
AUTOMATIC PARALLELIZATION OF OBJECT
ORIENTED MODELS ACROSS METHOD AND

SYSTEM

Håkan Lundvall and Peter Fritzson

PELAB – Programming Environment Lab, Dept. Computer Science
Linköping University, S-581 83 Linköping, Sweden

haklu@ida.liu.se (Håkan Lundvall)

Abstract

In this work we report preliminary results of automatically generating parallel code from
equation-based models together at two levels: Performing inline expansion of a Runge-Kutta
solver combined with fine-grained automatic parallelization of the resulting RHS opens up
new possibilities for generating high performance code, which is becoming increasingly
relevant when multi-core computers are becoming common-place.
We have introduced a new way of scheduling the task graph generated from the simulation
problem which utilizes knowledge about locality of the simulation problem. The scheduling is
also done in a way that limits communication, to the greatest extent possible, to neighboring
processors and expensive global synchronization is avoided. Preliminary tests on a PC-cluster
show speedup that is better than what was achieved in previous work were parallelization was
done on the system only.

Keywords: Modelica, automatic parallelization.

Presenting Author’s biography

Håkan Lundvall got his masters degree in Computer Science and
Engineering from Linköping university in 1999, has since been working
in the software industry as a consultant. Since 2003 he combines his
work as a consultant with part time studies towards a phd at the
Programming Environments Laboratory at the computer science
department of Linköping University . Håkan’s interests lies within
modeling and simulation, high performance computations and
parallelization.

1 Background – Introduction to
Mathematical Modeling and Modelica

Modelica is a rather new language for equation-based
object-oriented mathematical modeling which is being
developed through an international effort [5][4]. The
language unifies and generalizes previous object-
oriented modeling languages. Modelica is intended to
become a de facto standard. It allows defining
simulation models in a declarative manner, modularly
and hierarchically and combining various formalisms
expressible in the more general Modelica formalism.
The multidomain capability of Modelica gives the
user the possibility to combine electrical, mechanical,
hydraulic, thermodynamic, etc., model components
within the same application model.
In the context of Modelica class libraries software
components are Modelica classes. However, when
building particular models, components are instances
of those Modelica classes. Classes should have well-
defined communication interfaces, sometimes called
ports, in Modelica called connectors, for
communication between a component and the outside
world. A component class should be defined
independently of the environment where it is used,
which is essential for its reusability. This means that
in the definition of the component including its
equations, only local variables and connector variables
can be used. No means of communication between a
component and the rest of the system, apart from
going via a connector, is allowed. A component may
internally consist of other connected components, i.e.
hierarchical modeling.
To grasp this complexity a pictorial representation of
components and connections is quite important. Such
graphic representation is available as connection

diagrams, of which a schematic example is shown in
Figure 1 where a complex car simulation model is
built in a graphical model editor.

Figure 1. Complex simulation models can be built by
combining readily available components from domain

libraries.
To summarize, Modelica has improvements in several
important areas:

• Object-oriented mathematical modeling. This

technique makes it possible to create physically

relevant and easy-to-use model components, which

are employed to support hierarchical structuring,

reuse, and evolution of large and complex models

covering multiple technology domains.

• Acausal modeling. Modeling is based on equations

instead of assignment statements as in traditional

input/output block abstractions. Direct use of

equations significantly increases re-usability of

model components, since components adapt to the

data flow context in which they are used. This

generalization enables both simpler models and

more efficient simulation. However, for interfacing

with traditional software, algorithm sections with

assignments as well as external

functions/procedures are also available in

Modelica.

• Physical modeling of multiple application

domains. Model components can correspond to

physical objects in the real world, in contrast to

established techniques that require conversion to

“signal” blocks with fixed input/output causality.

In Modelica the structure of the model becomes

more natural in contrast to block-oriented

modeling tools. For application engineers, such

“physical” components are particularly easy to

combine into simulation models using a graphical

editor (Figure 1).

2 The OpenModelica Open Source
Implementation

In this work the OpenModelica software is used which
is the major Modelica open-source tool effort.
The OpenModelica environment is the major
Modelica open-source tool effort [3] consists of
several interconnected subsystems, as depicted in Fig.
2. Arrows denote data and control flow. Several
subsystems provide different forms of browsing and
textual editing of Modelica code. The debugger
currently provides debugging of an extended
algorithmic subset of Modelica. The graphical model
editor is not really part of OpenModelica but
integrated into the system and available from
MathCore without cost for academic usage. In this
research project two parts of the OpenModelica
subsystem is used.

• A Modelica compiler subsystem, translating

Modelica to C code, with a symbol table

containing definitions of classes, functions, and

variables. Such definitions can be predefined, user-

defined, or obtained from libraries.

• An execution and run-time module. This module

currently executes compiled binary code from

translated expressions and functions, as well as

simulation code from equation based models,

linked with numerical solvers.

Modelica
Compiler

Interactive
session handler

Execution

Graphical Model
Editor/Browser

Textual
Model Editor

Modelica
Debugger

Emacs
Editor/Browser

DrModelica
NoteBook

Model Editor

Eclipse Plugin
Editor/Browser

Fig. 2. OpenModelica architecture.

3 Approaches to Integrate Parallelism
and Mathematical Models

There are several approaches to exploit parallelism in
mathematical models. In this section we briefly review
some approaches that are being investigated in the
context of parallel simulation of Modelica models.

3.1 Automatic Parallelization of Mathematical
Models

One obstacle to parallelization of traditional
computational codes is the prevalence of low-level
implementation details in such codes, that also makes
automatic parallelization hard.
Instead, it would be attractive to directly extract
parallelism from the high-level mathematical model,
or from the numerical method(s) used for solving the
problem. Such parallelism from mathematical models
can be categorized into three groups:

• Parallelism over the method. One approach is to

adapt the numerical solver for parallel

computation, i.e., to exploit parallelism over the

method. For example, by using a parallel ordinary

differential equation (ODE) solver for that allows

computation of several time steps simultaneously.

However, at least for ODE solvers, limited

parallelism is available. Also, the numerical

stability can decrease by such parallelization.

• Parallelism over time. A second alternative is to

parallelize the simulation over the simulated time.

This is however best suited for discrete event

simulations, since solutions to continuous time

dependent equation systems develop sequentially

over time, where each new solution step depends

on the immediately preceding steps.

• Parallelism of the system. This means that the

modeled system (the model equations) are

parallelized. For an ODE or DAE equation system,

this means parallelization of the right-hand sides of

such equation systems which are available in

explicit form; moreover, in many cases implicit

equations can automatically be symbolically

transformed into explicit form.
A thorough investigation of the third approach,
automatic parallelization over the system, has been
done in our recent work on automatic parallelization
(fine-grained task-scheduling) of a mathematical
model [1] [11], Fig 3.

Fig. 3. Speedup on Linux cluster with SCI
interconnect.

In this work we aim at extending our previous
approach to inlined solvers, integrated in a framework
exploiting several levels of parallelism.

3.2 Coarse-Grained Explicit Parallelization Using
Computational Components

Automatic parallelization methods have their limits. A
natural idea for improved performance is to structure
the application into computational components using
strongly-typed communication interfaces.
This involves generalization of the architectural
language properties of Modelica, currently supporting
components and strongly typed connectors, to
distributed components and connectors. This will
enable flexible configuration and connection of
software components on multiprocessors or on the
GRID. This only involves a structured system of
distributed solvers/ or solver components.

3.3 Explicit Parallel Programming
The third approach is providing general easy-to-use
explicit parallel programming constructs within the
algorithmic part of the modeling language. We have
previously explored this approach with the NestStep-
Modelica language [7, 12]. NestStep is a parallel
programming languge based on the BSP (Bulk-
Synchronous Parallal) model which is an abstraction
of a restricted message passing architecture and
charges cost for communication. It is defined as a set
of language extensions which in the case of

2 4 6 8 10 12 16

Processors

1.2

1.4

1.6

1.8

2

2.2

Speedup

NestStepModelica is added to the algorithmic part of
Modelica. The added constructs provide shared
variables and process coordination. NestStepModelica
processes run, in general, on different machines that
are coupled by the NestStepModelica language
extensions and runtime system to a virtual parallel
computer.

4 Combining Parallelization at Several
Levels

Models described in object oriented equations based
languages like Modelica render large differential
algebraic equation systems that can be solved using
numerical ODE-solvers. Many scientific and
engineering problems require a lot of computational
resources, particularly if the system is large or if the
right hand side is complicated and expensive to
evaluate. Obviously, the ability to parallelize such
models is important, if such problems are to be solved
in a reasonable amount of time.
As mentioned in Section 3, parallelization of object
oriented equation based simulation code can be done
at several different levels. In this paper we explore the
combination of the following two parallelization
approaches

• Parallelization across the method, e.g., where the

stage vectors of a Runge-Kutta solver can be

evaluated in parallel within a single time step

• Fine grained parallelization across the system

where the evaluation of the right hand side of the

system equations is parallelized.
The nature of the model dictates to a high degree what
parallelization techniques that can be successfully

exploited.
We suggest that often it is desirable to apply
parallelization on more than one level simultaneously.
In a model where two parts are loosely coupled it can,
e.g., be beneficial to split the model using
transmission line modeling and use automatic
equation parallelization across each sub model. In this
paper however we investigate the possibility of doing
automatic parallelization across the equations and the
solver simultaneously. In previous work [1] automatic
parallelization across the system has been done by
building a task graph containing all the operations
involved in evaluating the equations of the system
DAE. In order to make the cost of evaluating each task
large enough compared to the communication cost
between the parallel processors he uses a graph
rewriting system that merges tasks together in such a
way that the total cost of computing and
communicating is minimized. In his approach the
solver is centralized and runs on one processor. Each
time the right hand side is to be evaluated, data needed
by tasks on other processors is send and the result of
all tasks is collected in the first process before
returning to the solver. As a continuation of this work
we now inline an entire Runge-Kutta solver in the task
graph before scheduling of the tasks.
Many simulation problems have DAE:s consisting of
a very large set of equations but were each equation
only depends on a relatively small set of other
equations.
Let f = (f1,…,fn) be the right hand side of such a
simulation problem and let fi contain equations only
depending on equations of components of indices in a
range near i. This makes it possible to pipeline the
computations of the resulting task graph, since

Fig. 4. Task graph of two stage inlined Runge-Kutta solver.

evaluating fi for stage s of the Runge-Kutta solver
depend only on fj of stage s for j close to i and on fi of
stage s-1.
A task graph of a system where the right hand side can
be divided into three parts, denoted by the functions f1,

f2 and f3 where fi only depend on fi-1, inlined in a two
stage Runge-Kutta solver is shown in figure 4. In the
figure n_k represent the state after the previous time
step. We call the function fi the blocks of the system.
If we schedule each block to a different processor, let
us say fi is scheduled to pi, then p1 can continue
calculating the second stage of the solver as p2 starts
calculating the first stage of f2. The communication
between p1 and p2 can be non-blocking so that if many
stages are used communication can be carried out
simultaneous to the calculations. In a shared memory
system we only have to set a flag that the data is ready
for the next process and no data transfer must take
pace.
The pipelining technique is described in [10]. Here we
aim to automatically detect pipelining possibilities in
the total task graph containing both the solver stages
and the right hand side of the system, and
automatically generate parallelized code optimized for
the specific latency and bandwidth parameters of the
target machine.
It the earlier approach with task merging including
task duplication the resulting task graph usually ends
up with one task per processor and communication
takes place at two points in each simulation step;
initially when distributing the previous step result
from the processor running the solver to all other
processors and at the end collecting the results back to
the solver.
When inlining a multi-stage solver in the task graph
each processor only needs to communicate whit its
neighbor. In this approach however we cannot merge
tasks as much since the neighbors of a processor
depends on initial results to be able to start their tasks.
So, instead of communicating a lot in the beginning
and in the end smaller portions are communicated
throughout the calculation of the simulation step.
If the task graph of a system mostly has the property
of having a narrow access distance, which is required
for the pipelining, but only on a small number of
places access components in more distant parts of the
graph. The rewriting system could also make
suggestions to the user of places in the model that
would benefit from a decoupling using transmission
line modeling if it can be done without loosing the
physical correctness of the model.
The task rewriting system is build into the
OpenModelica compiler previously mentioned.

5 Pipelining the task graph

Since communication between processors is going to
be more frequent with this approach we want to make
sure the communication interfere as little as possible
with computation. Therefore, we schedule the tasks in
such a way that communication taking place inside the

simulation step is always directed from a processor
with lower rank to a higher ranked processor. In this
way the lower ranked processor is always able to carry
on with calculations even if the receiving processor
temporarily falls behind. At the end of the simulation
step there is a face were values required for the next
simulation step is transferred back to lower ranked
processors, but this is only needed once per
simulations step instead of once for each evaluation of
the right hand side. Further more this communication
takes place between neighbors and not to a single
master process which otherwise can get overloaded
with communication as the number of processors
becomes large.

6 Sorting Equations for Short Access
Distance

One part of translating an acausal equation-based
model into simulation code involves sorting the
equations into data dependency order. This is done
using Tarjan’s algorithm which also finds any strongly
connected components in the system graph, i.e., a
group of equations that must be solved
simultaneously. We assign a sequence number to each
variable, or set of variables in case of a strongly
connected component, and use this to help the
scheduler assign tasks that communicate much within
the same processor. When the task graph is generated
each task is marked with sequence number of the
variable it calculates. When a system with n variables
is to be scheduled onto p processors, tasks marked 1
through n/p is assigned to the first processor and so
on.
Even though Tarjan’s algorithm assures that the
equations are evaluated in a correct order we cannot
be sure that there is not a different ordering where the
access distance is smaller. If for example two parts of
the system is largely independent they can become
interleaved in the sequence of equations making the
access distance unnecessarily large. Therefore we
apply an extra sorting step after Tarjan’s algorithm
which moves equations with direct dependencies
closer together. This reduces the risk of two tasks with
a direct dependency getting assigned to different
processors.
As input to the extra sorting step we have a list of
components and a matching defining which variable is
solved by which equation. On component represent a
set of equations that must be solved simultaneously. A
component often includes only one equation. The
extra sorting step works by popping a component from
the head of the component list and placing them in the
resulting sorted list as near the head of the sorted list
as possible without placing it before a component on
which it depends. See pseudo-code for the algorithm
below.
The following data structures are used in the code:

matching A map from variables to the
equations that solve them.

componentList The initial list of components.

sortedList The resulting sorted list of
components.

Set sortedList To an empty set of components

While componentList not empty

 Set comp To componentList.PopHead()

 Set varSet To the set of all variables

 accessed in any equation of comp

 Set eqSet To an empty set of equations

 For each variable v in varSet

 eqSet.insert(matching[v])

 end for

 Devide sortedList into left and right so

 that right is the largest suffix of

 sortedList where Intersection(right,eqSet)

 is empty.

 Set sortedList To the concatenation of

 left, comp and right

End while

7 Scheduling

In this section we describe the scheduling process. We
want all communication occurring inside the
simulation step to be one-way only, from processors
with lower rank to processors with higher rank. To
achieve this we make use of information stored with
each task telling us from which equation it originates
and thus which variable it is a part of evaluating. We
do this by assigning the tasks to the processors in the
order obtained after the sorting step described in
section 6.
Task with variable number 0 through n1 is scheduled
to the first processor, n1+1 through n2 to the second
and so on. The values of ni are chosen so that they are
always the variable number representing a state
variable.
If we generate code for a single stage solver, e.g.,
Euler, this would be enough to ensure backward
communication only takes place between simulation
steps, since the tasks are sorted to ensure no backward
dependencies. This is not, however, the case when we
generate code for multi-stage solvers. When sorting
the equations in data-dependency order, variables
considered known, like the state of the previous step
are not considered, but in a later stage of the solver
those values might have been calculated by an
equation that comes later in the data-dependency
sorting. This kind of dependency is represented by the
dotted lines in figure 4. Luckily such references tend
to have a short access distance as well and we solve
this by adding a second step to the scheduling process.
For each processor p starting with the lowest ranked,
find each task reachable from any leaf task scheduled
to p by traversing the task graph with the edges
reversed. Any task visited that was not already
assigned to processor p is then moved to processor p.
Tests show that the moved tasks do not influence the
load balance of the schedule much.
When generating code for the individual processors
there might be internal dependencies that dictate the

order in which the tasks are laid out, which do not
correspond to the order in which the results are needed
by dependent tasks on other processors.
Assume t1 and t2 are assigned to processor p1 and t3
and t4 are assigned to processor p2. Assume further
that there are dependencies between the tasks as
shown in figure 5.

.
Fig. 5. Data dependency graph.

In this case there is no sense in scheduling a send
operation from t1 until t2 is also done since no other
processor can proceed with the result of t1 alone.
Therefore all send operations are postponed until there
is one that another processor actually might be waiting
for. Then all queued up send operations are merged
into a single message which reduces the
communication overhead.

8 Measurements

In order to evaluate the gained speedup we have used
a model of a flexible shaft using a one-dimensional
discretization scheme. The shaft is modeled using a
series of n rotational spring-damper components
connected in a sequence. In order to make the
simulation task computationally expensive enough, to
make parallelization worth while, we use a non linear
spring-damper model.

Relative speedup

1

1,2

1,4

1,6

1,8

2

2,2

2,4

2,6

0 2 4 6 8 10 12 14 16 18 20 22

Number of Processors

S
p

e
e
d

u
p

Fig. 6. Relative speedup on PC-cluster

In these tests we use a shaft consisting of 100 spring-
damper elements connected together. The same model
has bee used when the task merging approach was
evaluated in [1], which makes it possible to compare

t1

t2

t3

t4

the results of this work to what was previously
achieved.
The measurements were carried out on a 30-node PC
cluster where each computation node is equipped with
two 1.8 GHz AMD Athlon MP 2200+ and 2GB of
RAM. Gigabit Ethernet is used for communication.
Figure 6 shows the results of the tests carried out so
far. As can be seen the speedup for two processors is
almost linear, but when the number of processors
increase the speedup does not follow.

9 Conclusion

To conclude we can se that for two processors the
tests were very promising, but those promises were
not fulfilled when the number of processors increased.
If we compare to the previous results obtained with
task merging in [1], though, we do not suffer from
slowdown in the same way (see figure 3). Most likely
this has to do with the fact that the communication
cost for the master process running the solver
increases linearly with the number of processors
whereas in our new approach this communication is
distributed more evenly among all processors.
We have yet to do an in depth analysis of why the
speedup for two processors is so good and way it does
not scale as great.

10 Future work

In the nearest future we will profile the generated code
to see were the bottlenecks are when ran on more than
two processors and see if the scheduling algorithm can
be tuned to avoid them. Also, tests must be carried out
on different simulation problems to see if the results
are general or if it differs much depending on the
problem.
We also intend to port the runtime to run on threads in
a shared memory setup. Since the trend is for CPU
manufacturers to add more and more cores to the
CPUs, it is becoming more and more relevant to
explore parallelism in such an environment.
A runtime for the Cell BE processor is also planed.
This processor has eight, so called, Synergistic
Processing Elements (SPE) which do not actually
share memory. Instead each SPE has it’s own local
memory. Transfers to and from those local memories
can be carried out using DMA without using any
computation resources, so it should be possible to hide
the communication latency during computation.

11 Acknowledgements

This work was supported by Vinnova in the Safe &
Secure Modeling and Simulation project.

12 References

[1] Peter Aronsson. Automatic Parallelization of

Equation-Based Simulation Programs. PhD
thesis, Dissertation No. 1022, Dept. Computer and

Information Science, Linköping University,
Linköping, Sweden.

[2] Olaf Bonorden, Ben Juurlink, Ingo von Otte, and
Ingo Rieping. The Paderborn University BSP
(PUB) Library. Parallel Computing, 29:187–207,
2003.

[3] Peter Fritzson, Peter Aronsson, Håkan Lundvall,
Kaj Nyström, Adrian Pop, Levon Saldamli, and
David Broman. The OpenModelica Modeling,
Simulation, and Software Development
Environment. In Simulation News Europe,
44/45, December 2005. See also:
http://www.ida.liu.se/projects/OpenModelica.

[4] Peter Fritzson. Principles of Object-Oriented

Modeling and Simulation with Modelica 2.1, 940
pp., ISBN 0-471-471631, Wiley-IEEE Press,
2004. See also book web page:
www.mathcore.com/drModelica

[5] The Modelica Association. The Modelica

Language Specification Version 2.2, March 2005.
http://www.modelica.org.

[6] OpenMP Architecture Review Board. OpenMP: a
Proposed Industry Standard API for Shared
Memory Programming. White Paper,
http://www.openmp.org/, October 1997.

[7] Joar Sohl. A Scalable Run-time System for

NestStep on Cluster Supercomputers. Master
thesis LITH-IDA-EX-06/011-SE, IDA,
Linköpings universitet, 58183 Linköping,
Sweden, March 2006.

[8] Kaj Nyström and Peter Fritzson. Parallel
Simulation with Transmission Lines in Modelica.
In Proceedings of the 5th International Modelica

Conference (Modelica'2006), Vienna, Austria,
Sept. 4-5, 2006.

[9] Alexander Siemers, Dag Fritzson, and Peter
Fritzson. Meta-Modeling for Multi-Physics Co-
Simulations applied for OpenModelica. In

Proceedings of International Congress on

Methodologies for Emerging Technologies in

Automation (ANIPLA2006), Rome, Italy,
November 13-15, 2006.

[10] Matthias Korch and Thomas Rauber. Optimizing
Locality and Scalability of Embedded Runge-
Kutta Solvers Using Block-Based Pipelining.
Journal of Parallel and Distributed Computing,

Volume 66 , Issue 3 (March 2006), Pages: 444 –
468.

[11] Peter Aronsson and Peter Fritzson. Automatic
Parallelization in OpenModelica. In Proceedings

of 5th EUROSIM Congress on Modeling and

Simulation, Paris, France. ISBN (CD-ROM) 3-
901608-28-1, Sept 2004.

[12] Christoph Kessler, Peter Fritzson and Mattias
Eriksson. NestStepModelica: Mathematical
Modeling and Bulk-Synchronous Parallel
Simulation. PARA-06 Workshop on state-of-the-

art in scientific and parallel computing, Umeå,
Sweden, June 18-21, 2006.

