit a significant variation, but each appears to perform better
than RNDFP_LM_15 and CBFP_LM. False FP measure,
however, shows that RNDFP_LLM_3 and RNDFP_LM_5 produce
significantly more false FP’s that any other model, which leaves
RNDFP_LM_10 and BIFP_LM as the two optimal models in
terms of the trade-off between overall recognition accuracy, FP
correctness and false FP rate.

False FP rate

Averaged rate
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Chart 2: False FP rate by Model

The frequency of FP’s represented in RNDFP_LM_10
corresponds roughly to FP’s inserted around sentence boundaries.
Our other model, CBFP_LM, intended to reflect linguistic
knowledge about clause boundaries showed only satisfactory
results. Nevertheless, the fact that RNDFP_LM_10 (average
sentence length) is among the best models suggests that the
clause boundary approach could be promising.

We correlated the results for the top two models, BIFP_LM
and RNDFP_LM_10, in terms of FP correctness to actual FP rate
in Chart 3. BIFP_LM( with 2,294,909 FP’s) performs slightly
better, although not significantly, on low FP users (FP rate less
than 10%). For high FP users, RNDFP_LM_10 seemed to yield
slightly better results. That model has 1,289,796 FP’s. For these
two models, the raw number of FP’s in them is not a good
predictor for group performance (low vs high FP users). Thus,
we are concluding that it is not the raw FP frequency but rather a
combination of frequency and pattern of distribution of the FP’s
in the training corpus that correlates with FP recognition
correctness. An intuitive suggestion to populate a corpus with



tewer FP's when tailoring a model to low FP users would not
necessarily yield better results. On the contrary, it might even
hurt the FP correctness rate.
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Chart 3; FP correctness — BIFP_LM vs RNDFP_LM_10 Sorted
Left to Right by FP Rate

BIFP_LM implicitly incorporates linguistic knowledge since
it is based on a bigram model built from a hand-transcribed
corpus that includes FP’s. However, the linguistic knowledge is
not generalized in a scheme that we could explicitly used. Our
‘true’ linguistic model, CBFP_LM, does account for a very
limited set of lexical anchors for clause boundaries. Despite its
mediocre performance, we do think that a balanced patterned
representation of FP’s in the training corpus may eventually yield
better results than the purely random FP insertions.

Interstingly, talkers who do not use FP’s at all or use them
very sparsely have improved recognition accuracy when a FP LM
rather than NOFP LM is used. This side effect may be linked to
fact that introducing FP’s into the training corpus decreases the
model’s perplexity [9] and results in better recognition overall.
At this point, there is not enough data to make any conclusion.
We are planning to investigate this issue further.

7. CONCLUSION

The results of our study indicate that, for speech recognition
purposes, FP distribution can be modeled on bigram probabilities
or with a uniform distribution centered around average sentence
length. We were unable to obtain satisfactory results by
conditioning the training corpus with FP’s based on limited
linguistic knowledge, which we attribute to under representation
of clause boundary rules. To improve the representation one
would have to make use of a parser. We have also shown that
using recognition accuracy as the only measurement (o determine
the goodness of a FP model is not sufficient — other methods such
as FP correctness and false FP detection must be used for
accurate evaluation.
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TOWARD A FORMAL CHARACTERISATION OF DISFLUENCY
PROCESSING
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ABSTRACT

Inherent structural characteristics of speech disfluen-
cies are the prerequisite for the fulfilment of detect-
ing and correcting speech disfluencies in spontaneous
speech. However, a considerable number of recent re-
search works on speech disfluencies focus on the surface
patterns of speech disfluency editing structure, instead
of looking into the relations between editing structure,
the syntactic structure and the prosodic structure of
speech disfluencies. In this paper we present first results
of a new line of research, using feature structures mod-
elled by finite state transducers, on the formal modelling
of speech disfluencies in unplanned speech, in relation
to all three levels of description.

1 INTRODUCTION

Recent studies of speech disfluencies have focussed
mainly on exploring the structural characteristics of
speech disfluencies, with the goal of developing psy-
cholinguistic models. However, another line of attack is
developing: an engineering need to provide robust hu-
man language technology systems, with the ability to
cope with disfluencies in speech recognition, either as
‘noise’ or as functional components of speech, or even
perhaps to introduce elements of disfluency into speech
synthesis in an effort to simulate more natural and in-
telligible speech.

Empirical studies have shown that disfluencies are
not arbitrary but can be characterised systematically.
To describe the internal structure of speech disfluencies
in spontaneous speech, most approaches have adopted
an ‘autonomous template model’, without considering
the relation of disfluency patterns to the syntactic con-
texts or the prosody of the elements concerned, for ex-
ample Levelt [9], Shriberg [13], Heeman & Allen [5]
and Bear & al. [2]. Heeman & Allen and Bear &
al. were concerned with annotation systems for speech
data. They used pattern-based detection of one-word
and two-word speech repetitions, insertions and adja-
cent replacements, also without explicitly using syntac-
tic context.

In this paper we present initial results of research
into developing a more explicit declarative dimension
to disfluency processing, in the expectation that this
will make disfluency processing easier to integrate into
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a modern processing model. After a discussion of the
functionality of disfluency we discuss a family of FST
(finite state transducer) models for disfluency and illus-
trate the application of an FST model to data taken
from a German instruction dialogue corpus [3]. The
results are documented in detail in [14].

2 DISFLUENCY DETECTION
Psycholinguistic interest in disfluency is partly con-
cerned with disfluency production and perception pro-
cesses per se, and partly with the light that dysfunc-
tionalities can cast here, as in other areas of language
performance, on representations and processes of per-
ception and production in general.

Current models of disfluency perception are essen-
tially experimental. Lickley & Bard [11], for example,
carried out gating experiments with the aim of finding
out what kinds of linguistic cue can help human lis-
teners to detect disfluency. Their results indicate that
prosodic cues play a more decisive role in the detection
of disfluency than explicit lexical cues.

Linguistic methodology is essentially based on the
distributional analysis of corpora, whether small and
model-directed, or large. This is the methodology of
the present approach, in which computational models
of patterns in a corpus of unplanned speech [3] are de-
veloped. Distributional linguistic or computational lin-
guistic methods yield results which are in principle neu-
tral with regard to of perception (parsing) and produc-
tion (generation), though perhaps closer to production.
Levelt [9], Tseng [14] and others have shown using large
corpora that the majority of speech repairs, especially of
complex forms, have a regular internal form, for which
a three event model can be formulated: Levelt [9] used
the categories reparandum (stretch of speech to be re-
paired), editing term and alteration for the three events,
and Tseng [14] used the categories problem item, edit-
ing phase and correcied item in a related three event
model. Levelt’s three event model represents the clas-

sical template approach to disfluency structure:
Template: <OrigUtt,EdPhase,Repair>
OrigUtt=<X reparandum,delay >
EdPhase=editterm
Repair=<retrace,alteration,Y >
The original utterance contains the reparandum, the

editing phase consists of editing terms and the repair



contains the alteration, which is the correction of the
reparandum.

However, in Tseng’s data, the majority of complex
speech disfluencies turned out to involve items which
were phrases, and which are thus best characterised
as problem phrase, editing phase and corrected phrase,
where phrase is a unit dominated by a syntactic cat-
egory (such as NP, VP, PP). This distributional re-
sult demonstrated the importance of the linguistic unit
phrase in the production of speech disfluencies, and the
need for explicit phrasal models, in contrast to the ‘au-
tonomous template’ models used in earlier work which
did not take phrasal syntactic structure explicitly into
account,

Approaches to disfluency modelling within the engi-
neering context of human language processing, Heeman
& Allen [5], Bear & al. (2] and Nakatani & Hirschberg
[12], have all used template-based annotation systems
to label their data. However, more complex process-
ing models have been used. Hindle [6] built a procedu-
ral parser to automatically detect and correct syntactic
non-fluencies. Langer [8] set up normalisation rules on
the basis of finite state automata to detect and correct
syntactic speech repairs. Althoff et al. [1] used a finite
state transducer as a word lattice parser in a speech
recognition system to correct disfluencies in compound
words.

In addition to syntactic disfluency modelling, other
linguistic categories have been dealt with. The results
on prosody by Lickley & Bard [11], have already been
noted; Levelt & Cutler [10] also reported that prosodic
marking was present in speech repairs, These results
were confirmed, with different methodology, by Tseng
[14].

From studies such as these, the conclusion can be
drawn that regular patterns for the detection of dis-
fluencies are available, and that these regular patterns
may be suitable for use in disfluency detection mod-
els for cognitive processing, and in disfluency detection
components of human language technology systems.

3 DISFLUENCY PROCESSING
The phase of disfluency detection is logically (not nec-
essarily temporally) followed by the phase of disfluency
processing (it is conceivable that disfluency signals may
trigger hypotheses about possible repairs before the dis-
fluency has completed its editing and alteration phases,
either in the speaker or in the hearer).

3.1 Template models. As already noted, in gen-
eral, disfluency models have been template-based, i.e.
finite structures with slot-filler characteristics, as with
the Levelt three event model. A recent integrative
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template-based approach is developed in Tseng (14], in
which complex disfluencies in noun and prepositional
phrases are formally described.

But while templates express a form of declarative
‘observational adequacy’, it is necessary to understand
their formal properties in order to be able to suggest
plausible processing models. As a first approximation,
it may be suggested that disfluency templates are fi-
nite structures, and therefore by definition trivially de-
scribable by regular grammars (equivalently, finite state
automata), and that correction mechanisms may be im-
plemented as finite state transducers (FSTs).

3.2 FST models. Empirical evidence shows that
although disfluency sequences can be rather short, they
are in principle of arbitrary length, so that a finite tem-
plate model is not helpful, and more general finite state
automata with cyclic structures must be considered.
General cyclic models are clearly over-powerful; there
are narrow performance constraints on length and con-
sequently additional (perhaps statistical) length con-
straints must be considered.

A number of empirically validated FST models have
indeed been proposed, such as Langer’s Disfluency Fil-
ter model Langer [8], Tseng’s Disfluency Repair model
(14], and the Broken Compound model of Althoff & al.
(1996) [1]. The latter has been operationally validated
by in the form of an implementation as a component of
a a speech recognition system.

It can be shown, however, that while standard FST
models are adequate for many disfluency types, more
complex models are also required, which take prosody
and linguistic structure into account (cf. also Lick-
ley & Bard [11] for the detection of disfluency, relying
on prosodic cues rather than explicit lexical cues), and
which go beyond the classical structures of FSTs. This
means that syntactic and prosodic contexts of speech
disfluencies influence the production form as well as the
production length of speech disfluencies. The results of
modelling the distributional data as an FST are shown
in Figure 1; the relation between straightforward lexico-
syntactic information and ‘metalocutionary’ editing is
coded in style of the transition graphs; for the statisti-
cal properties of the FST, see [14]; length heuristics are
not considered here.

3.3 Multitape FSTs. Formally, an FST (finite
state transducer) can be seen as a finite state automa-
ton (FSA) whose transitions are labelled with elements
of a vocabulary of pairs or longer tuples, rather than
the atomic elements of garden variety FSAs. A stan-
dard FSA is said to accept a regular language, while a
standard FST is said to accept a regular relation. The



S == retrace back to the start state
- A == send interrupted words to the transfer state
Nt == build the basic phrasal structure

determines the final form of the corrected phrgsr

Figure 1: Relation between ‘lexico-syntactic’ and ‘met-
alocutionary’ information.

minimally structured (standard) FST accepts a binary
relation, with the left-hand element of each pair in the
relation being regarded as an input symbol and the right
hand pair as an output symbol; binarity is not an es-
sential condition, however. FSTs need not be thought
of only as input/output devices; they can also be inter-
preted as processors for parallel streams of information.
Kaplan & Kay (7] discuss the application of such FSTs
to phonology.

We propose multi-tape FSTs as devices for formalis-
ing the relations between the different structural levels
involved in the detection and processing of disfluencies,
and that the parallel streams of information which are
being processed are essentially the following:
lezico-syntactic information stream: reparandum & alter-
ation;
prosodic information stream: pitch & duration;
metalocutionary information stream: editing term & the
phonetic (and semantic) change operations over reparandum
and alteration.

It has been shown by Carson-Berndsen [4] that FSTs
can be used to interpret (i.e. represent a model for) an
event logic model of the sequential and parallel events
which make up utterances: constraints between par-
alle] streams are mapped to (underspecified) feature
structures, and sequential constraints are mapped to
transitions between states of the automaton. This ap-
proach has been operationally validated in an experi-
mental spoken language recognition svstem. The Lev-
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elt autonomous template model is a useful abstraction
away from details of FST processing, once these de-
tails have been established, and the representation of
the model as a feature structure can be regarded as a
step towards a plausible underlying representation for
the third, metalocutionary information stream.

The sequential constraints which map to phonetic se-
quences in the metalocutionary information stream can
be described in terms of concatenation; the treatment
of parallel constraints between information streams will
be discussed briefly below.

Using a conventional feature structure notation, with
co-indexing of structure, to represent the Levelt tem-
plate as an abstraction from the FST, both phonetic
interpretation and semantic interpretation can be re-

lated to each other systematically:
rdisﬂuency 7
PHON =

SEM =

OrigUtt =

EdPhase =

retrace

Repair =

alteration J

The main semantically relevant constituents are marked
with numbers, and other elements are marked with let-
ters.

The syntactic and prosodic control constraints be-
tween parallel information streams can be represented
by association lines, as shown in Figure 2.

problem phrase @-—@—@-@

pitch * temporal

v
1 : X ! tonal patters
relatioy © relation 1

! relation

corrected phrase — *.? —

Figure 2: Prosody-metalocutionary synchronisation
(association).

But why is semantic intepretation also relevant,
and what might be the interpretation of the operator
Udefaw: and the functional structure? Just as the
phonetic realisation of the reparandum is a fact
which remains, and is not in fact — despite current
terminology — ‘altered’, ‘repaired’, or ‘corrected’, but
simply supplemented by the repair, so the semantic



interpretation of the reparandum is also a fact which,
particularly in the case of a contradiction (sometimes
a ‘Freudian slip’) or in the case of a co-hyponymous
meaning, remains and can be integrated into a com-
plex semantic interpretation of the whole disfluent
expression. Examples from the corpus, where semantic
interpretation of the reparandum is relevant, are:

ist bei mir auf der rech--, ich kann es auch
umdrehen

‘is on my side on the ri—, I can also turn it round’

The likely semantic interpretation of the reparandum
‘rech’, ‘right hand side' is available to the hearer if
needed.

Uhmm jetzt fifigst Du mit dem mit dem an mit den

drei mit den finf Léchern UHMHM mit dem langen
Stiick

‘er now you start with the with the with the three with the
five holes um with the long piece’

The series of abortive repairs yields a set of semantic
interpretation hypotheses: is ‘the long piece’ the same
object as the ‘five hole’ object?

So disfluencies are not just noise. The operator
Udefautt 18 default unification, essentially overriding of
the meaning of the reparandum by the meaning of the
repair (often, but not always, leading to identity) within
the lexico-syntactic information stream. The metalocu-
tionary function is qualification of the result of default
unification by the the operator from the metalocution-
ary information stream, for instance by indicating a fo-
cus shift.

4 CONCLUSION
On the basis of distributional data collated and for-
malised in [14], it has been shown that disfluency struc-
tures can be represented with formal means which are
already in use in computational phonology its applica-
tions to the human language technologies.

We suggest that in work in this area, well-understood
representation systems and procedures for manipulating
them should be used in order to facilitate the integra-
tion of ‘exotic’ facts about speech such as disfluencies
into representations of the more familiar parts of the
linguistic universe, in particular to syntax and prosody.
With a strategy such as this, previous usefully illustra-
tive, but ad hoc notations and diagramme styles can be
superseded by formalisms rather than notations, which
promise both greater generality and precision, and the
hope of explanatory power within the context of lan-
puage representation and processing as a whole.

We believe we have shown the feasibility of such a pro-
gramine in the present paper; present work marks only a
beginning, however, and leaves many gaps, such as sym-
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bolic and numerical length constraints, exact mappings
to phonetic correlates, or fine details of the semantic
interpretation operations, for future research.
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ABSTRACT

Practical speech recognizers must accept normal conversa-
tional voice input (including hesitations). However, most
automatic speech recognition work has concentrated on
read speech, whose acoustic aspects differ significantly from
speech found in actual dialogues. Hesitations, of which
the most frequent are filled pauses, are common in natural
speech, yet few recognition systems handle such disfluen-
cies with any degree of success. Filled pauses {e.g., “uhh,”
“umm”), unlike most silent pauses, resemble phones which
form words in continuous speech. The work reported here
further develops techniques to allow automatic identifica-
tion of filled pauses. Such identification, if reliable, would
reduce potential confusion in determining an estimated tex-
tual output for an utterance. The Switchboard database
(of natural telephone conversations) provided data for the
study. While most automatic recognition methods rely en-
tirely on spectral envelope (e.g., low-order cepstral coeffi-
cients), identifying filled pauses requires using a combina-
tion of spectra, fundamental frequency and duration. High
precision and a low false alarm rate for filled pauses are
feasible without excessive computation.

1. INTRODUCTION

We study here the acoustical phenomena of disfluencies in
spoutaneous speech. In particular, we model filled pauses,
how they manifest themselves in spontaneous speech, and
how they may be automatically located, for the purposes of
assisting automatic speech recognition (ASR). Filled pauses
are sounds usually resembling individual vowels, which are
inserted into speech typically when speakers think about
what to say next. The alternative of silent pauses also oc-
curs in spontaneous conversations, but filled pauses serve
the additional purpose of ‘holding the floor’ (i.e., hindering
interruption by listeners), while silent pauses invite inter-
ruption. Filled pauses are usually centrally-articulated vow-
els (i.e., those requiring minimal articulatory effort, which
frees the speaker to think of other things). Thus, in English,
the most common form is ‘ub’, which greatly resembles the
schwa vowel. Alternative forms, such as ‘er’ and ‘um’ (the
latter being a sequence of two sounds), occur but much less
often.

In fluently read speech, speakers tend to pause regularly
at locations which are logical from a syntactic viewpoint
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(e.g., at sentence and major phrase boundaries). Further-
more, speakers rarely use filled pauses in read speech, ex-
cept if they lose their place in the text. In spontareous
speech, on the other hand, hesitation pauses and restarts
are widespread, and these phenomena have large effects on
many aspects of the speech signal. While there are other
differences between read and spontaneous speech, disfluen-
cles are a major cause of the reduced success of ASR on
spontaneous speech. Other factors rendering spontaneous
speech harder to recognize include: a more variable (and
often faster) speaking rate, greater use of short words and
function words, and a tendency towards more coarticulation
and generally less precise articulation.

A better model of filled pauses should find application in
ASR. Most recognizers ignore the effects of disfluencies. De-
spite the appropriate use of stochastic models in ASR, many
acoustical variations are poorly accounted for in the cur-
rent frame-based hidden Markov model {(HMM) approaches
to ASR. For example, timing patterns, and duration gen-
erally, are not handled well in current systems. Some low-
level phonetic duration aspects are directly encoded as geo-
metric probability distributions (pdfs) in phonemic HMMs.
In word-based HMMs, the durational effects of word-level
stress can also be so encoded. However, larger durational
variations, e.g., due to speaking rate changes and sentence-
level stress, are mostly ignored in HMM systems, which
can hinder performance. Continuous-speech recognizers are
largely based on phonemic HMMs, whose state transition
pdfs are biased toward average phone durations. When dis-
fluencies cause much slower speech, the frame independence
assumption of HMMs leads to spurious phoneme insertions.
Thus, a better knowledge of how disfluencies affect spon-
taneous speech should be of assistance in designing future
ASR that may handle conversational speech. While current,

recognizers accept different types of user speech, general

spontaneous speech has not been recognized well so far.

A large database of spontaneous speech (the Switchboard
database) was analyzed in terms of spectral, durational,
and fundamental frequency measurements. For recognition
purposes, a simple spectral analyzer was developed to dis-
tinguish filled pause sounds from other speech sounds. A
primary application of this study lies in improving the per-
formance of ASR, for applications that must accept an input



of spontaneous speech (t-g., verbal conversations with coun-
puter databases). For such purposes, we wish to eliminate
the filled pause from the mmput sound sequence, so that the
recognizer will operate on only a sound sequence of the de-
sired words. In addition, information about where a speaker
has inserted a filled pause could also be useful in deciding
among alternative textual interpretations (e.g., among an
N-best list of hypotheses).

Filled pauses can increase difficulties for ASR, which usu-
ally makes no provision for unpredictable sounds that re-
semble speecl. In virtually all current recognition systems,
filled pauses are interpreted as vowels and thus as parts of
word hypotheses for the textual component of the recog-
nizer. They can also cause difficulties in having a proper
interpretation in the language-model component (since the
language model is often trained only on fluent text, of
which there is much more available). Reliable transcrip-
tions of spontaneous speech (i.e., ones faithfully describ-
ing all acoustic events) are rare and/or small in size (e.g.,
such transcriptions often describe a cleaned-up version of
the spontaneous speech, omitting the disfluencies). Even
the transcribed Switchboard database is not fully accurate
In its transcriptions.

Our previous work reported on hesitation phenomena
in spontaneous speech in general, and focussed on pauses
(both filled and unfilled) [7]. The current paper discusses
the task of recognizing filled pauses. We present here a
more comprehensive analysis of filled pauses than has usu-
ally been found in the literature, including examination of
the duration and pitch of the words surrounding the pauses
in spontaneous speech. In addition, we give intuitive ex-
planations for the phenomena, based on a theory of using
prosodics to cue semantic information to a listener.

2. PREVIOUS STUDIES ON DISFLUENCIES

Acoustical analyses of disfluencies with a view toward
speech recognizers have only been done in the last few years.
Earlier work dwelled often on the length of the word-repeat
sequences (and occasionally on pause durations). Most of
the work on disfluencies that has been reported in the liter-
ature has treated the phenomena in a general qualitative or
overly simple quantitative fashion. For example, the linguis-
tics literature describes where such disfluencies are likely to
be found in broad terms of syntax and semantics, but gives
little quantitative detail. The cognitive psychology litera-
ture gives simple statistics regarding disfiuencies, in terms
of frequency of occurrence. As far as we know, few reports
have linked the intonational cues of both FO (fundamental
frequency) and duration to disfluencies in a way that could
be useful to automatic speech recognition. Indeed, very few
recognition systems use intonational cues, especially F0, at
all. In this paper, we examine how these latter parameters
could be exploited directly.

In examining a corpus of speech produced by people spon-
taneously describing colored images, Levelt [1] found in 51%
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of disfluency restarts that the speaker halted immediately
after the word to be corrected, while 31% of the time the
speaker stopped one or more words after the Incorrect word
(e-g., “...froni green left to pink - er, from blue left to pink”),
How far speakers ‘back up’ has been the subject of recent
study [3].

Levelt found that the filled pause “uh” occurred in 30% of
restarts. He noted that uttering such a neutral sound (i.e.,
filling the pause) may help the speaker prevent an mterrup-
tion by another speaker. The implication is that listeners
often interpret unfilled pauses (i.e., silence) as a cue to start
speaking, but they tend not to interrupt a filled pause. Lev-
elt noted that restarts can be either marked prosodically by
changes in intonation (in the speech before and after the
pause) or unmarked prosodically (i.e., no change in into-
nation). Cases of simple mispronunciation tended to be
unmarked, whereas lexical changes (replacement of a word
with a different sense) were marked. While Levelt’s work is
of interest here, it gave few quantitative details other than
simple statistics of occurrence: in particular, FO and dura-
tional distributions were rarely mentioned.

Ore major study of disfluencies in 1994 examined their
detection in the ATIS corpus [6]. The authors tried to dis-
criminate different types of word boundaries: fluent from
disfluent, using a wide range of features {e.z.. pause du-
rations, energy, Fo, accent, and parts-of-speech). Using
350 utterances, each having at least one disfluency, their
decision-tree algorithm found 192 of 233 repair sites, while
having 19 false alarms.

Also recently, a research group at SRI tried to automat-
ically locate filled pauses. It appears that their work has
not examined direct filled-pause detection from speech, but
rather by augmenting more general ASR methods. For ex-
ample, in 1997 using Switchboard conversations, they re-
ported a 92% recall rate (percentage of occurrences of filled
pauses detected from among all the actual pauses) and a
13% false alarm rate (percentage of words incorrectly la-
beled as filled pauses) [2]. As they noted, their experiments
were not a fair test of filled pause detection in the sense
that, in addition to the mmput speech signal, they assumed
knowledge of the correct word boundaries (which an ASR
system would not have a priori). Proper detection of filled
pauses in excess of 90% would certainly be useful in a prac-
tical recognizer, although incorrectly signaling every sev-
enth word as a filled pause limits the usefulness of their
prosody-only approach (the 1997 work did not exploit spec-
tral detail). Their 1998 work [4] examined detection of filled
pauses (among other disfluencies) through the use of a more
general ASR system, including relevant language models.

Thus previous attempts at filled-pause detection seem to
have significant constraints on their functioning (e.g., re-
quiring a priori word boundaries or large-scale ASR sys-
tems). It is our intent in the current work to examine
how a simple filled-pause detector might work, without a
full-scale ASR system, i.c.. without complex acoustic mod-



els (e.g., thousands of triphone Gaussian-mixture hidden
Markov models) and without large-scale language models
(e.g., trigram statistics with vocabularies of thousands of
words). In the case of practical ASR, such calculation may
be needed, but we wished here to see how accurate a simple
processor could be in finding and delimiting filled pauses,
The SRI work [2] [3] seemed to require additional calcula.
tions beyond most ASR systems (e.g., FO) and/or assumed
a priori linguistic knowledge (other than directly furnished
by the speech signal). We indeed use F{ as an important pa-
rameter in filled-pause detection, but exploit no database-
dependent language models nor require complex acoustic
modeling. Our analysis is based strictly on the speech input,
and does not assume access to the correct text (as would
be the case in an actual recognition situation), nor even on
language models (which can vary widely, depending on the
application, and on the subject of current conversation).

The importance of identifying filled pauses has been
noted in recent ASR work. For example, to create an effi-
cient language model for human-machine dialogues, Reichel
et al [5] manually remove all “words Tepresenting noise in
the input, such as ‘uh’ and ‘um.” Another very recent work
noted that filled pauses tend to occur very often in user re-
quests over the telephone (e.g., 7189 such pauses in 10600
responses to “How may I help vou?") [8]. Direct accounting
for such disfluencies assisted in performance improvements
in this practical ASR system.

3. SPEECH DATABASE

We examined disfluencies in a standard speech database
(used by several speech recognition research groups in North
America), called Switchboard. It contains about thirty
hours of actual conversations (each about five minutes in
duration), over normal switched telephone lines, each one
between two strangers conversing on an assigned topic. As
such, it is fairly natural spontaneous speech (although less
so than in the CallHome database of conversations among
friends and family), and thus has many disfluencies. It
differs significantly from other databases: unlike the Wall
Street Journal database, it is telephone-based and sponta-
neous; unlike the ATIS database, it has real conversations;
unlike both, it has yielded relatively poor recognition rates
so far (e.g., less than 70% word accuracy). While CallHome
may present even more recognition difficulties, Switchboard
is more realistic for applications since it involves strangers
talking to each other, as would be the case in many com-
mercial dialogue requests. While one could argue that ATIS
may be more appropriate in that it simulated travel agent
requests, Switchboard used the telephone network (which
most applications would do) and its dialog interaction was
much more real and rapid than the Wizard-of-Oz simulation
for ATIS.

4. ANALYSIS METHOD

The filled pause detection algorithm was developed by anal-
vsis of many utterances from different speakers, in the train-
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ing set of utterances. A separate set of utterances (not ex-
amined during training) were used to test the recognition
algorithm, with speakers who were different from those in
the training set (and chosen at random from the database).
All recognition phases of the task used automatic spectral,
F0 and duration estimation, in conjunction with a simple
expert-system recognition. Spectral analysis involved exam-
ining each 10-msec frame of speech data, using a Hamming
window of 25.6 msec, to obtain a DFT amplitude spec-
trum. This spectrum was then automatically scanned to
extract the lighest-energy harmonics and broad spectral
peaks (roughly, but not exactly, the major formants). F(
estimates were provided by a simple analysis of these nar-
rowband spectra, searching for harmonics (and assuming a
continuity of F0 across successive frames).

Silent pauses were casily located using a silence energy
threshold, relative to an estimated level of background noise
(which, in practice, was not high in most Switchboard con-
versations). However, silent periods of short duration (e.g.,
those typically less than 120 ms) can be actually part of
intended speech (i.e., stop closures). Since we were not at-
tempting full ASR in these experiments, we did not concern
ourselves with such otherwise Important issues, but simply
viewed silences of greater than 120 ms as effective pauses
(and hence ignored shorter silences, even though some of
these actually were brief pauses, rather than stop closures —
to discriminate these, one would have to examine phonetic
context and the ensuing spectra in more detail, for possible
stop burst releases and formant transitions into the next
vowel).

Instead, the main focus of this research concerned filled
pauses. Their presence was estimated and located as long,
steady vowels (exceeding 120 msec) with low FO (relative
to the calculated average F0 for each speaker during a con-
versation) and a neutral spectral pattern (again, compared
against an average vowel spectral pattern computed over
the conversation). Specifically, strong, periodic (i.e., vowel-
like) sounds whose spectra closely resembled central vowels
were the only candidates considered, although those with
an ensuing long nasal were candidates for the rarer ‘umm’
filled pause. In comparing with the ATIS-database filled
pauses [7], we relaxed the FO restriction to be very low,
since Switchboard filled pauses include many examples with
rising FO (especially at turn-taking points, where one con-
versant paused and the other was not ready to take over the
conversation). The duration of such phonetic events had to
be 120 ms or more to be considered as a filled pause. Exam-
ples of shorter cases were mostly simple vowels as parts of
words. A significant minority of filled pauses were preceded
and/or followed by silent pauses. The presence then of a
steady central vowel, preceded and/or followed by a silence
of more than 120 ms was a very reliable indicator of a filled
pause.

Since full ASR was not necessary here, we did not use
more complex spectral analysis, as found in other systems.



In particylar, the mel-based cepstrum and determination
of mixtures of Gaussian probabilities were not needed. To
distinguish filled pauses from the rest of speech, a simpler
spectral analysis can suffice. We need only enough spectral
detail to see whether the sound is fairly steady over 100 ms
or so and resembles a neutral vowel. More precise specifi-
cation is of course needed for other ASR tasks, but given
the variability of speakers and recording conditions, we de-
cided that simple analysis would be best for this preliminary
filled-pause detector.

Such simple spectral analysis does not require formant
tracking (which can be very difficult in general). It can
nonetheless allow more precision in specific spectral match-
ing than HMMs, without requiring the more complex meth-
ods used in many recognizers (e.g., with cepstral coeffi-
cients).

5. ACOUSTICAL ANALYSIS RESULTS

In the many utterances examined. each conversation (av-
erage of 5 minutes) averaged about a dozen or more filled
pauses. Filled pauses tended to occur: 1) often at the start
of a conversation turn, 2) often within the first three words
of a clause (e.g., right after ‘I, you. and, but, so...."), 3) at
major syntactic boundaries (e.g., after a clause), 4) right af-
ter ‘the’ or ‘a’ or ‘is’, 4) less often at the end of a turn (in this
last case, the filled pause acted as a cue for the other person
to speak, unlike the hold-the-floor role the filled pause had
elsewhere).

Average durations for filled pauses were: 1) at the start
of a speaker turn: a median and mean of about 220 ms
(typical range: 90-500 ms), 2) later in a turn: a median
and mean of about 170 ms (range: 40-400 ms), and 3) with
no adjacent silence: a median and mean of 150 ms. Thus
the most difficult filled pauses to recognize are the third
case, where no silence is adjacent to the filled pause, and
the only cue is a long schwa-like sound (albeit shorter than
silent-adjacent filled pauses).

Possible confusions between a filled pause and an in-
tended speech sound include the following: 1) the word ‘a’
(at usually 40-80 ms, this article is much shorter than vir-
tually all filled pauses), 2) word-initial schwa (e.g., ‘about,’
‘announce’ - here too, non-filled-pause cases are typically
much shorter), 3) word-final schwa (much rarer in English
words), 4) ‘uh-hub’ (typical background agreement response
of a listener). To distinguish between a filled pause and ‘uh-
huh: the latter never has a pause between syllables, it al-
most always occurs right after another talker’s speech, and
has a total duration of 140-360 ms (much longer than filled
pauses).

Filled pause frequency was highly speaker-dependent
(i.e., some speakers are much more disfluent than others).
In terms of filled pauses per 100 words of speech in Switch-
board, the most fluent speakers used only two, while some
used fifteen. The mean and median were 6-7 filled pauses
per 100 words. In comparison with the less-spontaneous
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ATIS data, the filled pauses were shorter and had more
variable FO patterns.

6. CONCLUSION

This paper has detailed acoustic phenomena of filled pauses
in a multi-speaker database of spontaneous, continuous
speech, and has given intuitive explanations for them, based
on a theory of using prosodics to cue semantic information
to a listener. It has also given an approach for automatic
location of filled pauses, capable of high precision and low
false alarm rates. Based on an analysis of the acoustic data
alone (no language modeling), such location is feasible, and
can be of assistance in the context of an automatic speech
recognizer. The filled pauses can be distinguished acousti-
cally, via an analysis of duration, FO and spectral detail in
the neighborhood of a pause.
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ABSTRACT

One of the characteristics of spontaneous speech is the abun-
dance of speech repairs, in which speakers go back and re-
peat or change something they have just said. In other work
[7], we proposed a language model for speech recognition
that can detect and correct speech repairs in English. In this
Paper, we show that this model works equally as well on g
Japanese corpus of Spontaneous speech. The structure of the
model captures the language independent aspect of speech
repairs, while machine training techniques on an annotated
corpus learn the language dependent aspects,

1. INTRODUCTION

One of the biggest challenges in recognizing and under-
standing spontaneous speech is dealing with speech repairs,
where speakers go back and change or repeat something
they have just said. The following illustrates an English
speech repair from the Traing corpus [6], a corpus of human-
human task-oriented spoken dialogs.

Example 1
we’ll pick up  a tank of \_EE/ the tanker of oranges

reparandum ip €1 alteration

In this example, the speaker replaced “a tank of” by “the
tanker of”. The speech that was replaced is referred to as
the reparandum of the repair, and the speech that replaces it
is referred to as the alteration. The end of the reparandum is
the interruption point [10] and is sometimes followed by an
editing term, such as “uh”, “ler’s see”, “okay”, and “well"”.
In order to understand a speaker’s turn, speech repairs need
to be detected and the extent of theijr reparandum and editing
terms determined, which we refer to as correcting the repair.
Sometimes, editing terms occur by themselves in the
middle of an utterance, as illustrated in the following,

Example 2
we need to  um manage to get the bananas to Dansville
N~
ip €

Following Levelt [10], we view such phenomena as speech
repairs, and refer to them as abridged repairs. Such repairs
also need to be detected and corrected, which might not be
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trivial (cf. [2]). Words, such as “well” and “okay”. can be
ambiguous as to whether they are part of an editing term or
are part of the sentential content. Furthermore, there might
be word correspondences across the editing term that are
Just spurious. In the above example, the correspondences
between “need 10 and “manage (0” should not be taken as
evidence that the reparandum is “need 10",

Speech repairs are not limited to English. The follow-
ing is a Japanese speech repair, with its English translation
written underneath [13].

Example 3
hotelu kara shitsureishmashita kaigijyo kara
hotel from I am sorry conference center from
N— ———
reparandum et alteration

Examples of editing terms in Japanese are “eh”, “ah” and
“shitsureishmashita’. They also exhibit the same phenom-
ena, such as word correspondences between the reparandum
and alteration.

Speech repairs are a natural part of spontaneous speech
and the extra words that they add in constitutes 10% of the
words in the Trains corpus of English human-human task-
oriented dialogues, with a Tepair occurring in approximately
54% of all speaker turns with at least ten words [7]. Lis-
teners are able to process speech repairs without conscious
effort [14), and very quickly after they occur [11]. This
suggests that hearers process speech repairs early on in pro-
cessing, possibly using local information.

Automatic detection and correction of speech repairs is
difficult since it requires combining multiple sources of evi-
dence [2]. This resolution must be done early on, most prob-
ably during speech recognition, due 1o the interactions that
exist between speech repairs and predicting the next word
[7]. In fact, we feel that the local context contains sufficient
evidence to detect and correct most repairs.

In other work [8, 7], we proposed a model for detect-
ing and correcting English speech repairs. Our model for
resolving speech repairs results from redefining the speech
recognition problem so that i not only hypothesizes the
word sequence, but also hypothesizes the existence of speech
repairs and their corrections, intonational phrasing, discourse
markers and shallow Syntactic analysis (part-of-speech tags).
The repair processing model itself is not language specific;
rather, it provides an architecture for accounting for lan-



There tends to be word correspondences between the
reparandum and alteration [10, 2]. The word correspon-
dence might be a word repetition or a word replacement,
but with the same part-of-speech (POS) tag. Word cor-
respondences tend to be cross-serial [7].

The alteration will be a fluent continuation of the words
before the reparandum [9].

The reparandum onset can depend on the syntactic con-
text [10].

Speech repair (and editing term) occurrence can depend
on the syntactic context.

Pauses might co-occur with the interruption point of
speech repairs as well as at the end of the editing term.

Not all repairs have an editing term, and editing terms
can consist of more than one word or phrase.

Words that can be used as editing terms can be ambigu-
ous as to whether they are being used in a repair or not.

Table 1: Speech Repair Assumptions

guage usage. Table 1 gives some of the aspects of speech
repairs that can be captured in the model.

Within the above framework, the model is parameter-
ized by deriving probability estimates from training data.
These probability estimates capture the language and do-
main specific information needed to instantiate the model.
These parameters include how likely certain word sequences
are to be used as editing terms, what syntactic contexts re-
pairs are likely to occur in (both the interruption point and
the reparandum onset), and what constituents syntactic well-
formedness. The lack of syntactic well-formedness can dis-
courage a fluent interpretation for a stretch of speech while
the presence of syntactic well-formedness is used in finding
fluent continuations between the words before the reparan-
dum onset and the alteration. The parameters also indi-
cate what constituents likely correspondences between the
reparandum and alteration.

In this paper, we demonstrate that our repair process-
ing medel is not language specific by training and testing it
on a corpus of Japanese task-oriented dialogues. The train-
ing data is used to tune the parameters of the model, such as
which Japanese words tend to used as editing terms (such as
“ah"), and the syntactic contexts in which they tend to occur,
In the rest of the paper, we first discuss the Japanese corpus.
We then briefly describe our statistical language model, re-
port the results of detecting and correcting the speech re-
pairs, and compare these results with others that have been

reported in the literature. We then conclude with a discus-
sion of the implication of the results.

2. CORPUS

The Japanese corpus is a collection of human-human task-
oriented dialogs [12]. The ATR Japanese Morphological
analysis manual [16] was used for tokenization and for as-
signing part-of-speech tags. The tagset consisted of 30 POS
tags. There was 304,000 words of data in the corpus and 659
speech repairs (excluding abridged repairs). Speech repairs
were annotated using a scheme that captures the extent of
the reparandum and editing terms [13]. However, only non-
abridged repairs were considered in this experiment. Into-
national phrases were not annotated, nor was the amount of
silence between words available.

3. MODEL

Our statistical language model associates seven variables
for each word that is postulated.! Five of these variables
are for detecting and correcting speech repairs.

E; indicates if word ¢ starts, continues or ends an editing
term.

R; indicates if word 7 is the interruption point of a speech
repair.  For repairs with editing terms, the repair is
marked on the end of the editing term.

0; indicates which previous word is the reparandum on-
set (only applicable if R; indicates a repair).

L; indicates which word in the reparandum corresponds
(or licenses) the current word (only applicable if pro-
cessing a repair).

C; indicates the type of correspondence between word 7
and its licensor. This can be a word match, a replace-
ment by a word of the same POS tag, or other.

F; indicates the POS tag for the current word.
W; indicates the word identity for the current word.

Using the above seven variables, the speech recogni-
tion problem is defined as follows, where the recognizer
searches for the best sequence of words, POS tags, and speech
repairs given the acoustic signal.

WPCLORE
= argmax_Pr(WPCLORE|A)
WPCLORE
Pr(A|WPCLORE) Pr(W PCLORE)
= arg max
WPCLORE Pr(A)
= argmax Pr(A|WPCLORE)Pr(WPCLORE)
WPCLORE

'Our full mode! (7] also includes a variable for intonational phrase
boundaries and a variable to account for silences between words.



The second term in the last equation above is the new lan-
guage model, and assigns a probability to how likely the
sequence ol words, POS tags, and speech repair markings
are. We rewrite this term as follows,

Pr(WPCLORE)

-
= H Pr(E;|Wy,sa Pria Clia Lyia O Ry Eyia)
]

Pr(R;|Wy 4 PiaCria Ly,ia Oria Ryia Evs)
Pr(0;|Wy 9Py i1Crin L13aOvia Ry By i)
Pr{L;|Wy4 P1i1C1iaL1i101iRy: Ey ;)
Pr(Ci|Wyia Piia Cria L1010 Ry B )
Pr(P; W4 PLiaC1iL1;01; R Ey)
Pr(I'Vi,H'Fl,z‘-] Pl,icl,iLi‘zol.iR}.-iEl,r’)

From the above, we can see that the language model is made
up of seven probability distributions, one corresponding to
each variable that needs to be hypothesized for each word.
Each probability distribution depends on the hypothesized
values of the preceding variables. For instance, after the
editing term variable is hypothesized for the current word,
we use its value as part of the context for hypothesizing the
value of the repair variable. In searching for the best inter-
pretation of the variables, we follow the technique proposed
by Chow and Schwartz [3] and only keep a small number of
alternative paths by pruning the low probability paths after
processing each word.

‘We use a decision tree learning algorithm to estimate the
probabilities. The decision tree algorithm learns a hierarchi-
cal set of equivalence classes of the context and uses inter-
polated estimation to compute the probabilities [1]. The set
of questions that we allow the decision tree algorithm to ask
takes into account our assumptions about speech repairs that
we give in Table 1. For instance, the context for hypothe-
sizing the reparandum onset, (J;, allows the decision tree to
make generalizations about the syntactic contexts in which
the reparandum might start. By encoding these assump-
tions into the questions, the decision tree should be able to
make betler generalizations about the nature of speech re-
pairs, thus giving better probability estimates, especially for
limited amounts of training data.

We also do hierarchical clustering of the words and POS
tags [5] that groups together similarly behaving words and
tags. This results in a binary encoding for each word and
POS tag. The decision tree can then ask questions about the
words or POS tags in the context by asking questions about
the bit encodings.

4. RESULTS

To make the best use of our limited data. we used a six-
fold cross-validation procedure: each sixth of the data was
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Japanese| Trains: Trains:
Resuits |Comparable | Full Model
Detection recall 78.6 64.9 68.2
precision 74.9 80.0 81.0
error rate 47.8 513 47.8
Correction recall 71.8 58.8 62.3
precision 68.4 72.5 74.0
error rate 61.5 63.6 59.6

Table 2: Results on Japanese and English Corpora

tested using a model built from the remaining data. We also
changed all word fragments into the token <fragment>
with POS tag FRAGMENT. Changes in speaker are marked
in the word transcription with the special token <turn>.
Since current speech recognition rates for spontaneous speech
are quite low, we restricted our algorithm to only consider
the hand-annotated word transcriptions.

Table 2 gives the results of running the model on the
Japanese corpus and on the English Trains corpus. The re-
sults for the Japanese corpus are given in the second col-
umn. We achieved a detection recall rate of 78.6% with a
precision of 74.9%, and a correction recall rate of 71.8%
with a precision of 68.4%.* To provide a fair compari-
son with the Trains corpus, we run a version of our model
on this corpus that models the detection and correction of
speech repairs but does not model intonational phrasing nor
use silence information. Unfortunately, we were unable to
remove the modeling of abridged repairs, which were not
used in the Japanese corpus. The results of this mode] are
given in column three, with the results for the modification
repairs and fresh starts combined. As can be seen from the
error rates, the Japanese results are comparable to the results
on the Trains corpus. The fourth column adds silence infor-
mation and intonational modeling to the Trains results. The
results in this column give an indication of how much the
Japanese results can improve, Furthermore, as other acous-
tic cues are added into the model, the results should further
improve.

5. COMPARISON

This work expands on previous work on detecting and cor-
recting speech repairs in Japanese. Sagawa et al.[15] pro-
posed a parser-first approach for detecting and correcting
repairs (c.f. [4]). If the parser failed on an utterance. the

2A repair is counted ar correctly detected if the interruption point is
correctly identified along with the type of repair. A repair is counted as
properly corrected if the interruption point is correctly identified. and its
editing terms and reparanda are correctly found. In the case of overlapping
repairs, as long as the total extent of the reparanda are identified, all repairs
are counted as correct.



utterance would be passed 10 a translator that would search
for a repair and correct it, and pass the resolved utterance
back to the parser. To deal with utterances that contain more
than one repair, this process was repeated until the utterance
could be parsed. The translator has a set of rules that it tries
to apply for detecting and correcting speech repairs. As we
argued elsewhere [7], not all speech repairs are syntactically
ill-formed (at least in English); rather, there are a number of
sources of evidence that need to be combined in order to de-
cide if a repair has occurred. Furthermore, modeling repairs
1s strongly intertwined with speech recognition. Hence, re-
solving them after speech recognition will make it more dif-
ficult to correctly recognize the speech.

Kikui and Morimoto [9] proposed a method for correct-
ing Japanese speech repairs. They start with the word tran-
scription, its POS analysis, the utterance boundaries, and the
speech repair interruption points. Their method combines
both looking for strong similarities between the reparandum
and alteration, as well as finding a syntactically well-formed
continuation from the speech before the reparandum to the
alteration (in terms of allowed POS adjacency). With this
method they are able to correct 94% of all of the speech re-
pairs. However, information about the proposed corrections
is strong evidence about whether a repair actually occurred
[8]. Hence, speech repair detection and correction should
not be separated.

6. CONCLUSION

In this paper. we have shown that the model that we pro-
posed in previous work, also works on a Japanese corpus.
Only general characteristics of speech repairs are hard-coded
into the model, such as being able to have correspondences
between their reparanda and alterations, having reparandum
onsets that have certain syntactic regularities, having a lack
of syntactic well-formedness across the interruption point,
and having editing terms. All other parameters are learned
from the corpus. We find that this algorithm is indeed able to
model Japanese speech repairs, and is able to detect and cor-
rect 71.8% of the repairs with a precision of 68.4%. These
results are comparable to results obtained on the English
Trains corpus.
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ABSTRACT

This paper presents a grammatical and processing framework for
handling speech repairs. The proposed framework has proved
adequate for a collection of human-human task-oriented dialogs.
both in a full manual examination of the corpus, and in tests with
a parser capable of parsing some of that corpus. This parser can
also correct a pre-parser speech repair identifier producing
increases in recall varying from 2% to 4.8%.

1. MOTIVATION
In the discussion below, we adopt the convention of using the
term speech repair to include hesitations. Many speech repairs
have associated editing terms (/ mean, um), and abridged repairs
[6]) consist solely of editing terms (i.e. they have no corrections).

Speech-based dialog systems often attempt to identify
speech repairs in the speech recognition phase (prior to parsing)
so that speech repairs will not disrupt the speech recognizer's
language model ({6],[7],[8]). In such a system, it is then tempting
to remove conjectured reparanda (corrected material) and editing
terms from the input prior to further processing. There are two
issues thal need to be addressed in such an approach, one
pertaining to dialog interpretation and the other to parsing. First,
how can the dialog manager of the system access and interpret
these editing terms and reparanda, if the need arises? Such a
situation could occur in an example such as take the oranges 1o
Elmira, um, I mean, take them to Corning; here reference
resolution requires processing of the reparandum. Also, the
system might want to access the reparanda and editing terms to
see the speaker's original thoughts and any hesitations, for
instance as indicators of uncertainty. For more details see [3].
Second, if speech repair identification occurs before parsing,
should the parser be made aware of reparanda?

We believe that the answer to the second question should be
yes. The parser has more information about the possible
grammatical structures in the input than a pre-parser repair
identifier and can possibly correct errors made by it. This point
applies not only to each speaker's contributions in isolation but
also to the interactions between contributions. An example is
provided by utterances 11-15 of TRAINS dialog [5] d91-6.1
(Figure 1) where the interleaving of speaker contributions can
help identify repairs.

(To fit the example on one line, we have abbreviated the
initial part of «’s contribution, move the engine at Avon engine E
to, to move engine E 10.) Repair detection and correction
typically act on only one speaker’s stream of words at a time. 1f
for some reason, the corrections £ one, en-, and engine E one
were not recognized by a pre-parser repair detector, the parser’s
knowledge of s5’s correction might help find these repairs. If the
dialog parser treats the words of the two speakers as a single
stream of data (as ours in fact does), s”s correction appears right
after the phrase it corrects.

This paper presents a framework that addresses both sorts of
issues above. The framework allows for complete phrase
structure representations of utterances containing repairs without
removing reparanda from the input. Thus structural analyses of
repairs are made available to the dialog manager. The idea is o
creale two or more interpretations for each repair; one
interpretation for the corrected utterance and one possibly partial
interpretation for what the speaker started (o say. Editing terms
are considered separate utterances embedded in the main
utterance.

The focus of this paper is on the second issue, i.e., testing
the ability of a parser to improve pre-parser speech repair
identification. We show that by applying the parser's knowledge
of grammar and of the syntactic structure of the input to the
hypotheses made by the pre-parser repair identifier, we can
improve upon those hypotheses.

2. HOW THE PARSER ACCOMODATES REPAIRS
The parser deals with reparanda and editing terms via metarules.
The term metarule is used because these rules act not on words
bul on grammatical structures. Consider the editing term
metarule. When an editing term is seen', the metarule extends
copies of all phrase hypotheses ending at the editing term over
that term to allow utterances to be formed around it. This
metarule (and our other metarules) can be viewed declaratively as
specifying allowable patterns of phrase breakage and interleaving
[2). This notion is different from the traditional linguistic
conception of metarules as rules for generating new PSRs from
given PSRs.’ Procedurally, we can think of metarules as creating
new (discontinuous) pathways for the parser’s traversal of the
mput, and this view is readily implementable.

The repair metarule, when given the hypothetical start and
end of a reparandum (say from a language model such as [6]),

U: move engine E to E one
S engine E one

en- engine E one to Bath
okay

Figure I: Unterances 11-15 of TRAINS dialog d91-6.1
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extends copies of phrase hypotheses over the reparandum
allowing the corrected utterance to be formed. In case the source
of the reparandum information gave a false alarm, the alternative
of not skipping the reparandum is still available.

For each utterance in the input, the parser needs 1o find an
interpretation that starts at the first word of the input and ends at
the last word. This interpretation may have been produced by
one or more applications of the repair metarule allowing the
interpretation to exclude one or more reparanda. For each
reparandum skipped, the parser needs to find an interpretation of
what the user started to say. In some cases, what the user started
to say is a complete constituent: take the oranges | mean take the
bananas. Otherwise, the parser needs to look for an incomplete
interpretation ending at the reparandum end. Typically, there will
be many such interpretations; the parser searches for the longest
interpretations and then ranks them based on their category: UTT
>3 > VP> PP, and so on. The incomplete interpretation may not
extend all the way to the start of the utterance in which case the
process of searching for incomplete interpretations is repeated.
Of course the search process is restricted by the first incomplete
constituent. If, for example, an incomplete PP were found then
any additional incomplete constituent would have to expect a PP.

Figure 2 shows an example of this process on utterance 62
from TRAINS dialog d92a-1.2. Assuming perfect speech repair
identification, the repair metarule will be fired from position 0 to
position 5 meaning the parser needs to find an interpretation
starting at position 5 and ending at the last position in the input.
This interpretation (the corrected utterance) is shown under the
words in figure 2 The parser then needs to find an interpretation
of what the speaker started to say. There are no complete
constituents ending at position 5. The parser instead finds the
incomplete constituent ADVBL -> adv « ADVBL. Our
implementation is a chart parser and accordingly incomplete
conslituents are represented as arcs. This arc only covers the
word through so another arc needs to be found. The arc
S -> 5 - ADVBL expecls an ADVBL and covers the rest of the
input, completing the interpretation of what the user started to say
(as shown on the top of figure 2). The editing terms are treated as
separate utterances via the editing term metarule. For more
details including a discussion of second speaker interruptions see

[21.[4]

broken-S
S->8 s ADVBL
" roken-ADVBL
5 ADVBL -> adv { ADVBL
Pl |
o S adv UTT UTT
LI |8
s: we will take them through um let us see dﬂ‘_\iﬂ; want to take them through to Dansville
| W
x NP
au___:_;\“_f__#vp

s
Figure 2: Utterance 62 of d92a-1.2

3. RESCORING A PRE-PARSER SPEECH REPAIR
IDENTIFIER
Given that the parser can accept input containing reparanda and
editing terms, a pre-parser repair identifier does not have to
“clean up™ input by removing hypothesized reparanda and editing
terms. [t can instead give the parser its n-best hypotheses about
possible reparanda and editing terms. For this paper, we put
aside the question of how the parser determines when utterances
end. In the experiments below, the parser will always be given
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utterance endpoints. For each utterance, the parser can try
various hypotheses from the repair identifier. Based on the
grammaticality of these hypotheses and any scores previously
assigned to them, the parser decides which one is correct.

To test whether such post-correction would improve recall,
the parser described in section 2 was connected to Heeman's
speech repair identifier [6]. The latter produced up to 100
hypotheses about the speech repairs, boundary tones, and parts of
speech associated with the words of each turn in the test corpus.
Each hypothesis was given an estimated probability.

Both the parser and Heeman's speech repair identifier were
developed and tested on the TRAINS corpus [5]. However,
Heeman’s testing data was broken into two streams for the two
speakers while the test data for the parser merged the two
speakers’ words into one data stream. The differences in
segmentation resulted in different speech repair annotations.

3.1 Experiment One

The first experiment used the parser’s speech repair annotations.
The version of Heeman’s module used is prior to the one reported
in [6]. Correspondingly, the recall and precision of

this module are lower than current versions. The recall and
precision of the model on the test corpus is shown in table 1. The
test corpus consisted of 541 repairs, 3797 utterances, and 20,069
words.”

To correct Heeman’s output, the parser starts by trying his
module’s first choice. If this results in an interpretation covering
the input, that choice is selected as the correct answer. Otherwise
the process is repeated with the module’s next choice. If all the
choices are exhausted and no interpretations are found, then the
first choice is selected as correct. This approach is similar to an
experiment in [1] except that Bear et al. were more interested in
reducing false alarms. Thus, if a sentence parsed without the
repair then it was ruled a false alarm. Here the goal is to increase
recall by trying lower probability alternatives when no parse can
be found.

Repairs correctly guessed 271
False alarms 215
Missed 270
Recall 50.09%
Precision 55.76%

Table 1: Heeman’s Speech Repair Results from Exp 1

Repairs correctly guessed 284
False alarms 371
Missed 257
Recall 52.50%
Precision 43.36%

Table 2: Augmented Speech Repair Results from Exp |

The results of such an approach on the test corpus are listed
in table 2. Recall increased by 4.8% (13 cases out of 541
repairs), showing promise in the technique of rescoring the output
of a pre-parser speech repair identifier,

One factor relating directly to the effectiveness of the parser
at correcting speech repair identification is the percent of fluent
or corrected utterances that the parser’s grammar covers. In a
random sample of 100 utterances from the corpus, 65 received



some interpretation. However, 37 of these utterances are one
word long (okay, yeah, elc.) and 5 utterances were guestion
answers (hwo hours, in Elmira); thus on intercsting utterances,
likely to have repairs, accuracy is 39.7%. What happens when a
fluent or corrected utterance cannot be parsed is that the parser
may pick a low scoring repair hypothesis that eliminates the
unparsable material (this may be most of the utterance). This
situation results in a false alarm and actual repairs in the input
may be missed.

A question raised by this experiment was the effect of
knowing utterance boundaries in choosing a repair hypothesis.
All of Heeman's repair hypotheses were truncated to fit within
utterance boundaries. However, this may have resulied in
obviously incorrect hypotheses that the parser could easily
eliminate.  If Heeman’s module had known of utlerance
boundaries at the outset it could have eliminated these
possibilities itsell. The baseline measures of the second
experiment were adjusted to control for this advantage.

3.2 Experiment Two

In the second experiment, the most recent version of Heeman's
repair identifier was used: a baseline measure considering the
effect of utterance bhoundaries was calculated; and Heeman's
segmentation of the TRAINS corpus was used. Heeman’s
segmentation broke the input into two parts, one for each speaker,
and further divided those into turns. The author broke turns into
utterances as defined by the parser’s grammar. Heeman's scoring
module worked on a per-turn basis, meaning if a turn had several
utterances the parser was not allowed to pick one hypothesis for
the first utterance and a different one for the second. The parser
scored the different hypotheses based on the number of words
that parsed for each hypothesis. So if one hypothesis allowed two
utterances to parse, one containing 5 words and another
containing 7 words, its score would be 12. The hypothesis with
the highest score was picked. In the case of ties, the hypothesis
with the higher probability (as assigned by Heeman) was chosen.

To construct a baseline measurement taking into account the
effect of utterance boundaries, hypotheses output by Heeman’s
module thal crossed utlerance boundaries were eliminated. The
top scoring hypothesis out of those remaining was selected for
cach turn. The resulting recall and precision are shown in table 3.
The test corpus for this experiment includes one additional dialog
(d93-10.5) giving a total of 20,213 words. The additional dialog
and different segmentation and repair annotations result in a
corpus of 2295 turns, 3953 utterances and 695 speech repairs.
Involving the parser as described above produces the results
shown in table 4. Recall increases by 2% (9 repairs out of 695).
Actually. there are 30 cases where the parser corrected the output
of Heeman’s module, but there arc also 21 cases where the parser
incorrectly rejected Heeman's first choice creating a false alarm
and causing a repair to be missed. These instances occurred
when the parser’s grammar did not recognize the corrected
utterance.

Becausc three aspects of the experiment werc changed
between experiments one and two, it is difficult to say whether
2% is a more valid measure of increase in recall than the 4.8%
measured in experiment one. As a preliminary test, we measured
the parsability of 60 turns randomly drawn from this corpus and
containing 100 utterances. 63.3% of the turns parsed but if we do
not consider turns consisting of one-word utlerances and phrasal
question answers then only 31.3% of these non-trivial turns
parsed. Since experiment one was utterance-based and had a
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parsing rate ol 39.7% on non-trivial utterances, the change in
segmentation could have affected the recall rate. Clearly more
experiments need to be run to get the correct figure.

Reparrs correctly guessed 445
False alarms 125
Missed 250
Recall 64.03%

Precision 78.07%

Table 3 Heeman's Speech Repair Results from Exp 2

Repairs correctly guessed 454
False alarms 749
Missed 241
Recall 65.32%
Precision 37.74%

Table 4: Augmented Speech Repair Results from Exp 2

3.3 Discussion

The first question to be answered about these results is how (o
address the drop in precision. Up to this point the probabilities
assigned by Heeman's module were only used to break ties.
Combining these probabilities with the percentage of words
parsed and using this score to rank hypotheses could offset the
effect of lower probability hypotheses that remove unparsable but
fluent material from the input.

A wider coverage grammar would also help, but the parser
would still be judging repairs solely on whether they occur in the
interpretation constructed by the parser. In addition to
grammatical disruption, the parser could also measure syntactic
parallelism between a potential reparandum and its correction.
This ability needs to be investigated in further detail. Phrase-
level parallelism will not likely be enough. An informal search of
the test corpus revealed that only 11% of repairs were corrections
of complete phrases or clauses. One could modify a statistical
parser to return the most likely incomplete and complete
constituents at every position in the input. Having incomplete
constituents for comparison might allow a useful syntactic
parallelism score to be constructed. Or perhaps the role of the
parser should merely be to decide whether a particular repair
hypothesis fits in the most highly probable parse of the input.

The results of these experiments are promising. Even with
low grammatical coverage the parser was able to increase the
recall. The remaining missing examples were not recovered
either because the parser’s grammar did not cover the corrected
utterance or Heeman's repair module did not include the repair.
Post-hoc analysis is needed to determine whether the majority of
errors were the result of the parser or whether we also need to
consider how 1o find repairs not posited by a module such as
Heeman's.

In the case of grammar failure, the parser cannot interpret
the utterance even if the correct repair hypothesis was chosen.
An experiment described in [4] measured utterance parsing
accuracy on a corpus of 495 repairs from the TRAINS dialogs.
Even though the parser was given perfect speech repair
information, only 144 of the 495 repairs appeared in utterances
having a complete parse. Thus, the 9 additional repairs (out of
695) found in experiment 2 and the 13 additional repairs (out of
541) in expeniment 1 should be considered in light of the fact that



these repairs are in utterances that parse whereas even if the other
repairs in these corpora were corrected they might not parse. So
the effect of the 9 and 13 repairs on the comprehensibility of the
corpora is somewhat greater than the 2% and 4.8% increases in
repair recall measured above.

4. CONCLUSION
The dialog parsing framework and implementation presented in
this paper show how to extend standard parsers to handle speech
repairs. Such an approach allows the parser’s knowledge of the
possible grammalical structures of the input to impact speech
repair identification, resulting in increases in recall varying from
2% to 4.8%. This approach also provides a structural
representation of reparanda enabling a dialog system to track the
speaker's “train of thought” (or as mentioned, to support
reference resolution).

ACKNOWLEDGMENTS
This work was supported in part by National Science Foundation grants
IRI-9503312 and 5-28789. Thanks 1o James Allen and Amon Seagull for
their help and comments on this work. Thanks to Peter Heeman for
providing data and guidance for the paper.

NOTES
1. The parser’s lexicon has a list of 35 editing terms that activate the
editing term metarule.
2. For instance, a traditional way to accommodate editing terms might be
via a metarule,
X ->Y Z ==>% X -> Y editing-term Z, where X varies over categories
and Y and Z vary over sequences of categories. However, this would
produce phrases containing editing terms as constituents, whereas in our
approach editing terms are separate utterances.
3. Specifically the dialogs used were d92-1 through d92a-5.2;
d93-10.1 through d93-10.4; and d93-11.1 through d93-14.2. The
language model was never simultaneously trained and tested on the same
data.
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