
DrModelica
A Web-Based Teaching Environment for Modelica

Eva-Lena Lengquist Sandelin, Susanna Monemar, Peter Fritzson, Peter Bunus
PELAB, Programming Environment Laboratory

Department of Computer and Information Science
Linköping University, S-581 83 Linköping, Sweden
Email: {evale, x02susmo, petfr, petbu}@ida.liu.se

Abstract
This paper states the need for interactive teaching
materials for programming languages within the
area of modeling and simulation. We propose an
interactive teaching material for the modeling
language Modelica inspired by existing tutoring
systems for Java and Scheme.

The purpose of this new teaching material, called
DrModelica, is to facilitate the learning of Modelica
in a modeling and simulation environment. We have
developed two versions of DrModelica, one that is
based on Mathematica and another that is intended
for the web. With the web version of DrModelica we
hope for an increased usage of Modelica.

1. Background
The concept of model, system and experiment are
central in the area of modeling and simulation. “A
model of a system is anything an “experiment” can
be applied to in order to answer questions about that
system.” [1] “A simulation is an experiment
performed on a model.” [1]

Tools that are used for modeling and simulation are
becoming a powerful aid in the product development
process. Using advanced tools and languages to
build a model of the product and then simulate its
behavior before producing a physical prototype,
minimizes the number of errors that can occur
during fabrication. This minimization consequently
leads to a decrease in the time needed to develop the
final product. Furthermore, the earlier the errors are
detected, the cheaper the corrections are.

Not too long ago in the history of modeling and
simulation technology, mathematical models were
implemented by hand. The models were usually
designed on paper using mathematical notation and

the programs written manually in a high-level
programming language, like C or Fortran, and stored
in text files. Much manual work was needed, making
not only maintenance of models expensive, but also
the modification of models in order to adapt to new
requirements [2].

2. Modelica
Modelica is a new language for hierarchical object-
oriented physical modeling which is being developed
through an international effort (Elmqvist et al. 1999
[3], Fritzson and Bunus 2002 [4], Fritzson 2003 [1]).
The language unifies and generalizes previous object-
oriented modeling languages. Modelica is intended to
become a de facto standard.

A Modelica program is built from classes like in any
other traditional object-oriented language. The main
difference compared to traditional object-oriented
languages is that instead of functions (methods)
equations are used to specify the behavior. A class
declaration contains a list of variable declarations and
a list of equations preceded by the keyword
equation. We illustrate below a class corresponding
to a resistor (Resistor) and an alternative voltage
source (VsourceAC) modeled in Modelica.
model Resistor

extends TwoPin;
parameter Real R;

equation
R*i=v;

end Resistor;

model VsourceAC
extends TwoPin;
parameter Real VA=220;

 parameter Real f=50;
protected constant Real PI=3.14;

equation
v=VA*[1];

end VsourceAC;

It should be also noted that both classes are
specializations through inheritance of the class
called TwoPin. The natural inheritance in the
Modelica language works by extending classes with
new equations and variables. The TwoPin class that
defines electrical components that have two pins is
defined as follows:
model TwoPin

Pin p,n;
Real v,i;

equation
v = p.v - n.v; 0 = p.i + n.i; i = p.i;

end TwoPin;

This class instantiates the class Pin twice. This is a
special kind of class called connector class. Such
connectors declare variables that are part of the
communication interface of an object defined by the
connectors of that object. Thus, connectors specify
the interface for interaction between a component
and its surroundings. Our Pin connector class uses
two Real variables: one for the current (i) and one
for the voltage (v). Since in an electrical circuit the
current should always be summed when connecting
two components, according to Kirchoff's law, the
variable i defined in the Pin class will have the
prefix flow.
connector Pin

Real v;
flow Real i;

end Pin;

Besides the instantiation of two Pin interface
objects, also called ports or connectors, some
equations are provided that defines the behavior of
the objects: such as the voltage drop along the
component (v = p.v - n.v) or the current inside
the component (0 = p.i + n.i; i = p.i). In a
similar way a Ground component would be defined
as follows:
model Ground

Pin p;
equation

p.v = 0;
end Ground;
Connections between objects can be established
between connectors of equivalent type. Modelica
supports equation-based acausal connections, which
means that connections are defined as special
equation forms. A connection equation form such as
connect(pin1,pin2) with pin1 and pin2 of
connector class Pin, connects the two pins so that

they form one node. This is equivalent to, and is
eventually expanded into two equations, namely:
pin1.v = pin2.v; pin1.i + pin2.i = 0;

The first equation states that the voltages of the
connected wire ends are the same. The second
equation corresponds to Kirchhoff's current law
stating that the currents sum to zero at a node
(assuming positive value while flowing into the
component). The sum-to-zero equations are generated
when the prefix flow is used. Similar laws apply to
flows in piping networks and to forces and torques in
mechanical systems.

Now we have all the components that are necessary to
define the following model of a simple electrical
circuit consisting of a sinusoidal voltage source and a
resistor connected together.

R1AC

G

model Circuit
 Resistor R1(R=10);
 VsourceAC AC;
 Ground G;
equation
 connect(AC.p,R1.p);
 connect(R1.n,AC.n);
 connect(AC.n,G.p);
end Circuit

Figure 1. Simple electrical circuit model.

3. Interactive Environments
In order for the Modelica language to be used to solve
problems, a modeling and simulation environment is
needed. In this section the environment
MathModelica is introduced. MathModelica is
integrated with Mathematica, a system which is
described below.

3.1. Mathematica
Mathematica [5] is a computer algebra system and
programming environment for performing
mathematical computations. The system can be used
in many different ways; the most basic functionality is
to use it as a “calculator”. The user types a calculation
and Mathematica performs it immediately. However,
there is a large difference between what a traditional
calculator can do and what Mathematica can perform.
Mathematica seamlessly integrates a numeric and
symbolic computational engine, graphics system,
programming language, documentation system, and
advanced connectivity to other applications.

Mathematica can also be used as a modeling and
simulation environment. When a model is simulated

in the environment, the results can be visualized in
various ways, e.g. using the Plot function.

Mathematica is divided into two distinct parts: the
computer algebra engine and expression interpreter
(“kernel”) that receives and evaluates all expressions
sent to it and the user interface (“front-end”). The
front-end provides the interface to the user and is
concerned with such issues as how input is entered
and how computation results are displayed to the
user.

Mathematica’s front-end documents are called
notebooks. A notebook can contain specific
computations, text (including hyperlinks to other
Notebooks), graphics, sounds and animations. Using
a hierarchical structure divided into sections,
subsections etc., a notebook can be made to look like
a traditional typeset document, with the advantage
that the calculations can remain active and can be re-
evaluated at any time.

3.2. MathModelica
MathModelica, from MathCore Enginerring AB [6],
is a powerful engineering environment for physical
modeling, simulation, analysis and design [7, 8]. In
MathModelica, models are described using the
Modelica language. Dymola [9], developed by
Dynasim [10], is another powerful Modelica
environment.

The MathModelica environment integrates
Modelica-based modeling and simulation with
graphic design, advanced scripting facilities,
integration of code and documentation, and
symbolic formula manipulation provided via
Mathematica. Import and export of Modelica code
between internal structured and external textual
representation is supported by MathModelica. The
environment extensively supports the principle of
literate programming and integrates most activities
needed in simulation design: modeling,
documentation, symbolic processing, transformation
and formula manipulation, input and output data
visualization.

The user-interface of MathModelica consists of three
main parts, the Model Editor, the Simulation Center
and Mathematica notebooks. The Model Editor is a
graphical tool to design models using predefined
library components, see Figure 2. The current
version of the editor is an extension of Microsoft
Visio, which is a tool for technical diagramming and

drawing. The Simulation Center is a graphical user
interface for running simulations and plotting the
simulation results of the models [7, 8, 11].
Mathematica notebooks are used in MathModelica to
provide a text based programming environment.

Figure 2. The Model Editor.

4. DrModelica
Understanding programs is hard, especially code
written by someone else. For educational purposes it
is essential to be able to show the source code and to
give an explanation of it at the same time. Moreover,
it is important to show the result of the source code’s
execution [12]. In modeling and simulation it is
important to have the source code, the documentation
about the source code, the execution result of the
simulation model, and the documentation of the
simulation results in the same document. The reason
is that the problem solving process in computational
simulation is an iterative process that often requires a
modification of the original mathematical model and
its software implementation after the interpretation
and validation of the computed results corresponding
to an initial model.

Most of the environments associated with equation-
based modeling languages focus more on providing
efficient numerical algorithms rather than giving
attention to the aspects that should facilitate the
learning and teaching of the language. There is a need
for an environment facilitating the learning and
understanding of Modelica. Users are reluctant to
using a programming language that does not provide
an adequate programming environment [13].

We have developed DrModelica [14] based on the
MathModelica environment [6] and the ideas of
Literate programming [15]. Literate programming is
a programming methodology that was introduced by
Donald E. Knuth. It represents the idea of organizing
a source program in an “essay” manner by
combining the source code with the corresponding
documentation in the same document. By doing so it
is easier to read and understand the program.

MathModelica has an interface allowing the user to
write source code as well as documentation in the
same document. The user does not have to switch to
a command prompt to compile the source code,
since this can also be performed in the
MathModelica environment. The same document
also contains plots of the simulation results.
Additionally, in DrModelica the whole Modelica
language is available to the user, unlike many other
tutoring systems, where it is common to only
provide a subset of the language.

DrModelica is a hierarchical structure of
Mathematica notebooks. The most important
notebook is similar to a table of contents that holds
all other notebooks together by providing links to
them. This particular notebook it the first page the
user will see (Figure 3).

Figure 3. The main page of DrModelica.

In each chapter of DrModelica the reader is presented
with a short summary of the corresponding chapter in
the book “Principles of Object-Oriented Modeling
and Simulation with Modelica” by Peter Fritzson [1].
The summary introduces some keywords, being
hyperlinks that will lead the reader to another
notebook describing the keyword in detail.

Now, let us consider that the link “HelloWorld” in
section 2.1 in Figure 3 is clicked. The new notebook,
to which the user is being linked (see Figure 4), is not
only a textual description but also contains one or
more examples explaining the specific keyword. In
the class HelloWorld a differential equation is
described.

Figure 4. Hello World class.

5. DrModelica on the Web
DrModelica is based on the MathModelica
environment. However, MathModelica is an
expensive product for universities and other teaching
facilities. Making DrModelica available on the web
would increase the possibilities to use it, thereby
increasing the use of Modelica. This constitutes the
motivation for creating a web version of DrModelica.

A requirement of the web version is to only use free
and open-source software. Another requirement is to
offer a similar structure and similar functionalities as
in the MathModelica version of DrModelica.
Implementing DrModelica on the web implies that it

is easy to update the material. This way the user
does not have to download updates of the material.
The interface for the web version of DrModelica is
currently available at http://pelix.ida.liu.se/
drmodelica/DrModelica.pike.

We had several ideas of how to implement the web
environment, for example extending an existing
XML-editor or using webMathematica [16].
Exploring these ideas resulted in the conclusion that
it would be more work to extend existing tools or
applications than to develop a completely new
environment.

In order to create the web version of DrModelica a
compiler and a user interface are needed. Currently,
members of the Programming Environment
Laboratory (PELAB) at Linköpings university are
working on an open-source Modelica compiler [8],
which fits the above-mentioned requirements.

To create the user interface for the web pages of
DrModelica a programming language, which can be
used to develop the desired functionality, is needed.
The interface should have the same functionality as
in the MathModelica version of DrModelica.

5.1. Pike
The DrModelica web page uses Pike to generate
HTML code. Pike is an imperative, object-oriented
programming language with scripting facilities. The
language provides multiple inheritance and data
structures like arrays and a special kind of array
called mapping. Fredrik Hübinette started the
development of the Pike language. The first years
the development was funded by Roxen Internet
Software. Currently, Pike is being further developed
by researchers at the Department of Computer and
Information Science (IDA) at Linköping University.
Several free web servers, for example Roxen
WebServer, are written in Pike. At PELAB [17],
Pike is used in software composition technology
[18] and language connector related research [19].

Reasons for choosing Pike instead of another
scripting programming language, like Java Script or
Python, is that the time and effort needed to solve
the problem would be more effective. Since some of
the functionality needed for the web site already
exists in Pike, e.g. the ability to expand and
compress sections, less functionality needs to be
implemented. Additionally, the existing Pike
knowledge available at PELAB and the prior

knowledge of the developers constitute other reasons
for using Pike.

Moreover, Pike fits the requirements for DrModelica
on the web. Firstly it is free, which is a necessity.
Secondly, it is possible to develop an environment
similar to MathModelica using Pike.

5.2. Functionality
In the web version of DrModelica it is possible to
create new input cells, where Modelica code can be
written (see Figure 5). Each input cell has its own
evaluate button for evaluating the Modelica code
written in the cell. When adding a new input cell by
clicking the button “Create Input Cell”, the cell will
appear in a section that can be expanded or collapsed.
A section gets an automatically generated headline,
which is currently a number. This number starts at
one and is increased for each section that is added.
Apart from the input cell and its evaluate button, a
section also consists of a text cell, which is used for
documenting the code in the input cell. There is no
limitation on the number of sections that can be added
to the page.

Figure 5. An empty section.

When the evaluate button is clicked, the code in the
specific input cell is sent to the Modelica compiler.
The result of the execution is presented in a new text
area that appears under the evaluated input cell.
Figure 6 shows an input cell containing the class
HelloWorld. Notice that section 1 is collapsed and
section 2 is expanded. The text cell contains an
explanatory text, “HelloWorld solves a trivial
differential equation”, about HelloWorld. The class

HelloWorld is transferred to the compiler when the
evaluate button is clicked and the result, “OK”, is
shown in the output cell.

Figure 6. HelloWorld in the web version of DrModelica.

6. Related Work
In the last two decades interactive teaching materials
have been developed with the purpose of facilitating
the learning process. For example, DrJava and
DrScheme are both interactive teaching materials for
Java and Scheme respectively. These materials teach
the language to the user both by explaining the
concepts of the language and by letting the user
write programs in a beginner-adjusted environment
[20, 21].

6.1. DrScheme
DrScheme [21] is a programming environment for
Scheme, providing a graphical user interface, in
which it is possible to edit and interactively evaluate
Scheme programs. The environment is especially
useful for students learning Scheme, since it guides
the student through Scheme in a way similar to an
introductory course [21].

DrScheme is equipped with three tools to make
teaching of functional programming and the
development of Scheme programs easier; the
symbolic stepper, the syntax checker and the static
debugger [21, 22]. The symbolic stepper is a
pedagogical tool, which steps forward in the
program execution, showing how a program

calculates a value. The syntactic checker annotates the
source code of a syntactically correct program, by for
example changing fonts and colors. MrSpidey is a
static debugger [23] and it is the most advanced tool
in DrScheme. It marks up potential errors as well as
concluding what set of values an expression may
produce [21].

6.2. DrJava
DrJava is an open-source, pedagogic programming
environment for teaching Java. The environment is
influenced by DrScheme, which has served as a
model for DrJava [20]. To reduce the problems of
learning Java, DrJava first introduces the concepts of
coding, as well as testing and debugging the source
code, and then focuses on the language.

The tools, used in DrJava, are the Read-Eval-Print
Loop, the editor and the integrated compiler. The
interface of DrJava consists of two parts, the
interactions pane and the definitions pane. The
interactions pane provides a Read-Eval-Print Loop, in
short REPL, which works as its name suggests: It
reads the source code from the interactions pane,
evaluates it, and then prints the result back to the
interactions pane. When using the REPL no debugger
is needed. The same interface is used to run, test and
debug programs. Also, as the REPL enables
interaction with program components as they are
being developed [20].

The compiler, connected with DrJava, is integrated
with the source editors, this makes it possible to
present the errors from the compiler, only by clicking
on them [20].

7. Summary and Conclusions
DrModelica together with previously presented
related work have the common goal of teaching a
programming language in an environment that has the
purpose of facilitating the learning process. DrJava
and DrScheme are two interactive teaching materials
for Java and Scheme respectively. We have developed
DrModelica for teaching Modelica with these two
environments in mind. DrScheme and DrJava teach
their languages in environments primarily adjusted for
beginners by excluding advanced features of the
language. While DrScheme and DrJava only focus on
a subset of the corresponding language, DrModelica
makes the whole Modelica language available to the
user.

Learning a new language like Modelica is facilitated
by the interactive teaching material. In this paper we
have presented an interactive teaching material for
Modelica called DrModelica. The idea of this
material is that the user shall be able to write, run
and test the Modelica code within the same
environment.

In order to provide a free and open-source
environment for learning Modelica, we created a
web version of DrModelica. To our knowledge there
exists no interactive teaching material for Modelica
and we believe that this material can lead to an
increased usage of the Modelica language.

References
[1] Fritzson, P., Principles of Object-Oriented

Modeling and Simulation with Modelica. 2003.
IEEE Press and John Willey.

[2] Grubb, P. and A.T. Armstrong, Software
Maintenance Concepts and Practice (Second
Edition). 2003. World Scientific Pub Co.

[3] Elmqvist, H., S.E. Mattsson, and M. Otter.
Modelica - A Language for Physical System
Modeling, Visualization and Interaction. In
Proceedings of the IEEE Symposium on
Computer-Aided Control System Design. 1999.
Hawaii, USA.

[4] Fritzson, P. and P. Bunus. Modelica, a General
Object-Oriented Language for Continuous and
Discrete-Event System Modeling and Simulation.
In Proceedings of the 35th Annual Simulation
Symposium. 2002. San Diego, California.

[5] Wolfram Research, Mathematica. 4 ed. 1999,
Champaign, Illinois. Wolfram Research, Inc.

[6] Fritzson, P., J. Gunnarsson, and M. Jirstrand.
MathModelica - An Extensible Modeling and
Simulation Environment with Integrated
Graphics and Literate Programming. In
Proceedings of the 2nd International Modelica
Conference. 2002. Munich Germany.

[7] Jirstrand, M. MathModelica - A Full System
Simulation tool. In Proceedings of the 6th
Conference on Product Models, Global Product
Development. 2000. Linköping, Sweden.

[8] Fritzson, P., P. Aronsson, P. Bunus, V. Engelson,
L. Saldamli, H. Johansson, and A. Karström The
Open Source Modelica Project. In Proceedings
of the 2nd International Modelica Conference.
2002. Munich, Germany.

[9] Elmqvist, H., D. Bruck, and M. Otter, Dymola -
User's Manual. 1996, Dynasim AB, Research
Park Ideon. Lund.

[10] Dynasim AB, Dymola for Your Complex
Simulations. Available at:

http://www.dynasim.se. Last accessed August,
2003.

[11] Fritzson, P., V. Engelson, and J. Gunnarsson. An
Integrated Modelica Environment for Modeling,
Documentation and Simulation. In Proceedings of
the Summer Computer Simulation Conference '98.
1998. Reno, Nevada, USA.

[12] Nørmark, K. Requirements for an Elucidative
Programming Environment. In Proceedings of the
International Workshop on Program
Comprehension, IWPC'2000. 2000. Limerick,
Ireland.

[13] Ducassé, M. and J. Noyé, Logic Programming
Environments: Dynamic Program Analysis and
Debugging. Journal of Logic Programming, 1994.
19/20: p. 351-384.

[14] Lengquist Sandelin, E.-L. and S. Monemar,
DrModelica - An Experimental Computer-Based
Teaching Material for Modelica. Master Thesis.
Department of Computer and Information
Science. 2003, Linköping University.

[15] Knuth, D.E., Literate Programming. The
Computer Journal, 1984. NO27(2): p. 97-111.

[16] Wolfram Research, What Is webMathematica?
2002. Available at:
http://www.wolfram.com/products/webmathemati
ca/whatis.html. Last accessed August, 2003.

[17] PELAB, PELAB: The Programming
Environments Laboratory. Available at:
http://www.ida.liu.se/~pelab. Last accessed
August 2003.

[18] Pike Home Page, Pike. Available at:
http://pike.ida.liu.se/. Last accessed August, 2003.

[19] RISE Center, Research Center for Integrational
Software Engineering. Available at:
http://www.ida.liu.se/~pelab/inrise/. Last accessed
August, 2003.

[20] Allen, E., R. Cartwright, and B. Stoler. DrJava: A
Lightweight Pedagogic Environment for Java. In
Proceedings of the 33rd ACM Technical
Symposium on Computer Science Education
(SIGCSE 2002). 2002. Northern Kentucky, USA.

[21] Findler, R.B., et al. DrScheme: A Programming
Environment for Scheme. A Preliminary Version
Appeared at Symposium on Programming
Languages: Implementations, Logics, and
Programs in 1997. 2001.

[22] Felleisen, M., et al. The DrScheme Project: An
overview. In Proceedings of the ACM SIGPLAN
1998 Conference on Programming Language
Design and Implementation (PLDI). 1998.
Montreal, Canada.

[23] Flanagan, C., Effective Static Debugging via
Componential Set-Based Analysis. PhD Thesis
1997, Rice University: Houston.

