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!BSTRACT

The construction and evaluation of cognitive models can,
and often do, lead to NOVEL insights into what might con-
stitute a valid account for an empirical phenomenon.
These insights constrain the space of viable models, and
could be useful also on a theoretical plane, by promoting
a deeper understanding of the studied phenomenon. We
propose the factorial method for deriving novel, that is,
not theory–based constraints IN�A�PRINCIPLED�WAY during
model development. The method is based on a system-
atic comparison of alternative models, realized through a
cross–combination of model components in a generic
cognitive model. We illustrate the method by describing
an application in the area of mental imagery. We con-
clude by discussing ways to increase the generalizability
of results that can be obtained using the factorial method.

)NTRODUCTION
From a modeling perspective, cognitive theories are
presumed to guide and constrain model construction.
Often however, there is a considerable gap between
what has been theoretically established and what can be
consistently modeled and simulated. This gap may not
only concern an inherent difference in levels of de-
scription, but could additionally reflect a genuine lack
of knowledge about the studied phenomenon. Bridging
this gap is thus a nontrivial task: It often requires nu-
merous iterations between tentative model construction
and evaluation.

In this process, new insights may emerge regarding
how cognitive models ought to be constructed in order
to fit the empirical data. From the modeler’s perspec-
tive, these insights constrain the space of viable models,
further narrowing down the envelope allowed by the
underlying cognitive theory. The theoretical value of
these constraints will in part be determined by their
original motivation: whether they are motivated by im-
plementational considerations or have a logical basis
(cf., e.g., Cooper et al, 1996).

Additionally, the theoretical value of newly discov-
ered constraints may also depend on whether they were
accidentally found, and thus cannot be guaranteed to
hold in all cases, or if they were systematically uncov-
ered. Note that the intrinsic requirement for internal
consistency and computational tractability that compu-
tational models must comply with, and the stringency
that these requirements impose on model development,
would provide a firm basis for deriving non-theory-

based constraints—as long as alternative models are
evaluated and compared in a principled way.

As an example of SYSTEMATIC exploration of alterna-
tive model solutions, Kieras and Meyer (1995) describe
an investigation where dual–task performance was
modeled using EPIC, a symbolic unified cognitive ar-
chitecture. Various resource–sharing strategies were
explored and the corresponding reaction times simu-
lated. Simulated reaction time for alternative strategies
were compared to empirical data on dual–task perform-
ance. On the basis of an extensive search for alternative
strategies which would reproduce the empirical data,
the authors draw the conclusion that human subjects
must be using a near–optimal task strategy, pipelining
their visual input for one task, while executing the other
task. This conclusion is based on the fact that the
authors were not able to fit model performance to the
empirical data using any other strategy, given the
framework of EPIC.

The question of whether and how a search for feasi-
ble model properties should be conducted is common
for many modeling projects. Model development and
validation often involves a more or less systematic
search for model properties (parameter values) that
make the model behave in the desired way and repro-
duce the empirical data. What is important to realize in
this context however, is that individual model proper-
ties may be dependent on each other. In other words,
one model property may affect model validity in a cer-
tain way only when other model components are pres-
ent, or are implemented in a certain way. In this situa-
tion, the model may only reproduce empirical data if a
particular COMBINATION�OF�MODEL�PROPERTIES is present.

We propose a formal (and automatic) method for
mapping out the intrinsic dependencies between model
properties, while also estimating their individual contri-
bution to model performance. This method relies on a
systematic exchange of model components and/or alter-
native implementations of model components, and an
evaluation of their effect on model validity or some
other measure of model performance.

In a broader perspective, the proposed method entails
a shift of focus from simply demonstrating THAT a spe-
cific model is valid, to characterizing UNDER�WHICH�CON

DITIONS the model—or rather a generic model frame-
work—could account for empirical data. In this sense,
our proposal could be seen as a first step towards a
more principled way of theory testing (cf. Roberts and
Pashler, 2000).



In the following sections, we will shortly describe the
factorial method, and illustrate its use by accounting for
an example application in the area of mental imagery
(Kovordányi, 1999, 2000a). Finally, we will discuss
limitations in the generalizability of results obtained
with the method, and propose an extension of the
method as a way of dealing with these limitations.

4HE�TWO
LEVEL�FACTORIAL�DESIGN
Systematic exploration of alternative model instances
can be organized according to a full two-level factorial
design (Law and Kelton, 1991; Box et al, 1978). This
design emphasizes that the question of which model
parameters are CAUSALLY involved in a particular type of
simulated behavior can be answered only if all pa-
rameters have been fully cross-combined. In order to
keep down the computational cost of exploring all pa-
rameters, parameter values are varied between a prede-
termined min- and max-value, in what is called a two-
level factorial design.

Note that, for the above reasons, if some model pa-
rameters were to be fixed at some “reasonable value” in
order to keep down simulation complexity, the power
of the simulation design would decrease. Simply ex-
pressed, parameters may have been fixed at a value
where they strongly modulate the effect of central
model parameters.

In practice, a minimal set of model properties will in-
evitably be determined a priori on the basis of the un-
derlying cognitive theory. This generic model frame-
work could still leave unconstrained a large number of
model design decisions. How should the final simula-
tions be designed if the corresponding number of model
parameters turn out to be unmanageably large?

Ideally, for a problem with k degrees of freedom, the
minimal number of simulations which needs to be run
in order to detect causal dependencies between model
parameters is 2k. However, if the number of simulations
turn out to be unmanageably large, a fractal two-level
factorial design may be used instead of a full design (cf.
Law and Kelton, 1991; Box et al, 1978). Note that in
these designs, peripheral parameters are not fixed at an
ad hoc value, but are instead defined dynamically as a
function of those parameters which are varied.

In addition to providing a minimally sufficient basis
for detecting causal relationships in the simulation re-
sults, using a two-level factorial design renders the
analysis of simulation results conceptually simple. A
simulation where k parameters are varied is captured in
a design matrix of size 2k x k containing +s and –s rep-
resenting low and high parameter values (cf. Law and
Kelton, 1991; Box et al, 1978). The way the matrix is
set up, each row will represent a unique combination of
parameter values, which in turn corresponds to a par-
ticular simulation run (cf. figure 1). As the design ma-
trix is regular, it is easy to set up. In addition, once it is
computed, the same matrix can be used to control the
simulations and to conduct data analysis.

To illustrate the data analysis procedure, let us as-
sume that the possible interaction between parameters
p1, p3, and p7 are inquired. In this case, columns 1, 3,
and 7 of the design matrix are multiplied with each
other entry-by-entry, and then multiplied, again entry-
by-entry, with the corresponding simulation results. The
effect of these multiplications is that the correct signs
will be added to the results–column. A final summation
of all the signed entries in the results–column, divided
by 2k-1, where k denotes the number of model parame-
ters varied, yields the desired mean interaction of the
parameters involved.

!PPLICATION�OF�THE�METHOD
In the following sections, we will briefly describe an
investigation of mental imagery where a full two-level
factorial design was used (Kovordányi, 1999, 2000b).
Although the effect of several possible factors, such as
mental image fading, were taken into account, the
analysis of simulation results was centered on revealing
the effect of focusing early versus late selective atten-
tion on part of a mental image in a mental image rein-
terpretation task. As the empirical results of Finke and
colleagues (Finke et al, 1989) and Peterson and col-
leagues (Peterson et al, 1992), which were used for
model validation, were qualitative, no attempt was
made to optimize the models towards these data. Model
validity was instead defined qualitatively, and served as
a means for evaluating the feasibility of alternative
models.

)DENTIFYING�VARIABLE�MODEL�COMPONENTS
The model framework used in our project drew its main
architectural components from the comprehensive
model of mental imagery developed by Kosslyn (1994;
Kosslyn et al, 1979; Kosslyn et al, 1990). Within this
framework, lower–level model components remained
partially unconstrained. For instance, should attentional
selection be implemented as an early or late selectional
mechanism? Is selective attention involved (focused) at
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Figure 1: A two-level factorial design matrix for
two parameters. Each row in the matrix denotes a
unique combination of parameter values. The last

column in the design matrix designates the outcome
of simulating a model instance for that particular

parameter combination.



all during mental image reinterpretation? These choices
were expressed as variable model components that were
systematically exchanged between simulation runs to
allow for a comparison of various model instances. As a
result, half of all simulation runs would be based on
models containing a late selectional model component,
a quarter of all simulations run would be based on mod-
els containing a late selectional component AND also
implementing an inhibitory fringe around the selec-
tional ‘spotlight’, etcetera.

We chose to implement our model framework as an
interactive activation model (cf. McClelland, 1979;
McClelland and Rumelhart, 1981, 1994/1988;). In these
models, the localist nodes are arranged into reciprocally
connected layers of processing, thereby increasing the
structure and penetrability of the model. Units within
the same processing layer are assumed to have the same
inhibitory and excitatory connection weights.

Within our interactive activation model framework,
variable model components were expressed in terms of
connection weights, activation thresholds, resting lev-
els, and/or “control flags”. Control flags were also used
to control whether processing was to be initiated top-
down or bottom-up. These two modes of processing
corresponded to mental imagery vs. visual perception in
human subjects.

Variable model components could equally well be
delineated in symbolic models, as alternative (sets of)
production rules, or simply alternative definitions (fnc1
– fnc2) of a cognitive mechanism together with a means
for activating them at run-time. Hence, the factorial
method can be applied to any modularly constructed
computational model with a minimal overhead cost.

3IMULATIONS
Our model framework for mental imagery encompassed
three mutually interacting layers of processing (fig-
ure 2). At the lowest level, the visual buffer contained
detectors for oriented line segments. At the next stage,
these feature detectors would evoke (and receive feed-
back from) simple geometric patterns, such as compos-
ite lines and triangles. These patterns were stored in
visual long-term memory. At the highest level of proc-
essing, the low–level geometric patterns were combined
into concepts stored in associative long-term memory.
In addition to the between-layer connections, we as-
sumed lateral that is, within-processing-level inhibition,
between mutually inconsistent groups of computational
units. Image interpretation in this cascading system was
based on the establishment of a correspondence be-
tween lower-level and higher-level representations
across the processing layers.

We simulated mentally- and perceptually based rein-
terpretation of two composite line drawings adopted
from Finke and colleagues (1989, exp. 1). Possible in-
terpretations of these figures were limited to a small set
of predefined geometric forms and abstract concepts.
For example, possible interpretations of the first figure,

formed from an upper case ‘H’ superimposed on an
upper case ‘X’, were limited to “four small equilateral
triangles”, “two large isosceles triangles”, “a butterfly”,
“a tilted hourglass” and “a bow-tie”.

As processing layers were reciprocally connected,
simulations could be initiated either top-down or bot-
tom-up. This made it possible to compare reinterpreta-
tion performance in visual perception and in mental
imagery. When simulations were run in mental mode, a
chosen symbolic concept was activated in associative
long-term memory, and this activation was projected
into the visual buffer, where an activation pattern
emerged, which represented a visual mental image.
When simulation was run in perceptual mode, visual
input entered the system at the visual buffer, and was
forwarded through consecutive stages of processing,
and matched to geometric patterns and abstract con-
cepts. One of these patterns or concepts was selected
for verbal report.

Simulations were run through four phases: Mental
image generation, followed by mental image reinter-
pretation, continued with perceptual stabilization of the
same line-figure, concluded by perceptually based re-
interpretation. Each simulation was run for 10 simu-
lated seconds in discrete steps of 50 ms.

Two instances of the model framework were scruti-
nized: One where attentional selection affected proc-
essing at a late stage, at the level of associative long-
term memory, and one where selection was initiated
early, at the level of the visual buffer. For these models,

visual features

geometric patterns

symbolic structures

mental image
generation

Late selection

Early selection

perceptual input

Figure 2: An outline of the interactive activation
model used in our simulations of mental and per-

ceptual image reinterpretation. Processing is based
on three bi–directionally connected layers of local-
ist units. Processing in cascade allows focus of at-
tention to be propagated with a negligible time de-
lay to both earlier and later stages of processing. In

spite of this, the point of initiation of attentional
focus turns out to influence model validity.



the effect of focusing attention (versus not focusing
attention) was investigated, taking into account that
interaction might arise between these central and other
peripheral model components.

$ATA�ANALYSIS
In this example project, data analysis began with semi-
automatic preparation of the raw simulation data (see
below). The prepared data were then visualized. The
aim was to facilitate the discovery of significant pa-
rameter interactions, and in addition provide a basis for
estimating model validity for the different parameter
combinations. Below we briefly describe the key stages
of this process.
)DENTIFICATION�OF�INTERACTING�MODEL�COMPONENTS
For simplicity, we will denote model components as
SIMULATION�PARAMETERS�in the sections on data analysis.
Activation levels of all response units in the interactive
activation network were measured for each simulation
run that is, for each parameter combination. From these
activation values the probability for reinterpretation was
calculated. Reinterpretation rates were classified as
valid if they qualitatively matched the reinterpretation
rates obtained by Finke and colleagues (1989, exp. 1),
and Peterson and colleagues (1992).

These empirical data posed the following constraints
on the simulation results: First, reinterpretation rates
were required to be less for symbolic than for geometric
interpretations (cf. Finke et al, 1989). In addition, inter-
pretations obtained during mental imagery had to be
below those obtained during the perceptual phases of
the simulations.

Second, reinterpretation rates were required to be
qualitatively consistent with the findings of Peterson

and colleagues (1992). These findings are interpreted as
an indication that reinterpretation rates should increase
after a de- and refocus of attention.
#ALCULATION�OF�MODEL�COMPONENT�EFFECTS
The calculation of individual component effects and
interactions was based on a design matrix of –s and +s,
representing high- and low simulation parameter values
(cf. figure 1). In this matrix each column denoted a
model parameter and each row represented a specific
parameter combination. Two measures of model per-
formance: simulated mental reinterpretation probability
and model validity, were associated with each row in
the design matrix. In general, in order to obtain a pa-
rameter’s average effect on overall model performance,
those rows in one of the results–column which corre-
sponded to a low parameter value were summed and
subtracted from those rows which corresponded to high
values. Higher-order interaction effects were obtained
in a similar manner (Law and Kelton, 1991; Box and
Hunter, 1978). Given the simulation design matrix,
these calculations could be expressed as a sequence of
simple matrix operations.
6ISUALIZATIONS�OF�INTERACTIONS
Those groups of interacting parameters whose modu-
lating effect exceeded 20% of the central parameter’s
effect (in our case this parameter denoted the focusing
of attention) were prepared for visualization.

The type of visualizations obtained (illustrated in fig-
ure 3) can be conceived of as a high-dimensional cube
of changes in model performance, each dimension rep-
resenting changes caused by one of the interacting pa-
rameters. This cube can be sliced and stacked recur-
sively onto a two-dimensional plot (cf. Bosan and Har-
ris, 1996; Harris et al, 1994).
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Figure 3: Visualization of the simulation results is achieved through recursive slicing of the high–dimensional
volume of simulation data. Simulation results are color-coded to facilitate the perception of interaction patterns.
The relative area of the square markers reflects mean model validity for the underlying parameter combinations.



Each x-y coordinate in these plots denotes a specific
combination of interacting parameters. In our project,
the direction of change in model performance was
coded along two different color scales, and the magni-
tude of change was indicated by variations in hue
within these scales, with darker, more saturated colors
depicting a bigger change.

In addition, we made the relative area of each colored
square reflect the AVERAGE validity of models corre-
sponding to the central parameter’s high value. In our
case, this amounted to selective attention being focused
during image reinterpretation. As a result of including
model validity in the visualizations, simulation data
contributed to the visual appearance of the plot only to
the extent to which they were valid.

2ESULTS�OBTAINED�IN�THE�EXAMPLE�PROJECT
We focused our simulation and data analysis on the
question of early vs. late attentional selection, our hy-
pothesis being that late selection would account for the
empirical data, while early selection would not. This
hypothesis seems to be supported by our simulation
results: In short, models were valid when selective at-
tention was focused during image reinterpretation—as
compared to simulations when attention was not fo-
cused. In addition, when comparing models containing
an early vs. late selectional component, the latter mod-
els turned out to produce valid behavior, while the for-
mer did not. Although these results can be interpreted
an indication of an overall pattern, the generalizability
of these results need to be further examined.

%XTENSION�OF�THE�METHOD
By its systematicity, the factorial method enhances the
reliability of any constraints discovered during model
development and simulation. However, we would like
to point to one limitation of this method. The factorial
method, in the form presented above, is aimed at char-
acterizing the space of alternative models. The under-
lying assumption is that transitions in this space are
smooth that is, slow, and monotonic, and hence can be
characterized on the basis of the two data points per
dimension used to calculate parameter effects.

We see two problems with this assumption. First,
model validity, or model performance in general, could
vary between the sampled points. Second, model per-
formance is characterized on the basis of a limited sub-
space of the complete model space. For example, con-
nection weights in a connectionist model might have
been varied within a narrow range, which may not
cover the complete interval allowed for that particular
type of connection. Hence, component effects and in-
teractions might look different both within and outside
the subspace, or SEGMENT, which has been sampled.
Both of these limitations affect the generalizability of
results obtained using the factorial method

(YPOTHESIS�TESTING�BY�SEARCHING�FOR�COUNTEREX

AMPLES�IN�MODEL�SPACE
We would like to propose one way of approaching this
problem. For practical reasons, we cannot ensure in the
general case that any effects found will hold throughout
model space. However, researchers are frequently inter-
ested in finding support for or refuting one particular
hypothesis. For example, it would be interesting to
know if an assumption of late attentional selection is
THE� ONLY� WAY to account for empirical data. This
amounts to the question of ‘Would early attentional
selection account for empirical data if a different seg-
ment of model space was examined?’

 In this limited setting, a search of model space be-
comes tractable. The objective is to examine various
segments in model space, in order to ensure that any
results found in one segment are general enough to also
hold in other segments of the model space. This exten-
sion of the method relies on RANDOM sampling of seg-
ments using, for example, genetic algorithms.

Note that while genetic search can be used to delimit
various segments in model space, characterization of
each of these segments must be based on the factorial
method. The reason for this is that in order to be able to
attribute model validity to a specific model component
that is, exclude the possibility of some peripheral aspect
of the model affecting model validity, all variable com-
ponents must be cross–combined. In essence, we want
to detect CAUSAL� RELATIONSHIPS� between model compo-
nent(s) and model validity.

Hence, for example, the objective in the example
project would be to ensure that late selection CAUSES
models to be valid in all segments in model space. In
other words, we want to ensure that model validity can
be attributed to late selection, and not some fortunate
interaction of other model components.

In the empirical sciences, a favorite hypothesis is
supported by evidence, when the scientist has done eve-
rything to prove its negation, the null hypothesis, and
failed. In the same manner, the objective in the example
project could be to search for segments in model space
where model validity can be attributed to, not late, but
EARLY selection.

There can be two outcomes of such a search. The first
possibility is that early selection models turn out to be
invalid throughout model space. This result could be
used as a basis for making general statements about the
necessity of a late selectional mechanism in models of
mental imagery. The second possibility is that early
selection turns out to result in valid models in some
segments of model space. In this latter case, one might
attempt to detect common features in those segments
where early selection turned out to result in valid mod-
els. Again, this would produce generalizable NEW
knowledge about the studied phenomenon.



3UMMARY
As is often pointed out in the modeling methodology
literature (cf., e.g., Cooper et al, 1996), there is an in-
herent gap between cognitive theories and their realiza-
tions as computable cognitive models. Novel, that is,
not theory–based constraints on what could constitute a
viable account for an empirical phenomenon are thus
often discovered during the development and testing of
cognitive models. These constraints could turn out to be
THEORETICALLY useful, provided that they were uncovered
in a systematic fashion.

We propose the factorial method for deriving novel
that is, not theory–based, constraints in a principled
way. The method relies on a systematic validation and
comparison of alternative models, and in practice, en-
tails a shift of focus from simply demonstrating THAT a
specific model is valid, to characterizing UNDER� WHICH
CONDITIONS the model can account for empirical data.

The method provides a formal basis for stating that,
given a set of fundamental, theory–based assumptions,
the studied phenomenon can be modeled successfully
only if certain additional assumptions are made. These
assumptions can be about subjects’ choice of task strat-
egy when performing dual–tasks, or concern the neces-
sity of a particular cognitive mechanism in models of
mental imagery.

The reliability of model constraints is increased if the
causal relationship between the inclusion of a specific
model component and resulting model validity can be
demonstrated to hold irrespective of which part of
model space is examined. As model space cannot, in
general, be searched in its entirety, we suggest a more
focused approach of hypothesis testing: Given an initial
hypothesis, model space is searched for sub–segments
in which a designated alternative model solution leads
to valid models. Depending on the outcome, the initial
hypothesis can be reliably refuted or supported.
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