
New Real-time Capabilities in Modelica for
Embedded Systems

Hilding Elmqvist
Dassault Systèmes, Lund

Content

Introduction to Modelica

Modelica for Embedded Systems

StateGraph - A New Formalism for Modeling of
Reactive and Hybrid Systems

FMI - Functional Mockup Interface – Overview

Outlook

Introduction to Modelica

Content

Introduction

Need for Dynamic Behaviour Models

A language – Modelica

Organizing modeling knowhow – Modelica libraries

A solver – DymolaA solver – Dymola

Example

Modelica / Dymola Makes ObjectsDynamic

Model Knowledge

Dynamic system model knowledge
• has been developed over many centuries
• is stored in books, articles, reports and human minds
• which computers can not access

A formal modeling

6

A formal modeling
language is needed
to capture and store
models for reuse

Dynamic system model knowledge

Hybrid Differential Algebraic Equations (DAE)
• Algebraic equations
• Ordinary differential equations
• Event handling and sampled control

7

Equality sign introduced in 1557 by Robert Recorde

Modelica Association

Non profit organization (www.Modelica.org)

Defines Modelica language and standard library

Started 1996, >50 members, >60 design meetings

Released Modelica language specification 3.1
on May 27, 2009

53’rd Modelica Design Meeting at Dynasim

Model Knowledge

Mechanics
• Newton’s laws

9

Newton´s 2nd law (July 5, 1687)

Modelica text

Model Knowledge

Thermo and fluid dynamics

10

Modelica text

Part of Modelica Standard Library

Examples of Commercial libraries

PowerTrain

Electric drives

Vehicle Dynamics

EUROSYSLIB in one slide

Companies Research Institutes
& Universities

● Initiated by DS & DLR

● 2.75 Years Duration
Oct. 2007 – June 2010

● 19 Partners

● 101.5 Person Year effort

● 16 Mill. € total budget

● 8 Sub-Projects

● 32 Work Packages

● 27 Modelica Libraries
to be developed

(free + commercial)

Outcomes - Free Modelica Libraries

It is planned that the following 11 EUROSYSLIB libraries will be provided
without cost and as open source software:

● Modelica_Fluid (ABB, DLR, Dynasim…)

● Electric.Analog lib extension (Fraunhofer)

● SPICE library (Fraunhofer)

● FluidDissipation (XRG)

● Two PowerPlant libs (EDF, ABB/Siemens)● Two PowerPlant libs (EDF, ABB/Siemens)

● Modelica_LinearSystems2 (DLR-RM)

● Modelica_Controller (DLR-RM)

● StateGraph2 (Dynasim, DLR-RM)

● EmbeddedSystems (Dynasim, DLR-RM)

● VehicleInterfaces (DLR-RM)

Outcomes - Commercial Modelica Libs

● DesignOptimization (DLR-RM)

● MultiField library (DLR-RM)

● SmartElectricDrives library (AIT)

● ElectroMechanical library (LMS)

● ThermoHydraulics library (LMS)

● HumanComfort library (XRG)

It is planned that the following 16 EUROSYSLIB libraries will be commercial :

● HumanComfort library (XRG)

● ControlDesign library (DLR-RM)

● TrueTime library (Lund University)

● Engine Libraries (Claytex, IFP)

● Tyre Library (Kämmerer)

● Mechatronic Opening library (Kämmerer)

● Heat Exchanger Stack and Under-hood library (LMS Imagine)

● VehicleControl library (DLR-RM)

EUROSYSLIB in the Modelica Conference 2009
• Tutorial 3: Simulation of Electrical Machines and Drives Using the Machines and the SmartElectricDrives Lib

• Stream Connectors- Extension of Modelica for Device-Oriented Modeling of Convective Transport Phenomena

• Standardization of Thermo-Fluid Modeling in Modelica.Fluid

• FluidDissipation for Applications a Library for Modelling of Heat Transfer and Pressure Loss in Energy Syst

• Preliminary Design of Electromechanical Actuators with Modelica

• Operator Overloading in Modelica 3.1

• Advanced Simulation of Modelica Models within LMS Imagine.Lab AMESim Environment

• HumanComfort Modelica-Library Thermal Comfort in Buildings and Mobile Applications

• Redundancies in Multibody Systems and Automatic Coupling of CATIA and Modelica

• Investigating the Multibody Dynamics of the Complete Powertrain System

• Modelica for Embedded Systems

18

• Modelica for Embedded Systems

• A New Formalism for Modeling of Reactive and Hybrid Systems

• Improvement of MSL Electrical Analog Library

• News in Dymola

• SPICE3 Modelica Library

• Modelica Libraries for Linear Control Systems

• Linear Analysis Approach for Modelica Models

• TrueTime Network - a Network Simulation Library for Modelica

• Simulation of the Dynamic Behavior of Steam Turbines with Modelica

• The AdvancedMachines Library: Loss Models for Electric Machines

• …

Modelica environments: Dymola and CATIA Systems

Model ParametersExperimental Data

Dymola CATIA Systems

Graphical Editor Graphical Editor Plot and AnimationPlot and Animation

Symbolic Kernel

Experimentation

Reporting

External Graphics
(bitmap)

CAD (DXF, STL)

Simulink
MATLAB

Model doc. and
Experiment log (HTML,

VRML, PNG, …)

xPC

dSPACE

HIL

Modelica

C Functions

LAPACK

Scripting

Simulation

Optimization

Modelica
Libraries

User Models

M
o

d
el

in
g

S
im

u
la

ti
o

n
V

is
u

al
iz

at
io

n

an
d

 A
n

al
ys

is

D
ym

o
la

 K
er

n
el

Graphical Editor

Plot and Animation

CAAV5 D
EVCO

N
 2006 June 27

th&
 28

th-D
ASSAU

LT SYSTEM
ES

Virtual testing of system behavior
D

ASSAU
LT SYSTEM

ES -Page
22

Play

Modelica for Embedded Systems

H. Elmqvist1, M. Otter2, D. Henriksson1, B. Thiele2, S.E. Mattsson1

1Dassault Systèmes (Dynasim), Lund, Sweden
2DLR - Institut for Robotics and Mechatronics, Oberpfaffenhofen, Germany

Outline

1. Overview

2. Basic Idea

3. Modelica_EmbeddedSystems Library

Slide 24

3. Modelica_EmbeddedSystems Library

4. Modelica Language Extensions

5. Outlook

1. Overview

Modelica is used for advanced controller applications since 2000
(using the non-linear plant model in the embedded system). Examples:

courtesy ABB

Slide 25

Boiler startup optimization by ABB
(non-linear model predictive control)

Autoland controller by DLR
(non-linear dynamic inversion)

Robot vibration control by DLR
(non-linear inverse model)

But:
Currently only for specialist, with manual coding for production code

Goal:
Complete tool chain for model based controllers,
especially with non-linear Modelica models in the controller:

non-linear plant model → controller design → target deployment
(including cheap microprocessors
without floating point unit)

Complex control systems in cars

Schäuffele and Zurawka; Automotive Software Engineering;
SAE International, 2005

→ Separation of logical design (vehicle functions)

Slide 26

→ Separation of logical design (vehicle functions)
and mapping to physical architecture (ECUs)

But:
The logical model needs to be partitioned for different applications

Controlled Systems

Flat Logical Model

System Model

Slide 27

Controlled Subsystem

Physical Subsystem
Control Subsystem

Logical Model

Model-in-the-Loop

Software-in-the-Loop

X-in-the-loop Simulation

Physical model

Control model

Interface

Slide 28

Hardware-in-the-Loop Rapid Prototyping

Production Code

Partitioning of Logical Model

Simulation of logical model
variable step size integrators
Controller: ideal [continuous], synchronous controllers

Model-In-the-Loop (MIL) simulation
Controller – Plant interface modeled (sampled, delays, noise, etc)

Software-In-the-Loop (SIL) simulation
Controller – Plant decomposition, Task – subtask decomposition, [fixed point
representation]

Hardware-In-the-Loop (HIL) simulation (real-time)
Plant: fixed step size integrators, multi-rate, I/O coupling

Slide 29

Rapid prototyping (real-time)
Controller: multi-tasking, I/O channel assignment, bus communication

Production code (real-time)
Controller: embedded in ECUs, multi-tasking, [fixed-point representation,] I/O
channel assignment, bus communication

Goal: One logical model, many different mappings
without changing the logical model

Example: Todays Approach

grey : reference motion
color: exaggerated

actual motion

controller
(prepare for download)

Slide 30

actual motion
(factor = 50)

physical model without controller

Every mapping, like,
continuous/sampled simulation,
download to one or three processors,
other device drivers
with/without floating point unit on target

requires copying and restructuring of model

Example: New Approach

global controller
(e.g. path planning)

Slide 31

Inherit from logical model and
define mapping to target system
(no change of logical system)

local controllers are in
corresponding submodel

Slide 32

Important:
Mark submodels to be specially handled

2. Basic Idea

Ts=5ms Ts=1ms continuous

Slide 33

1. Mark boundaries → Logical model is partitioned in to submodels

2. Make a new model and inherit from logical model

3. Add submodel properties at the boundaries (for input and/or output)

4. Add device drivers at the boundaries (replaceable models)

5. Add target definitions at the boundaries; download selected submodels

Slide 34

Different communication possibilities:

Direct communication (ideal simulation: y = u)

Simulated communication (y = f(u); sampling, delay, value discretization, ...)

Communication between two subtasks
(in same task but different sampling; synchronous equations)

Communication between "two tasks", or "task to device" or "device to task"
(communication via devices, e.g., shared memory, UDP, CAN-bus, ...;
asynchronuous equations)

3. Modelica_EmbeddedSystems Library

Free library to define the mapping for
embedded systems

Slide 35

replaceable blocks for

direct communication
(for simulation)

signal to hardware driver

signal from hardware driver

Actual blocks for
communication

Defining task,
subtask, target

Example

Slide 36

defines configuration of embedded system
(sampling, ECUs, initialization of device drivers, ...)

Defines splitting in task/sub-task,
device drivers,
references configuration

Select the desired communication type.
Based on the selection, only the
relevant menu items are enabled

Slide 37

here:
simulated communication
with effects like
delay, noise, limitation,
quantization,

Sampled Controller

Slide 38

Sampled Controller with Delay

Slide 39

Sampled Controller with Input Noise

Slide 40

Sampled Controller with Output Quantization

Slide 41

Slide 42

here:
communication between two tasks
input : Writes to hardware (comedi driver)
ouput: Reads from hardware (comedi driver)
The properties of the task at the input are
defined by config.fastSampler parameters of redeclared

model (comedi device driver)

Configuration of architecture
(here: multi-tasking on one machine)

Target machine

Task and processor
(on target machine)

Slide 43

Sampling and integrator (in task)

4. Modelica Language Extensions

u = Subtask.decouple(y);
(a) u = y; (b) u and y are in different subtasks.

parameter Modelica.SIunits.Time sampleBasePeriod;
RealInput u annotation(mapping(

target (identifier = "abc"),
task (identifier = "slowTask",

Modelica extensions developed for the mapping concept:

Slide 44

task (identifier = "slowTask",
sampleBasePeriod = sampleBasePeriod),

subtask(identifier = "reference",
samplingType=Subtask.SamplingType.Periodic)))

Extension included in Modelica 3.1

Partial prototype in Dymola

Several device drivers (some will be made public)

5. Outlook

Full support in Dymola in the near future.

Release of Modelica_EmbeddedSystems, including some
free device drivers (keyboard, game controller, PC speaker, ..)

Near future:

Extension of concept for enabled/triggered tasks

Planned for Modelica 3.2:

Slide 45

Extension of concept for enabled/triggered tasks
(currently only for continuous and for periodic tasks)

Improving definition of "timetime" and of "event accuracy":
"time" is an integer type of defineable precision per partition (e.g. 1ms)
"events" occur only at multiples of base time.

Built-in timer to simplify time event definitions

Define mapping of "Real" to "Integer type"
(if no floating point unit on target)

Allow HILS and rapid prototyping of
Dymola models on dSPACE targets
without The Mathworks RTW

Simulation framework and I/O drivers
implemented from dSPACE real-time
library APIs

Interface to dSPACE Systems

library APIs

Configuration and communication
blocks based on
Modelica_EmbeddedSystems

Interface to dSPACE Systems

Standard I/O components
Light sensor

Sound sensor

Touch sensor

Ultrasonic sensor

Servo motor

Third party sensors

Interface to LEGO Mindstorms NXT

Third party sensors
Acceleration sensor (HiTechnic)

Gyro sensor (HiTechnic)

Acceleration sensor (Mindsensors)

Bluetooth communication

Atmel ARM7 main processor

Atmel ATmega48 microcontroller
for A/D and PWM

Declarations

Code Generation for Fixed-point Arithmetics

Confidential Information

Equations

Lego Segway control

Confidential Information

Modelica external device applications at DLR

Extensive use of human interface devices for interactive (real-time)
simulations in two major use cases

1. To help simulation developers to quickly get interactive feedback
about the reaction of their model to certain stimula

2. For real-time simulators including prototype hardware components
(e.g. Force-feedback steering wheel for Steer-by-Wire application)

Folie 54
Vortrag > Autor > Dokumentname > Datum

Vehicle Mockup with force-feedback from
(Modelica) simulation

Dymola/Modelica based driving simulation
(visualized with DLR Visualization library)

Modelica model

Use cases in the simulator development process

Several driver
implementation

Hardware
device input
Blocks

Non-interactive
simulation

Interactive model stimula
for simulation developers

Force-feedback steering
wheel for real-time
driving simulation

Folie 55
Vortrag > Autor > Dokumentname > Datum

Replaceable
driver model

implementation

Overview of device libraries used at DLR

Support for Softing‘s
CAN-Bus interface

(Real-time) Linux devices (based
on Modelica_EmbeddedSystems)

Windows device support

Folie 56
Vortrag > Autor > Dokumentname > Datum

Support for the
Comedi linux
control and
measurment device
interface

A New Formalism for Modeling of Reactive and
Hybrid Systems

Martin Otter

Martin Malmheden

Hilding Elmqvist

Sven Erik MattssonSven Erik Mattsson

Charlotta Johnsson

Modeling large reactive systems made easy

StateGraph2 - Advantages

Further improved usability
Aggregations with open Icon layer

Automatic connector sizing

New graphical approach to Mode-Automata
Same basic idea as Mode-Automata

Purely graphical approach gives easy overviewPurely graphical approach gives easy overview

Safer graphs
Guaranteed convergence of event iterations

Not possible to build unsafe graphs

SMV-output
Allows analysis with external tool

Formal definition

Steps & Transitions

Initial step
indicator

Transition

Delayed

Steps

Delayed
Transition

Steps & Transitions are implemented in pure Modelica

The Parallel Component cont’d

Parallel branching
Every branch must be
connected to the entry port

Synchronization by
connecting branches to the
exit port

Requires inport and outport

The Parallel Component cont’d

Inport

Suspend port

Resume port

Outport

Hierarchical Hybrid System – Tank example

Graphical assignment of actions

Introducing MultiSwitches

Verification of reactive systems

Export to SMV code for external analysis

Summary

User friendly

Improved graphical approach to variable
assignment

Safe – not possible to make dangerous
graphsgraphs

Flexible

Allows external analysis of graph structure

Functional Mockup Interface – Overview

Martin Otter (DLR-RM)
Torsten Blochwitz (ITI)Torsten Blochwitz (ITI)

Hilding Elmqvist (Dassault Systèmes – Dynasim)

Andreas Junghanns (QTronic)

Jakob Mauss (QTronic)

Hans Olsson (Dassault Systèmes – Dynasim)

Contents

1. Functional Mockup Interface – Goals

2. FMI - Distribution of Model

3. FMI - Model Description Schema

4. FMI - Model Interface

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 77

4. FMI - Model Interface

5. Tool Support for FMI

6. Comparison with SIMULINK S-Function Interface

7. Outlook

8. Acknowledgements

1. Functional Mockup Interface (FMI) – Goals

Overall goal of FMI in MODELISAR

... for (alphabetically ordered)
Concrete goal of FMI in MODELISAR

Software/Model/Hardware-in-the-Loop,
of physical models and
of AUTOSAR controller models
from different vendors for
automotive applications with
different levels of detail.

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 78

... for (alphabetically ordered)
AMESim (Modelica, hydraulic)
Dymola (Modelica)
EXITE (co-simulation environment)
Silver (co-simulation environment)
SIMPACK (multi-body)
SimulationX (Modelica)
SIMULINK

Open Standard

Task is complex since the different parts are complex by themselves:

Model Exchange (ODE/DAE components without integrators)

Co-Simulation (ODE/DAE components with integrators)

Co-Simulation with PDE solver (MpCCI)

AUTOSAR (discrete components with complex communication)

Simulation Backplane

"Model Exchange" is most reliable due to central step-size control.
Released January 2010.
Extension for co-simulation under development (Uni Halle, ITI, Fraunhofer)

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 79

2. FMI - Distribution of Model

A model is distributed as one zip-file with extension ".fmu". Content:

modelDescription.xml // Description of model (required file)
model.png // Optional image file of model icon
documentation // Optional directory containing the model
documentation

_main.html // Entry point of the documentation
<other documentation files>

sources // Optional directory containing all C-sources
// all needed C-sources and C-header files to compile and link the model
// with exception of: fmiModelTypes.h and fmiModelFunctions.h

binaries // Optional directory containing the binaries

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 80

binaries // Optional directory containing the binaries
win32 // Optional binaries for 32-bit Windows

<modelIdentifier>.dll // DLL of the model interface implementation
VisualStudio8 // Microsoft Visual Studio 8 (2005)
<modelIdentifier>.lib // Binary libraries

gcc3.1 // Binaries for gcc 3.1.
win64 // Optional binaries for 64-bit Windows

...
linux32 // Optional binaries for 32-bit Linux

...
resources // Optional resources needed by the model

< data in model specific files which will be read during initialization >

3. FMI - Model Description Schema

All model information not needed for execution is stored in one xml-file
(modelVariables.xml in zip-file)

Advantage:
Complex data structures give still simple interface, and tool can use its favorite
programming language for reading (e.g., C++, C#, Java).

Definition of display units

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 81

Variable names and attributes

Definition of type defaults

Attributes of ModelVariables

unique name

handle to identify
variable in C-functions

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 84

...

Data types allow to store all (relevant) Modelica attributes.
Defaults from TypeDefinitions

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 85

Example <?xml version="1.0" encoding="UTF8"?>
<fmiModelDescription

fmiVersion="1.0"
modelName="Modelica.Mechanics.Rotational.Examples.Friction"
modelIdentifier="Modelica_Mechanics_Rotational_Examples_Friction"
guid="{8c4e810f-3df3-4a00-8276-176fa3c9f9e0}"
...
numberOfContinuousStates="6"
numberOfEventIndicators="34"/>
<UnitDefinitions>

<BaseUnit unit="rad">
<DisplayUnitDefinition displayUnit="deg" gain="57.2957795130823"/>

</BaseUnit>
</UnitDefinitions>
<TypeDefinitions>

<Type name="Modelica.SIunits.AngularVelocity">
<RealType quantity="AngularVelocity" unit="rad/s"/>

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 86

<RealType quantity="AngularVelocity" unit="rad/s"/>
</Type>

</TypeDefinitions>
<ModelVariables>

<ScalarVariable
name="inertia1.J"
valueReference="16777217"
description="Moment of inertia"
variability="parameter">
<Real declaredType="Modelica.SIunits.Torque" start="1"/>

</ScalarVariable>
...

</ModelVariables>
</fmiModelDescription>

4. FMI - Model Interface

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 87

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 88

// Set input arguments
fmiSetTime(m, time);
fmiSetReal(m, id_u1, u1, nu1);
fmiSetContinuousStates(m, x, nx);

// Get results
fmiGetContinuousStates(m, derx, nx);
fmiGetEventIndicators (m, z, nz);

Example:

5. Tool Support For FMI

Export of any Modelica model as FMU (Functional Mock-up Unit)

Import of a FMU into Dymola
(Modelica model can be translated once-and-for-all to DLL and then reused
in a Modelica model as compiled input/output block;
afterwards code-generation and translation will be much faster for the
Modelica models where the DLL is used. Example:
Large vehicle model and design work is on a controller).

Import of a Simulink model as FMU into Dymola

In Dymola 7.4

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 90

Import of a Simulink model as FMU into Dymola
(based on model code generated by Real-Time Workshop).

SimulationX (export and import of FMUs)

Silver 2.0 (import of FMUs)

SIMPACK (import of FMUs, i.e.,
Modelica models as force elements in high-end multi-body program)

FMI support planned for the first half year of 2010

7. Outlook

"FMI for Model Exchange" released

"FMI for Co-Simulation" in a good stage. Will be released in first half year.
(support for: extrapolation/interpolation of interface variables,
variable communication step-size, re-doing a step
→ step-size control possible).

"FMI for Model Exchange" will be further developer. A lot of requirements
available, such as:

Sparse Jacobian

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 95

Sparse Jacobian

Direct support for arrays and records in xml schema

Improved sample time definition (for embedded systems)

Online changeable parameters

Saving/restoring model state

...

8. Acknowledgments

FMI initiated : Volker May (Daimler AG)
Head of FMI development : Dietmar Neumerkel (Daimler AG)
Head of FMI-for-Model-Exchange: Martin Otter (DLR-RM)

FMI-for-Model-Exchange Torsten Blochwitz (ITI)
Core-Design by: Hilding Elmqvist (Dassault Systèmes -Dynasim)

Andreas Junghanns (QTronic)
Jakob Mauss (QTronic)
Hans Olsson (Dassault Systèmes -Dynasim)
Martin Otter (DLR-RM)

Other MODELISAR contributors: Ingrid Bausch-Gall, Bausch-Gall GmbH
Alex Eichberger, SIMPACK AG
Rainer Keppler, SIMPACK AG
Gerd Kurzbach, ITI GmbH

Prototypes for FMI evaluation:
Dymola by Peter Nilsson, Sven Erik Mattsson,

Carl Fredrik Abelson, Dan Henriksson
(Dassault Systèmes, Dynasim)

Functional Mockup Interface - Overview > Jan. 25 2010 > Slide 96

Gerd Kurzbach, ITI GmbH
Carsten Kübler, TWT
Johannes Mezger, TWT
Thomas Neidhold, ITI GmbH
Dietmar Neumerkel, Daimler AG
Peter Nilsson, Dassault Systèmes-Dynasim
Antoine Viel, LMS International
Daniel Weil, Dassault Systèmes

Other contributors: Johan Akesson, Lund University
Joel Andersson, KU Leuven
Roberto Parrotto, Politecnico di Milano

Partially funded by: BMBF, VINNOVA, DGCIS, organized by ITEA2

(Dassault Systèmes, Dynasim)
JModelica.org by Tove Bergdahl (Modelon)
Silver by Andreas Junghanns, Jakob Mauss

(QTronic)

Outlook

Modelica scope extended to code generation for
embedded targets

Designed to be flexible enough to allow reuse of
logical model for many X-In-the-Loop scenarios

Integrating the solutions

Utilize in larger projectsUtilize in larger projects

