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Abstract  

In this work we report preliminary results of automatically generating parallel code from 
equation-based models together at two levels: Performing inline expansion of a Runge-Kutta 
solver combined with fine-grained automatic parallelization of the resulting RHS opens up 
new possibilities for generating high performance code, which is becoming increasingly 
relevant when multi-core computers are becoming common-place. 
We have introduced a new way of scheduling the task graph generated from the simulation 
problem which utilizes knowledge about locality of the simulation problem. The scheduling is 
also done in a way that limits communication, to the greatest extent possible, to neighboring 
processors and expensive global synchronization is avoided. Preliminary tests on a PC-cluster 
show speedup that is better than what was achieved in previous work were parallelization was 
done on the system only. 
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1 Background –  Introduction to 
Mathematical Modeling and Modelica 

Modelica is a rather new language for equation-based 
object-oriented mathematical modeling which is being 
developed through an international effort [5][4]. The 
language unifies and generalizes previous object-
oriented modeling languages. Modelica is intended to 
become a de facto standard. It allows defining 
simulation models in a declarative manner, modularly 
and hierarchically and combining various formalisms 
expressible in the more general Modelica formalism. 
The multidomain capability of Modelica gives the 
user the possibility to combine electrical, mechanical, 
hydraulic, thermodynamic, etc., model components 
within the same application model. 
In the context of Modelica class libraries software 
components are Modelica classes. However, when 
building particular models, components are instances 
of those Modelica classes. Classes should have well-
defined communication interfaces, sometimes called 
ports, in Modelica called connectors, for 
communication between a component and the outside 
world. A component class should be defined 
independently of the environment where it is used, 
which is essential for its reusability. This means that 
in the definition of the component including its 
equations, only local variables and connector variables 
can be used. No means of communication between a 
component and the rest of the system, apart from 
going via a connector, is allowed. A component may 
internally consist of other connected components, i.e. 
hierarchical modeling. 
To grasp this complexity a pictorial representation of 
components and connections is quite important. Such 
graphic representation is available as connection 

diagrams, of which a schematic example is shown in 
Figure 1 where a complex car simulation model is 
built in a graphical model editor. 

 
Figure 1. Complex simulation models can be built by 
combining readily available components from domain 

libraries. 
To summarize, Modelica has improvements in several 
important areas: 

• Object-oriented mathematical modeling. This 

technique makes it possible to create physically 

relevant and easy-to-use model components, which 

are employed to support hierarchical structuring, 

reuse, and evolution of large and complex models 

covering multiple technology domains. 

• Acausal modeling. Modeling is based on equations 

instead of assignment statements as in traditional 

input/output block abstractions. Direct use of 

equations significantly increases re-usability of 

model components, since components adapt to the 

data flow context in which they are used. This 

generalization enables both simpler models and 

more efficient simulation. However, for interfacing 

with traditional software, algorithm sections with 

assignments as well as external 

functions/procedures are also available in 

Modelica. 

• Physical modeling of multiple application 

domains. Model components can correspond to 

physical objects in the real world, in contrast to 

established techniques that require conversion to 

“signal” blocks with fixed input/output causality. 

In Modelica the structure of the model becomes 

more natural in contrast to block-oriented 

modeling tools. For application engineers, such 

“physical” components are particularly easy to 

combine into simulation models using a graphical 

editor (Figure 1). 

2 The OpenModelica Open Source 
Implementation 

In this work the OpenModelica software is used which 
is the major Modelica open-source tool effort.  
The OpenModelica environment is the major 
Modelica open-source tool effort [3] consists of 
several interconnected subsystems, as depicted in Fig. 
2. Arrows denote data and control flow. Several 
subsystems provide different forms of browsing and 
textual editing of Modelica code. The debugger 
currently provides debugging of an extended 
algorithmic subset of Modelica. The graphical model 
editor is not really part of OpenModelica but 
integrated into the system and available from 
MathCore without cost for academic usage. In this 
research project two parts of the OpenModelica 
subsystem is used. 

• A Modelica compiler subsystem, translating 

Modelica to C code, with a symbol table 

containing definitions of classes, functions, and 

variables. Such definitions can be predefined, user-

defined, or obtained from libraries. 



• An execution and run-time module. This module 

currently executes compiled binary code from 

translated expressions and functions, as well as 

simulation code from equation based models, 

linked with numerical solvers. 
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Fig. 2. OpenModelica architecture. 

3 Approaches to Integrate Parallelism 
and Mathematical Models 

There are several approaches to exploit parallelism in 
mathematical models. In this section we briefly review 
some approaches that are being investigated in the 
context of parallel simulation of Modelica models. 

3.1 Automatic Parallelization of Mathematical 
Models 

One obstacle to parallelization of traditional 
computational codes is the prevalence of low-level 
implementation details in such codes, that also makes 
automatic parallelization hard.  
Instead, it would be attractive to directly extract 
parallelism from the high-level mathematical model, 
or from the numerical method(s) used for solving the 
problem. Such parallelism from mathematical models 
can be categorized into three groups: 

• Parallelism over the method. One approach is to 

adapt the numerical solver for parallel 

computation, i.e., to exploit parallelism over the 

method. For example, by using a parallel ordinary 

differential equation (ODE) solver for that allows 

computation of several time steps simultaneously. 

However, at least for ODE solvers, limited 

parallelism is available. Also, the numerical 

stability can decrease by such parallelization. 

• Parallelism over time. A second alternative is to 

parallelize the simulation over the simulated time. 

This is however best suited for discrete event 

simulations, since solutions to continuous time 

dependent equation systems develop sequentially 

over time, where each new solution step depends 

on the immediately preceding steps. 

• Parallelism of the system. This means that the 

modeled system (the model equations) are 

parallelized. For an ODE or DAE equation system, 

this means parallelization of the right-hand sides of 

such equation systems which are available in 

explicit form; moreover, in many cases implicit 

equations can automatically be symbolically 

transformed into explicit form. 
A thorough investigation of the third approach, 
automatic parallelization over the system, has been 
done in our recent work on automatic parallelization 
(fine-grained task-scheduling) of a mathematical 
model [1] [11], Fig 3. 

 

Fig. 3. Speedup on  Linux cluster with SCI 
interconnect. 

In this work we aim at extending our previous 
approach to inlined solvers, integrated in a framework 
exploiting several levels of parallelism. 

3.2 Coarse-Grained Explicit Parallelization Using 
Computational Components 

Automatic parallelization methods have their limits. A 
natural idea for improved performance is to structure 
the application into computational components using 
strongly-typed communication interfaces. 
This involves generalization of the architectural 
language properties of Modelica, currently supporting 
components and strongly typed connectors, to 
distributed components and connectors. This will 
enable flexible configuration and connection of 
software components on multiprocessors or on the 
GRID. This only involves a structured system of 
distributed solvers/ or solver components.  

3.3 Explicit Parallel Programming  
The third approach is providing general easy-to-use 
explicit parallel programming constructs within the 
algorithmic part of the modeling language. We have 
previously explored this approach with the NestStep-
Modelica language [7, 12]. NestStep is a parallel 
programming languge based on the BSP (Bulk-
Synchronous Parallal) model which is an abstraction 
of a restricted message passing architecture and 
charges cost for communication. It is defined as a set 
of language extensions which in the case of 
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NestStepModelica is added to the algorithmic part of 
Modelica. The added constructs provide shared 
variables and process coordination. NestStepModelica 
processes run, in general, on different machines that 
are coupled by the NestStepModelica language 
extensions and runtime system to a virtual parallel 
computer. 

4 Combining Parallelization at Several 
Levels 

Models described in object oriented equations based 
languages like Modelica render large differential 
algebraic equation systems that can be solved using 
numerical ODE-solvers. Many scientific and 
engineering problems require a lot of computational 
resources, particularly if the system is large or if the 
right hand side is complicated and expensive to 
evaluate. Obviously, the ability to parallelize such 
models is important, if such problems are to be solved 
in a reasonable amount of time. 
As mentioned in Section 3, parallelization of object 
oriented equation based simulation code can be done 
at several different levels. In this paper we explore the 
combination of the following two parallelization 
approaches 

• Parallelization across the method, e.g., where the 

stage vectors of a Runge-Kutta solver can be 

evaluated in parallel within a single time step 

• Fine grained parallelization across the system 

where the evaluation of the right hand side of the 

system equations is parallelized. 
The nature of the model dictates to a high degree what 
parallelization techniques that can be successfully 

exploited.  
We suggest that often it is desirable to apply 
parallelization on more than one level simultaneously. 
In a model where two parts are loosely coupled it can, 
e.g., be beneficial to split the model using 
transmission line modeling and use automatic 
equation parallelization across each sub model. In this 
paper however we investigate the possibility of doing 
automatic parallelization across the equations and the 
solver simultaneously. In previous work [1] automatic 
parallelization across the system has been done by 
building a task graph containing all the operations 
involved in evaluating the equations of the system 
DAE. In order to make the cost of evaluating each task 
large enough compared to the communication cost 
between the parallel processors he uses a graph 
rewriting system that merges tasks together in such a 
way that the total cost of computing and 
communicating is minimized. In his approach the 
solver is centralized and runs on one processor. Each 
time the right hand side is to be evaluated, data needed 
by tasks on other processors is send and the result of 
all tasks is collected in the first process before 
returning to the solver. As a continuation of this work 
we now inline an entire Runge-Kutta solver in the task 
graph before scheduling of the tasks. 
Many simulation problems have DAE:s consisting of 
a very large set of equations but were each equation 
only depends on a relatively small set of other 
equations. 
Let f = (f1,…,fn) be the right hand side of such a 
simulation problem and let fi contain equations only 
depending on equations of components of indices in a 
range near i. This makes it possible to pipeline the 
computations of the resulting task graph, since 

 
Fig. 4. Task graph of two stage inlined Runge-Kutta solver. 



evaluating fi for stage s of the Runge-Kutta solver 
depend only on fj of stage s for j close to i and on fi of 
stage s-1. 
A task graph of a system where the right hand side can 
be divided into three parts, denoted by the functions f1, 

f2 and f3 where fi only depend on fi-1, inlined in a two 
stage Runge-Kutta solver is shown in figure 4. In the 
figure n_k represent the state after the previous time 
step. We call the function fi the blocks of the system. 
If we schedule each block to a different processor, let 
us say fi is scheduled to pi, then p1 can continue 
calculating the second stage of the solver as p2 starts 
calculating the first stage of f2. The communication 
between p1 and p2 can be non-blocking so that if many 
stages are used communication can be carried out 
simultaneous to the calculations. In a shared memory 
system we only have to set a flag that the data is ready 
for the next process and no data transfer must take 
pace.  
The pipelining technique is described in [10]. Here we 
aim to automatically detect pipelining possibilities in 
the total task graph containing both the solver stages 
and the right hand side of the system, and 
automatically generate parallelized code optimized for 
the specific latency and bandwidth parameters of the 
target machine. 
It the earlier approach with task merging including 
task duplication the resulting task graph usually ends 
up with one task per processor and communication 
takes place at two points in each simulation step; 
initially when distributing the previous step result 
from the processor running the solver to all other 
processors and at the end collecting the results back to 
the solver. 
When inlining a multi-stage solver in the task graph 
each processor only needs to communicate whit its 
neighbor. In this approach however we cannot merge 
tasks as much since the neighbors of a processor 
depends on initial results to be able to start their tasks. 
So, instead of communicating a lot in the beginning 
and in the end smaller portions are communicated 
throughout the calculation of the simulation step. 
If the task graph of a system mostly has the property 
of having a narrow access distance, which is required 
for the pipelining, but only on a small number of 
places access components in more distant parts of the 
graph. The rewriting system could also make 
suggestions to the user of places in the model that 
would benefit from a decoupling using transmission 
line modeling if it can be done without loosing the 
physical correctness of the model. 
The task rewriting system is build into the 
OpenModelica compiler previously mentioned. 

5 Pipelining the task graph 

Since communication between processors is going to 
be more frequent with this approach we want to make 
sure the communication interfere as little as possible 
with computation. Therefore, we schedule the tasks in 
such a way that communication taking place inside the 

simulation step is always directed from a processor 
with lower rank to a higher ranked processor. In this 
way the lower ranked processor is always able to carry 
on with calculations even if the receiving processor 
temporarily falls behind. At the end of the simulation 
step there is a face were values required for the next 
simulation step is transferred back to lower ranked 
processors, but this is only needed once per 
simulations step instead of once for each evaluation of 
the right hand side. Further more this communication 
takes place between neighbors and not to a single 
master process which otherwise can get overloaded 
with communication as the number of processors 
becomes large. 

6 Sorting Equations for Short Access 
Distance 

One part of translating an acausal equation-based 
model into simulation code involves sorting the 
equations into data dependency order. This is done 
using Tarjan’s algorithm which also finds any strongly 
connected components in the system graph, i.e., a 
group of equations that must be solved 
simultaneously. We assign a sequence number to each 
variable, or set of variables in case of a strongly 
connected component, and use this to help the 
scheduler assign tasks that communicate much within 
the same processor. When the task graph is generated 
each task is marked with sequence number of the 
variable it calculates. When a system with n variables 
is to be scheduled onto p processors, tasks marked 1 
through n/p is assigned to the first processor and so 
on. 
Even though Tarjan’s algorithm assures that the 
equations are evaluated in a correct order we cannot 
be sure that there is not a different ordering where the 
access distance is smaller. If for example two parts of 
the system is largely independent they can become 
interleaved in the sequence of equations making the 
access distance unnecessarily large. Therefore we 
apply an extra sorting step after Tarjan’s algorithm 
which moves equations with direct dependencies 
closer together. This reduces the risk of two tasks with 
a direct dependency getting assigned to different 
processors. 
As input to the extra sorting step we have a list of 
components and a matching defining which variable is 
solved by which equation. On component represent a 
set of equations that must be solved simultaneously. A 
component often includes only one equation. The 
extra sorting step works by popping a component from 
the head of the component list and placing them in the 
resulting sorted list as near the head of the sorted list 
as possible without placing it before a component on 
which it depends. See pseudo-code for the algorithm 
below. 
The following data structures are used in the code: 

matching A map from variables to the 
equations that solve them. 



componentList The initial list of components. 

sortedList The resulting sorted list of 
components. 

 
Set sortedList To an empty set of components 

While componentList not empty 

 Set comp To  componentList.PopHead() 

 Set varSet To the set of all variables 

  accessed in any equation of comp 

 Set eqSet To an empty set of equations 

 For each variable v in varSet 

  eqSet.insert(matching[v]) 

 end for 

 

 Devide sortedList into left and right so 

 that right is the largest suffix of 

 sortedList where Intersection(right,eqSet) 

 is empty. 

 

 Set sortedList To the concatenation of 

  left, comp and right 

End while 

7 Scheduling 

In this section we describe the scheduling process. We 
want all communication occurring inside the 
simulation step to be one-way only, from processors 
with lower rank to processors with higher rank. To 
achieve this we make use of information stored with 
each task telling us from which equation it originates 
and thus which variable it is a part of evaluating.  We 
do this by assigning the tasks to the processors in the 
order obtained after the sorting step described in 
section 6.  
Task with variable number 0 through n1 is scheduled 
to the first processor, n1+1 through n2 to the second 
and so on. The values of ni are chosen so that they are 
always the variable number representing a state 
variable.  
If we generate code for a single stage solver, e.g.,  
Euler, this would be enough to ensure backward 
communication only takes place between simulation 
steps, since the tasks are sorted to ensure no backward 
dependencies. This is not, however, the case when we 
generate code for multi-stage solvers. When sorting 
the equations in data-dependency order, variables 
considered known, like the state of the previous step 
are not considered, but in a later stage of the solver 
those values might have been calculated by an 
equation that comes later in the data-dependency 
sorting. This kind of dependency is represented by the 
dotted lines in figure 4. Luckily such references tend 
to have a short access distance as well and we solve 
this by adding a second step to the scheduling process.  
For each processor p starting with the lowest ranked, 
find each task reachable from any leaf task scheduled 
to p by traversing the task graph with the edges 
reversed. Any task visited that was not already 
assigned to processor p is then moved to processor p. 
Tests show that the moved tasks do not influence the 
load balance of the schedule much. 
When generating code for the individual processors 
there might be internal dependencies that dictate the 

order in which the tasks are laid out, which do not 
correspond to the order in which the results are needed 
by dependent tasks on other processors. 
Assume t1 and t2 are assigned to processor p1 and t3 
and t4 are assigned to processor p2. Assume further 
that there are dependencies between the tasks as 
shown in figure 5. 

.  
Fig. 5. Data dependency graph. 

 
In this case there is no sense in scheduling a send 
operation from t1 until t2 is also done since no other 
processor can proceed with the result of t1 alone. 
Therefore all send operations are postponed until there 
is one that another processor actually might be waiting 
for. Then all queued up send operations are merged 
into a single message which reduces the 
communication overhead.  

8 Measurements 

In order to evaluate the gained speedup we have used 
a model of a flexible shaft using a one-dimensional 
discretization scheme. The shaft is modeled using a 
series of n rotational spring-damper components 
connected in a sequence. In order to make the 
simulation task computationally expensive enough, to 
make parallelization worth while, we use a non linear 
spring-damper model. 
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Fig. 6. Relative speedup on PC-cluster 

In these tests we use a shaft consisting of 100 spring-
damper elements connected together. The same model 
has bee used when the task merging approach was 
evaluated in [1], which makes it possible to compare 

t1 

t2 

t3 

t4 



the results of this work to what was previously 
achieved. 
The measurements were carried out on a 30-node PC 
cluster where each computation node is equipped with 
two 1.8 GHz AMD Athlon MP 2200+ and 2GB of 
RAM. Gigabit Ethernet is used for communication. 
Figure 6 shows the results of the tests carried out so 
far. As can be seen the speedup for two processors is 
almost linear, but when the number of processors 
increase the speedup does not follow. 

9 Conclusion 

To conclude we can se that for two processors the 
tests were very promising, but those promises were 
not fulfilled when the number of processors increased. 
If we compare to the previous results obtained with 
task merging in [1], though, we do not suffer from 
slowdown in the same way (see figure 3). Most likely 
this has to do with the fact that the communication 
cost for the master process running the solver 
increases linearly with the number of processors 
whereas in our new approach this communication is 
distributed more evenly among all processors.  
We have yet to do an in depth analysis of why the 
speedup for two processors is so good and way it does 
not scale as great.  

10 Future work 

In the nearest future we will profile the generated code 
to see were the bottlenecks are when ran on more than 
two processors and see if the scheduling algorithm can 
be tuned to avoid them. Also, tests must be carried out 
on different simulation problems to see if the results 
are general or if it differs much depending on the 
problem. 
We also intend to port the runtime to run on threads in 
a shared memory setup. Since the trend is for CPU 
manufacturers to add more and more cores to the 
CPUs, it is becoming more and more relevant to 
explore parallelism in such an environment. 
A runtime for the Cell BE processor is also planed. 
This processor has eight, so called, Synergistic 
Processing Elements (SPE) which do not actually 
share memory. Instead each SPE has it’s own local 
memory. Transfers to and from those local memories 
can be carried out using DMA without using any 
computation resources, so it should be possible to hide 
the communication latency during computation. 
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