Higher-Order Acausal Models

David Broman Peter Fritzson

Department of Information and Computer Science, Linkopimiversity, Sweden
{davbr, petfri}@da.liu.se

Abstract These languages enable modeling of complex physical sys-
tems by combining different domains, such as electrical,
mechanical, and hydraulic. Examples of such languages are
Modelica [10, 17], Omola [1], gPROMS [3, 20], VHDL-
AMS [5], andx (Chi) [13, 27].

Current equation-based object-oriented (EOQO) languages
typically contain a number of fairly complex language con-
structs for enabling reuse of models. However, support for
model transformation is still often limited to scriptingse

tions provided by tool implementations. In this paper we in- A fundamental construct in most of these languages is
vestigate the possibility of combining the well known con- theacausal modelSuch a model can encapsulate and com-

cept of higher-order functions, used in standard functiona POS€ both continuous-time behavior in form of DAEs and/
programming languages, with acausal models. This con- " other interconnected sub-models, where the direction of

cept, called Higher-Order Acausal Models (HOAMS), sim- information flow between the sub-models is not specified.
plifies the creation of reusable model libraries and model S€veral of these languages (e.g., Modelicaand Omola) sup-

transformations within the modeling language itself. hes port object-oriented concepts that enable the composition

transformations include general model composition and and reuse of acausgl models. However, the possibilitieg to
recursion operations and do not require data representa-Performtransformationson models and to create generic

tion/reification of models as in metaprogramming/meta- gnd reusable transformat_ior_l libraries are still usuahy-li
modeling. Examples within the electrical and mechanical 1©€d t0 tool-dependent scripting approaches [7, 11, 26], de
domain are given using a small research language. How- spite recent development of metamodeling/metaprogram-

ever, the language conceptis not limited to a particular lan MiNg approaches like MetaModelica [12].

guage, and could in the future be incorporated into existing " functional programming languages, such as Haskell
commercially available EOO-languages. [23] and Standard ML [16], standard libraries have for a

long time been highly reusable, due to the basic property
Keywords Higher-Order, Acausal, Modeling, Simulation,  of having functions as first-class values. This propersgal
Model Transformation, Equations, Object-Oriented, EOO  calledhigher-order functionsmeans that functions can be
) passed around in the language as any other value.
1. Introduction In this paper, we investigate the combination of acausal

Modeling and simulation have been an important applica- models with higher-order functions. We call this concept
tion area for several successful programming languages, Higher-Order Acausal Models (HOAMs)
e.g., Simula [6] and C++ [24]. These languages and other A similar idea calledirst-class relations on signalsas
general-purpose languages can be used efficiently for dis- been outlined in the context of functional hybrid modeling
crete time/event-based simulation, but for continuometi ~ (FHM)[18]. However, the work is still at an early stage
simulation, other specialized tools such as Simulink [15] and it does not yet exist any published description of the
are commonly used in industry. The latter supports causal Semantics. By contrast, our previous work’s main objective
block-oriented modeling, where each block has defined in- has been to define a formal operational semantics for a
put(s) and output(s). However, during the past two decades, subset of a typical EOO language [4]. From the technical
a new kind of language has emerged, where differential al- results of our earlier work, we have extracted the more
gebraic equations (DAEs) can describe the continuous-time general ideas of HOAM, which are presented in this paper
behavior of a system. Moreover, such languages often sup-in @ more informal setting.
port hybrid DAEs for modeling combined continuous-time ~ An objective of this paper is to be accessible both to en-
and discrete-time behavior. gineers with little functional language programming back-
ground, as well as to computer scientists with minimal
knowledge of physical acausal modeling. Hence, the paper
and International Workshop on Equation-Based Objecti@ei is structured in the following way to reflect both the broad
Languages and Tools. July 8, 2008, Paphos, Cyprus. intended audience, as well as presenting the contribufion o
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¢ The fundamental ideas of traditional higher-order func-
tions are explained using simple examples. Moreover,

and the expression representing the body of the function
is given within curly parentheses; in this cdsex x} .

we give the basic concepts of acausal models whenused An anonymous function can be applied by writing the

for modeling and simulation (Section 2).

¢ \We state a definition of higher order acausal models
(HOAMs) and outline motivating examples. Surpris-
ingly, this concept has not been widely explored in the
context of EOO-languages (Section 2).

e The paper gives an informal introduction to physical
modeling in our small research language called Mod-
eling Kernel Language (MKL) (Section 3).

¢ We give several concrete examples within the electri-
cal and mechanical domain, showing how HOAMs can
be used to create highly reusable modeling and model
transformation/composition libraries (Section 4).

Finally, we discuss future perspectives of higher-order
acausal modeling (Section 5), and related work (Section
6).

2. The Basic Idea of Higher-Order

In the following section we first introduce the well estab-

lished concept of anonymous functions and the main ideas

of traditional higher-order functions. In the last part loét

section we introduce acausal models and the idea of treat-

ing models with acausal connections to be higher-order.

function before the argument(s) in a parenthesized ligt, e.
(3):

func(x) {x*x}(3)

— 3*3

— 9

The lines starting with a left arrow) show the evaluation
steps when the expression is executed.

However, it is often convenient to name values. Since
anonymous functions are treated as values, they can be
defined to have a name using thef constructin the same
way as constants.

def pi 3.14
def power2 = func(x){x*x}

Here, bottpi and functiorpower 2 can be used within the
defined scope. Hence, the definitions can be used to create
new expressions for evaluation, for example:
power 2( pi )

— power 2( 3. 14)

— 3.14 + 3.14

— 9. 8596

2.2 Higher-Order Functions
In many situations, it is useful to pass a function as an

2.1 Anonymous Functions argument to another function, or to return a function as a

In functional languages, such as Haskell [23] and Standard result of executing a function. When functions are treated
ML [16], the most fundamental language construct is func- @s values and can be passed around freely as any other

tions. Functions correspond to partial mathematical func-
tions, i.e., a functiory : A — B gives a mapping from (a
subset of) the domaiA to the codomair.

In this paper we describe the concepts of higher-order
functions and models using a tiny untyped research lan-
guage calledModeling Kernel Language (MKL)'he lan-
guage has similar modeling capabilities as parts of the
Modelica language, but is primarily aimed at investigating
novel language concepts, rather than being a full-fledged
modeling and simulation language. In this paper an infor-
mal example-based presentation is given. However, a for-
mal operational semantics of the dynamic elaboration se-
mantics for this language is available in [4].

In MKL, similar to general purpose functional lan-
guages, functions can be defined to &®onymousi.e.,
the function is defined without an explicit naming. For ex-
ample, the expression

func(x){x*x}

is an anonymous function that has a formal parametzs
input parameter and returrssquared. Formal parameters
are written within parentheses after thenc keyword,

1In programming language theory, an anonymous function liecta
lambda abstractionwritten Ax.e, wherez is the formal parameter and

is the expression representing the body of the function.cbhesponding
syntactic form in MKL for a lambda abstractionfisinc p{ e} , wherep

is apattern A pattern can be a-ary tuple enclosed in parenthesis, e.g., a
tuple pattern with one parameter can have the foxh and one with two
parameter§ x, y) .

value, they are said to bist-class citizendn such a case,
the language supportégher-order functions

DEFINITION 1 (Higher-Order Function).
A higher-order function is a function that

1. takes another function as argument, and/or
2. returns a function as the result

Let us first show the former case where functions are
passed as values. Consider the following function defini-
tion of t wi ce, which applies the functioh two times on

y, and then returns the result.

def twice = func(f,y){

f(f(y))
b
The functiont wi ce can then be used with an arbitrary
functionf , assuming that types match. For example, using
it in combination withpower 2, this function is applied
twice.

twi ce(power 2, 3)

— power 2( power 2(3))
power 2( 3* 3)

power 2(9)

9+9

81

—
—
—

—

Sincet wi ce can take any function as an argument, we can
applyt wi ce to an anonymous function, passed directly as
an argument to the functidnwi ce.
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Figure 1. Outline of a typical compilation and simulation processdorEOO language tool.

twi ce(func(x){2+x-3},5)
func(x){2+«x-3}(func(x){2+x-3}(5))
func(x){2+x-3}(2+5-3)

— func(x){2*x-3}(7)

2x7-3

11

—

—

—

—

Let us now consider the second part of Definition 1, i.e., a
function that returns another function as the result.

In mathematics, functional composition is normally ex-
pressed using the infix operatarTwo functionsf : X —
Y andg : Y — Z can be composed o f : X — Z, by
using the definitior{g o f)(z) = g(f(x)).

The very same definition can be expressed in a language

supporting higher-order functions:

def conpose = func(g, f){
func(x){g(f(x))}

1

This example illustrates the creation of a new anonymous

function and returning it from theonpose function. The

function composes the two functions given as parametersto

conpose. Hence, this example illustrates both that higher-

order functions can be applied to functions passed as ar-

guments (using formal parametdrandg), and that new

programming other more advanced usages, such as list ma-
nipulation using functionsmap andf ol d, are very com-
mon.

2.3 Elaboration and Simulation of Acausal Models

In conventional object-oriented programming languages,
such as Java or C++, the behavior of classes is described
using methods. On the contrary, in equation-based object-
oriented languages, the continuous-time behavior is typi-
cally described using differential algebraic equationd an
the discrete-time behavior using constructs generating
events. This behavior is grouped into abstractions called
classes or models (Modelica) or entities and architectures
(VHDL-AMS). From now on we refer to such an abstrac-
tion simply asmodels

Models are blue-prints for creatingodel instanceén
Modelica called components). The models typically have
well-defined interfaces consisting of ports (also callea-co
nectors), which can be connected together usiognec-
tions A typical property of EOO-languages is that these
connections usually agcausal meaning that the direction
of information flow between model instances is not defined
at modeling time.

In the context of EOO languages, we define acausal

functions can be created and returned as results (the anony{&!SC called non-causal) models as follows:

mous function).
To illustrate an evaluation trace of the composition func-
tion, we first define another functi@dd7

def add7 = func(x){7+x};

and then composgower 2 andadd?7 together, forming a
new functionf oo:

def foo = compose(power 2, add7);
— def foo = func(x){power2(add7(x))};

Note how the functiorronpose applied topower 2 and
add7 evaluates to an anonymous function. Now, the new
functionf oo can be applied to some argument, e.g.,

foo(4)

— func(x) {power2(add7(x))}(4)
power 2( add7(4))

power 2( 7+4)

— power 2(11)

11«11

121

—

—

—

—

DEFINITION 2 (Acausal Model).
An acausal model is an abstraction that encapsulates and
composes

1. continuous-time behavior in form of differential alge-
braic equations (DAES)

2. other interconnected acausal models, where the direc-
tion of information flow between sub-models is not spec-
ified.

In many EOO languages, acausal models also contain con-

ditional constructs for handling discrete events. Morepve

connections between model instances can typically both
express potential connections (across) and flow (alsoccalle
through) connections generating sum-to-zero equations.

Examples of acausal models in both MKL and Modelica

are given in Figure 2 and described in Section 3.1.

A typical implementation of an EOO language, when
used for modeling and simulation, is outlined in Figure 1.
In the first phase, a hierarchically composed acausal model
is elaborated(also called flattened or instantiated) into
a hybrid DAE, describing both continuous-time behavior

The simple numerical examples given here only show the (DAEs) and discrete-time behavior (e.g., when-equations)

very basic principle of higher-order functions. In funct#

The second phase perforraguation transformations and



code generationwhich produces executable target code. function and stored in a standard library, and then reused
When this code is executed, the actual simulation of the with different user defined models.

model takes place, which produces a simulation result. = Some special and complex language constructs in cur-
In the most common implementations, e.g., Dymola [7] rently available EOO languages express part of the de-
or OpenModelica [26], the first two phases occur during scribed functionality (e.g., the redeclare and for-edqurati
compile time and the simulation can be viewed as the constructs in Modelica). However, in the next sections we
run-time. However, this is not a necessary requirement of show that the concept of acausal higher-order models is a
EOO languages in general, especially not if the language small, but very powerful and expressive language construct
supports structurally dynamic systems (e.g., Sol [29], FHM that subsumes and/or can be used to define several other

[18], or MOSILAB [8]). more complex language constructs. If the end user finds
_ this more functional approach of modeling easy or hard
2.4 Higher-Order Acausal Models depends of course on many factors, e.g., previous program-

In EOO languages models are typically treated as compile ming language experiences, syntax preferences, and math-

time entities, which are translated into hybrid DAEs during ematical skills. However, from a semantic point of view,

the elaboration phase. We have previously seen how func-we show that the approach is very expressive, since few

tions can be turned into first-class citizens, passed around language constructs enable rich modeling capabilities in a

and dynamically created during evaluation. Can the same relatively small kernel language.

concept of higher-order semantics be generalized to also

apply to acausal models in EOO languages? If so, does this3. Basic Physical Modeling in MKL

give any improved expressive power in such generalized T concretely demonstrate the power of HOAMs, we use

EOO language? our tiny research language Modeling Kernel Language
In the next section we describe concrete examples of (MKL). The higher-order function concept of the language

acausal modeling using MKL. However, let us first define \as briefly introduced in the previous section. In this sec-

what we actually mean by higher-order acausal models.  tion we informally outline the basic idea of physical model-

DEFINITION 3 (Higher-Order Acausal Model (HOAM)). in_g in MKL; a prerequisite for Se_ction 4, which introduces
A higher-order acausal model is an acausal model, which higher-order acausal models using MKL.

can be 3.1 A Simple Electrical Circuit

1. parametrized with other HOAMSs. To illustrate the basic modeling capabilities of MKL, the

2. recursively composed to generate new HOAMs. classic simple electrical circuit model is given in Figure 2

3. passed as argument to, or returned as result from func- Part (1) shows the graphical layout of the model and (I1)
tions. shows the corresponding textual model given in MKL. For

clarity to the readers familiar with the Modelica language,

metrized by other models. For example, the constructor of & extyal code (1l).

automobile model can take as argumentanother modelrep- |5 VKL, models are always defined anonymously. In
can be created with different gearboxes, as long as the gearodel can also be given a name, which is in this exam-
boxes respects the interface (i.e., type) of the gearbox pa-pje done by giving the model the namér cui t . The
rameter of the automobile model. Moreover, an automobile yqde| takes zero formal parameters, given by the empty tu-
model does not necessarily need to be instantiated with apje (parenthesized list) to the right of the keywomide! .
specific gearbox, but onlgpecializedwith a specific gear-  The contents of the model is given within curly braces. The
box model, thus generating a new more specific model.  first four statements define four newires, i.e., connec-

The second case of Definition 3 states that a model can tjon points from which the different components (model
reference itself; resulting in a recursive model definition  jstances) can be connected.

This capability can for example express models composed  The six components defined in this circuit correspond to
of many similar parts, e.g., discretization of flexible shaf  {ne jayout given in part (1) in Figure 2. Consider the first

in mechanical systems or pipes in fluid models. resistor instantiated using the following:
Finally, the third case emphasizes the fact that HOAMs )
Resi stor(wl, w2, 10) ;

are first-class citizens, e.g., that models can be both gasse
as arguments to functions and created and returned as re-The two first arguments state that wireé andw?2 are

sults from functions. Hence, in the same way as in the connected to this resistor. The last argument expresses tha
case of higher-order functions, generic reusable funstion the resistance for this instance is 10 Ohm. Wigeis also

can be created that perform various tasks on arbitrary mod- given as argument to the capacitor, stating that the first
els, as long as they respect the defined types (interfaces) ofresistor and the capacitor are connected using wire

the models’ formal parameters. Consequently, this prgpert Modeling using MKL differs in several ways compared
enableanodel transformation® be defined and executed to Modelica (Figure 2, part Ill). First, models are not de-
within the modeling language itself. For example, certain fined anonymously in Modelica and are not treated as first-
discretizations of models can be implemented as a genericclass citizens. Second, the way acausal connections are de-



0] (n
w1 def Circuit = nodel (){ nodel Circuit
def wl = Wre(); Resi stor R1(R=10);
def w2 = Wre(); Capacitor C(C=0.01);
def w3 = Wre(); Resi stor R2(R=100);
R=10 R=100 def w4 = Wre(); I nductor L(L=0.1);
n Resi st or (wl, w2, 10) ; Vsour ceAC AC( VA=220) ;
VA=220 Capaci tor (w2, w4, 0. 01) ; G ound G
5) w2 w3 Resi st or (wl, w3, 100) ; equati on
I nduct or (w3, w4, 0. 1) ; connect (AC. p, Rl.p);
0 VSour ceAC( w1, w4, 220) ; connect (R1.n, C.p);
Ground(w4) ; connect(C.n, AC. n);
€=0.01 L=0.1 }: connect (RL.p, R2.p);
connect (R2.n, L.p);
connect(L.n, C.n);
w4 connect (AC.n, G p);

end Circuit;

H

Figure 2. Model of a simple electrical circuit. Figure part (I) showsetgraphical model of the circuit, (Il) gives the
corresponding MKL model definition, and (111) shows a Modelmodel of the same circuit.

fined between model instances differs. In MKL, the con- The first element of the defined tuple expresses the cre-
nection (in this electrical case a wire), is created and then ation of a new unknown continuous-time variable using the
connected to the model instances by giving it as argu- syntaxvar () . The variable could also been assigned an
ments to the creation of sub-model instances. In Model- initial value, which is used as a start value when solving
ica, a speciatonnect -equation construct is defined in  the differential equation system. For example, creating a
the language. This construct is used to define binary con- variable with initial value 10 can be written using the ex-
nections between connectors of sub-model instances. Frompressionvar ( 10) . Variables defined usingar () corre-

a user point of view, both approaches can be used to ex- spond topotentialvariables, i.e., the voltage in this exam-
press acausal connections between model instance. Henceple.

we let it be up to the reader to judge what is the mostnatural ~ The second part of the tuple expresses the current in the
way of defining interconnections. However, from a formal wire by using the construétl ow( ) , which creates a new
semantics point of view, in regards to HOAMs, we have flow-node. This construct is the essential part in the formal
found it easier to encode connections using ordinary pa- semantics of [4]. However, in this informal introduction,
rameter passing style we just accept that Kirchhoff’s current law with sum to zero
at nodes is managed in a correct way.

In the circuit definition (Figure 2, part 1l) we used the
The concept of wire is not built into the language. Instead, syntaxW r e() , which means that the function is invoked
it is defined using an anonymous function, referring to the without arguments. The function call returns the tuple
built-in constructsrar () andf | ow(): (var (), flow()) . Hence, theN r e definition is used
def Wre = func(){ for encap.sulating the tuple, allowing the olie_fi.nition to be

(var (), flow)) reused vynhout the need to restate its definition over and
}: over again.

3.2 Connections, Variables, and Flow Nodes

Here, a function calledN r e is defined by using the 3.3 Models and Equation Systems

anonymous function construttinc. The definition states  The main model in this example is already given as the
that the function has an empty formal parameter list (i.e., o r cui t model. This model contains instances of other
takes an empty tuple) as argument) and returns a tuple odels, such as thBesi st or . These models are also

(var (), flow()), consisting of two elements. A tuple  gefined using model definitions. Consider the following
is expressed as a sequence of terms separated by commagy,q models:

and enclosed in parentheses.

def TwoPin = nodel ((pv, pi), (nv,ni),v){
2In the technical report [4], we have been able to define theoeddion V. = pv - nv,

semantics with HOAMs using an effectful small-step operal seman- 0 =pi +ni;

tics. The main challenge of handling HOAMs and acausal cctioTes

concerns the treatment of flow variables and sum-to-zeratemu By us-
ing the parameter passing style, we avoid Modelica’s infdrsemantic
approach of using connection-sets. Moreover, by usingagysoach, the
generated sum-to-zero equations implicitly gets the rgths, without
the need of keeping track of outside/inside connectors.




def Resistor nodel (p, n, R {
def (_,pi) = p;
def v = var();
TwoPi n(p, n, v);
R« pi =v;

b
Inthe same way as f@i r cui t , these sub-models are de-
fined anonymously using the keywamddel followed by
a formal parameter and the model's content stated within
curly braces. A formal parameter can be a patterngtd
tern matching is used for decomposing arguments. Inside
the body of the model, definitions, components, and equa-
tions can be stated in any order within the same scope.
The general modelwoPi n is used for defining com-
mon behavior of a model with two connection points.
TwoPi n is defined using an anonymous model, which here

takes one formal parameter. This parameter specifies that

the argument must be a 3-tuple with the specified structure,
wherepv, pi , nv, ni , andv are pattern variables. Here
pv means positive voltage, amil negative current. Since
the illustrated language is untyped, illegal patterns ate n
discovered until run-time.

Both models contain new definitions and equations. The
equationv = pv - nv; in TwoPi n states the voltage
drop over a component that is an instanc&wbPi n. The
definition of the voltages is given as a formal parameter
to TwoPi n. Note that the direction of the causality of this
formal parameter is not defined at modeling time.

The resistor is defined in a similar manner, where the
third elementR of the input parameter is the resistance.
Thefirstlinedef (_, pi) = p; isanalternative way of
pattern matching where the currgmit is extracted fronp.

The pattern_ states that the matched value is ignored. The
second row defines a new variabidor the voltage. This
variable is used both as an argument to the instantiation
of TwoPi n and as part of the equatid® pi =v; stating
Ohm’s law. Note that the wirep and n are connected
directly to theTwoPi n instance.

The inductor model is defined similarly to tResi st or
model:

def Inductor = nodel (p,n,L){
def (_, pi) = p;
def v = var(0);
TwoPi n(p, n, v);
Lxder(pi) = v;

b

The main difference to thdResi st or model is that
the I nduct or model contains a differential equation
Lxder(pi) = v;, where thepi variable is differen-
tiated with respect to time using the builtder operator.

The other sub-models shown in this exam@egund,
VSour ceAC, and Capaci t or) is defined in a similar
manner as the one above.

3 A pattern can be a variable name, an underscore, or a tuplen\aih
gument values are passed, each value is matched againstréspond-
ing pattern. A variable is bound to the corresponding argunaalue, an
underscore matches anything, i.e., nothing happens; a taphatched
against a tuple value resulting in that each variable nantteeinuple pat-
tern is bound to the corresponding value in the tuple.

3.4 Executing the Model

Recall Figure 1, which outlined the compilation and simu-
lation process for a typical EOO language. When a model
is evaluated (executed) in MKL, this means the process
of elaborating a model into a DAE. Hence, the steps of
equation transformation, code generation, and simulation
are not part of the currently defined language semantics.
This latter steps can be conducted in a similar manner as
for an ordinary Modelica implementation. Alternatively,
the resulting equation system can be used for other pur-
poses, such as optimization [14]. In the next section we
illustrate several examples of how HOAMs can be used.
Consequently, these examples concern the use of HOAMs
during the elaboration phase, and not during the simula-
tion phase. Further discussion on future aspects of HOAMs
during these latter phases is given in Section 5.

4. Examples of Higher-Order Modeling

In Definition 3 (Section 2.4) we defined the meaning of

HOAMs, giving three statements on how HOAMSs can be

used. This section is divided into sub-sections, where we
exemplify these three kinds of usage by giving examples in
MKL.

4.1 Parameterization of Models with Models

A common goal of model design is to make model li-
braries extensible and reusable. A natural requirement
is to be able to parameterize models with other mod-
els, i.e., to reuse a model by replacing some of the sub-
models with other models. To illustrate the main idea of
parameterized acausal models, consider the following over
simplified example of an automobile model, where we use
Connecti on() with the same meaning as the previous
Wre():

def Autonobil e = nodel (Engi ne,
def c1 Connection();
def c2 Connection();
Engi ne(cl);
Gear box(cl, c2);
Tire(c2); Tire(c2);

Tire){

Tire(c2); Tire(c2)

I

In the example, the automobile is defined to have two
formal parameters; aBngi ne model and a’i r e model.

To create a model instance of the automobile, the model can
be applied to a specific engine, e.g., a mdaedi neV6

and some type of tire, e.d@i r eTypeA:

Aut onobi | e( Engi neVe6, Ti reTypeA) ;

If later on a new engine was developed, eEggi neVs, a
new automobile model instance can be created by changing
the arguments when the model instance is created, e.g.,

Aut onobi | e( Engi neV8, Ti reTypeA) ;

Hence, new model instances can be created without the
need to modify the definition of th&ut onobi | e model.
This is analogous to a higher-order function which takes a
function as a parameter.
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Figure 3. A mechatronic system with a direct current (DC) motor to thi &nd a flexible shaft to the right. The flexible
shaft consists of to N elements, where each element includes an inertia, a sjaninigg damper.

In the example above, the definition Afit onobi | e In the middle of the model in Figure 3 a rotational body
was not parametrized on ti@&@ar box model. Hence, the  with InertiaJ=0.2 is defined. This body is connected to a
Gear box definition must be given in the lexical scope of flexible shaft, i.e., a shaft which is divided into a number of
the Aut onobi | e definition. However, this model could  small bodies connected in series with a spring and a damper
of course also be defined as a parametéwbonobi | e. in parallel in between each pair of bodiéé.is the number

This way of reusing acausal models has obvious streng- of shaft elements that the shaft consists of.
ths, and it is therefore not surprising that constructs with A model of the mechatronic system is described by the
similar capabilities are available in some EOO languages, following MKL source code.

e.g., the specialedecl! ar e construct in Modelica. How- def MechSys = model (){

ever, instead of creating a special language construct for def ¢l = Rot Con():
this kind of reuse, we believe that HOAMs can give sim- def c2 = RotCon();
pler and a more uniform semantics of a EOO language. DCMbt or (c1) ;
. . Inertia(cl, c2,0.2);
4.2 Recursively Defined Models FI exi bl eShaf t (¢2, Rot Con(), 120) :

In many applications it is enough to hierarchically com- };

pose models by explicitly defining model instances within - 1he most interesting part is the definition of the component

each other (e.g., the simpléi rcuit example). How- g oy p| eShaf t . This shaft is connected to the Inertia
ever, sometimes several hundreds of model instances of theto the left. To the right, an empty rotational connection is

same model should be connected to each other. This can of

) ' created using the constructi®t Con() , resulting in the
course be achieved manually by creating hundreds of ex- jgnt side not being connected. The third argument states
plicit instances. However, this results in very large madel

v . that the shaft should consist of 120 elements.
that are hard to maintain and get an overview of. Can these 120 elements be described without the need of
One solution could be to add a loop-construct to the ¢qqe guplication? Yes, by the simple but powerful mecha-

EOO language. This is the approach taken in Modelica, nism of recursively defined models. Consider the following
with the f or -equation construct. However, such an extra self-explanatory definitions @haf t El ement :

language construct is actually not needed to model this

behavior. Analogously to defining recursive functions, we 9€f jh?f t E' f”ERgt o; rmfje' (ca, cb){
can defingecursive modelsThis gives the same modeling Seri ?1 (;a Ctl S)no ’

possibilities as adding theor -construct. However, it is Dgrrpe?( cay cl’ 1 é)_

more declarative and we hgve also found it easier tp deflr_1e Inertia(ct, ch, 0.03):

a compact formal semantics of the language using this }:

construct. ) )

Consider Figure 3 which shows a Mechatronic model, This model represents just one of the 120 elements con-
i.e., a model containing components from both the electri- nected in series in the flexible shaft. The actual flexible
cal and mechanical domain. The left hand side of the model Shaft model is recursively defined and makes use of the
shows a simple direct current (DC) motor. The electromo- Shaf t El ement model:
toric force (EMF) component converts electrical energy to defrec Fl exi bl eShaft = nodel (ca, cb, n){

mechanical rotational energy. If we recall from Section 2, i f(n==1)

the connection between electrical components was defined Shaf t El enent (ca, cb)
using theW r e definition. However, in the rotational me- el sef

chanical domain, the connection is instead defined by using def cl = RotCon();

Shaft El enent (ca, cl);

the angle for the potential variable and the torque for flow.
g P q Fl exi bl eShaf t (c1, cb, n-1):

The rotational connection is defined as follows:
def RotCon = func(){(var(),flow))}; };

}s



The recursive definition is analogous to a standard recur- For example, a new modé&loo that composes two other
sively defined function, where thd -expression evaluates  models can be defined as follows:

to false, as long as the count parametds not equal to def Foo = conposeparal | el (set (Resistor, 100),
1. For each recursive step, a new connection is created set (I nductor, 0.1));
by definingc1, which connects the shaft elements in se-
ries. Note that the last element of the shaft is connected to

the second port of thel exi bl eShaft model, since the

A standard library can then further be enhanced with other
generic functions, e.g., a function that composes two mod-

shaft element created when the-expression is evaluated elsin series:

to true takes parameteb as an argument. def conposeserial = func(M, M, Con){
When theMechSys model is elaborated using our model (p, n) {

MKL prototype implementation, it results in a DAE con- def w = Con()

sisting of 3159 equations and the same number of un- %E\?v ‘r’:’;

knowns. It is obviously beneficial to be able to define re- }
cursive models in cases such as the one above, instead og;
manually creating 120 instances of a shaft element. o . )
However, it is still a bit annoying to be forced to write However, this time the f.UI’IC.tIOI’I takes a third argument,
the recursive model definition each time one wants to seri- "@mely & connector, which is used to create the connec-
alize a number of model instances. Is it possible to capture fion between the models created in series. Since different
and define this serialization behavior once and for all, and domains have different kinds of connections (Wires, Rot-
then reuse this functionality? Qon etc.), this must pe supplied asan argu.mentto the func-
tion. These connections are defined as higher-order func-
4.3 Higher-Order Functions for Generic Model tions and can therefore easily be passed as a value to the

Transformation conposeseri al function.

In the previous section we have seen how models can be We have now created two simple generic functions
reused by applying models to other models, or to recur- which compose models in parallel and in series. How-
sively define models. In this section we show that it is in- €Ver, can we create a generic function that takes a model
deed possible to define several kindstddel transforma- M, @ connectoC', and an integer, and then returns a
tionsby using higher-order functions. These functions can New model where: number of models\/ has been con-
in turn be part of a modeling language’s standard library, nNected in series, using connecto® If this is possible,
enabling reuse of model transformation functions. we do not have to create a special recursive model for the
Recall the example from Section 2.2 of higher-order Fl exi bl eShaft, as shown in the previous section.
functions returning other anonymously defined functions. ~ Fortunately, this is indeed possible by combining a
Assume that we want to create a generic function, which generiC recursive model and a higher'order function. FiI‘St
can take any two models that have two ports defined We define arecursive modeecrodel :

(Resi st or, Capaci tor, Shaft El enent etc), and defrec recnodel = model (M C, ca, cb, n){
then compose them together by connecting them in paral- i f(n==1)
lel, and then return this new model: M ca, cb)
def conposeparallel = func(M, M) { el seg _ .
ef c1 = C();
model (p, n) { 1)
ML(p, n): Mca, cl);
I\/E(p’n)z recnodel (M C, cl1,ch,n-1);
,n); e
}

b

Note the similarities to the recursively defined model
FI exi bl eShaf t . However, in this version an arbitrary
modelMis composed in series, using connector parameter

b

However, our modeResi st or etc. does not take two ar-
guments, but 3, where the last one is the value for the partic-
ular component (resistance for tResi st or , inductance

for thel nduct or etc.). Hence, itis convenient to define a
function that sets the value of this kind of model and returns
a morespecializednodef:

To make this model useful, we encapsulate itin a higher-
order function, which takes a modg| a connecto€C, and
an integer numben of the number of wanted models in

def set = func(Mval){ series as input:
m)de:\é S g)f/al ): def serialize = func(M C, n){
} T ' nmodel (ca, cb) {
}: recnodel (M C, ca, cb, n);
’ }

4In these examples we are using tuples as argument to theidiinct }

whlch r_nak_es it necessary to introduce a set funct_|on._TheeSand of Now, we can once again define the mechatronic system
specialization can of course also be performed usimgying. However,

we have chosen to use the tuple notation, since it is likelpeanore given in .Figl:"'e 3, but this time by using the generic func-
accessible for the reader with little experience of fun@idanguages. tionseri ali ze:



def MekSys2 = nodel (){ to a generic flow connection structure with unspecified me-

def cl = RotCon(); dia. The selection of a media of type water in the source

def c2 = RotCon(); would automatically propagate to other objects.

DCMVot or(cl);

Inertia(cl, c2,0.2);

def Fi e§<i bl eShaft): 6. Related Work

seri al i ze( Shaf t El enent, Rot Con, 120); The main emphasis of this work is to explore the language

Fl exi bl eShaft(c2, Rot Con()); concept of HOAMs in the context of EOO languages. In the

H following we briefly discuss three aspects of work which is

Even if the serialize function might seem a bit compli- related to this topic.

cated to define, the good news is that such functions usually . ) )

are created by library developers and not end-users. Fortu-6-1  Functional Hybrid Modeling

nately, the end-user only has to call the serialize function As mentioned in the introduction, our notation of HOAMs
and then use the newly created model. For example, to cre-has similarities tdirst-class relations on signalas out-
ate a new model, where 50 resistors are composed in seriedined in the context of Functional Hybrid Modeling (FHM)

is as easy as the following: [18, 19]. The concepts in FHM are a generalization of
def Res50 = Functional Reactive Programming (FRP) [28], which is
serial i ze(set (Resi stor, 100), Wre, 50): based on reactive programming with causal hybrid mod-

eling capabilities. Both FHM and FRP are basedsimt

. . nalsthat conceptually are functions over time. While FRP

5. Future_ Perspectives of Higher-Order supports causal modeling, the aim of FHM is to support
Modeling acausal modeling with structurally dynamic systems. How-

Our current design of higher-order acausal modeling capa- ever, the work of FHM is currently at an early stage and

bilities as presented here is restricted to executing durin no published formal semantics or implementation currently

the compiler (or interpreter) model elaboration phase, i.e  exist.

it cannot interact with run-time objects during simulation HOAMs are similar to FHM's relations on signals in
However, removing this restriction gives interesting poss the sense that they are both first-class and that they can
bilities for run-time higher-order acausal modeling: recursively reference themselves. In this paper we have

showed how recursion can be used to define large structures

* The run-time results of simulation can be used in con- of connected models, while in [19] ideas are outlined how

junction with models as first-class objects in the lan- it can be used for structurally dynamic systems.

guage, i.e., run-time creation of models, composition of One difference is that FHM's relations on signals are
”;g‘;‘;lsh:gicrﬁt:rsn;‘g dn(;:)ﬂzfé;—rc])istiir?ntis;lzgc;ﬁifrurlr:g;g as it name states only relations on signals, while MKL
Eased control, influenced by resultps from (on-line) sim- acausal models can be parameterized on any pe, .9,
) ! other HOAMSs or constants. By contrast, FHM’s relation on
ulation of models, e.g., [9]. signals can be parameterized by other relations or cosstant
e Structural variability [8, 18, 19, 29] of models and sys- using ordinary functional abstraction, i.e., free varésbl
tems of equations means that the model structure caninside a relation can be bound by a surrounding function
change at run-time, e.g., change in causality and/or abstraction. There are obvious syntactic differenceghaut
number of equations. Run-time support for higher-order more specific semantic differences are currently hard to
acausal model can be seen as a general approach tacompare, since there are no public semantic specification
structurally variable systems. These ideas are discussedavailable for any FHM language.
in [18, 19] in the context of Functional Hybrid Model- The work with MKL has currently focused on formal-
ing (FHM). izing a kernel language for the elaboration process of typ-
ical EOO languages, such as Modelica. Hence, the formal
semantics of MKL defined in [4] investigates the compli-
cations when HOAMSs are combined with flow variables,
generating sum-to-zero equations. How this kind of issue
¢ How can static strong type checking be preserved? is handled in FHM is currently not published.

¢ How can high performance from compile-time opti-

mizations be preserved? One example is index reduc-
tion, which requires symbolic manipulation of equa- The notion of higher-order models is related to, but differ-

tions. ent from metamodeling and metaprogramming. A metapro-
gram is a program that takes other programs/models as data
and produces programs/models as data, i.e., meta-programs
can manipulat@bject programdg21]. A metamodel may
Another future generalization of higher-order acausalimod also have a subset of this functionality, i.e., it may spec-
eling would be to allow models to be propagated along con- ify the structure of other models represented as data, but
nections. For example, a water source could be connectednot necessarily be executable and produce other models.

These run-time modeling facilities provide more flexilyilit
and expressive power but also give rise to several research
challenges that need to be addressed:

6.2 Metaprogramming and Metamodeling

¢ How can we define a formal sound semantics for such a
language?



Staged metaprogramming can be achieved by quoting/un-

quoting operations applied in two or more stages, e.g., as
in MetaML [25] and Template Haskell [22].

We have earlier developed a simple metaprogramming
facility for Modelica by introducing quoting/unquoting
mechanisms [2], but with limited ability to perform op-
erations on code. A later extension [12] introduced general

return a model from a function. Redeclaration is similar to
C++ templates and Java Generics in that it allows passing
types/models, butis more closely integrated in the languag
since it part of the class/model concept rather than being a
completely separate feature. The Modelica redeclare can
be seen as a special case of the more general concept of
higher-order acausal models.

metaprogramming operations based on pattern-matching Modelica also provides the concept of for-equations

and transformations of abstract-syntax tree representati
of models/programs similar to those found in many func-
tional programming languages.

By contrast, the notion of higher-order models in this

paper allows direct access to models in the language, e.g.,

passing models to models and functions, returning models,
etc, without first representing (or viewing, reifying) mod-

els as data. This allows more integrated access to such fa-

cilities within the language including integration witheth
type system. Moreover, it often implies simpler usage and
increased re-use compared to what is typically offered by
metaprogramming approaches.

Metaprogramming, on the other hand, offers the pos-
sibility of greater generality on the allowed operations on
models, e.g., symbolic differentiation of model equations
and the possibility of compile-time only approaches with-
out any run-time penalty.

We should also mention the common usage of interpre-
tive scripting languages, e.g., Python, or add-on interpre
tive scripting facilities using algorithmic parts of the dio
eling language itself such as in OpenModelica [12] and Dy-
mola [7]. This works in practice, but is less well integrated
and typically a bit ad hoc. This either requires two lan-

guages (e.g., Python and Modelica), or a separate interpre-

tive implementation of a subset of the same language (e.qg.,
Modelica scripting) which often give some differences in
semantics, ad hoc restrictions, and inconsistent or figirtia
missing integration with a general type system.

6.3 Modelica Redeclare and For-Equations

Modelica [17] provides a powerful facility called redecla-
ration, which has some capabilities of higher order mod-
els. Using redeclare, models can be passed as argumen
to models (but not to functions using ordinary argument
passing mechanisms e.g., at run-time), and returned from
models in the context of defining a new model. For exam-

ple:

nodel RefinedResistorCircuit
CenericResistorCircuit
(redecl are nodel Resi storMdel
TenpResi stor);

Redeclaration can also be used to adapt a model when it is

inherited:

extends CGenericResistorCircuit
(redecl are nodel Resi storMdel
TenpResi st or)

Redeclare is a compile-time facility which operates during
the model elaboration phase. Moreover, using redeclare
it is not possible to pass a model to a function, or to

to express repetitive equations and connection structures
Since iteration can be expressed as recursion, also for mod-
els as shown in Section 4.2, the concept of for-equations
can be expressed as a special case of the more general con-
cept of recursive models included in higher-order acausal
models.

Even though EOO languages, such as Modelica, does
not support HOAMs at the syntax level, HOAMs can still
be very useful as a semantic concept for describing a pre-
cise formal semantics of the language. Language con-
structs, such a§or -equations, can then be transformed
down to a smaller kernel language. Having a small pre-
cisely defined language semantics can then make the lan-
guage specification less ambiguous, enable better formal
model checking possibilities, as well as providing more
accurate model exchange.

7. Conclusions

We have in this paper informally presented how the concept
of higher-order functions can be combined with acausal
models. This concept, which we call higher-order acausal
models (HOAMS), has been shown to be a fairly simple and
yet powerful construct, which enables both parameterized
models and recursively defined models. Moreover, by com-
bining it with functions, we have briefly shown how it can
be used to create reusable model transformation functions,
which typically can be part of a model language’s standard
library. The examples and the implementation were given
in a small research language called Modeling Kernel Lan-
guage (MKL), and it was illustrated how HOAMs can be
used during the elaboration phase. However, the concept is

tootlimited to the elaboration phase, and we believe that fu-

ture research in the area of HOAMs at runtime can enable
both more declarative expressiveness as well as simplified
semantics of EOO languages.
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