Retargetable Compilers

Daniel Karlsson

danka@ida.liu.se

ESLAB, IDA, Linkdpings universitet

Retargetable Processors 1of 36

h Daniel Karlsson November 7, 2001

Outline

= Introduction

= Basic compilation techniques

= Retargetable compilation issues

= Processor modelling and the CHESS compiler

= Summary

Retargetable Processors 3of 36

h Daniel Karlsson November 7, 2001

Introduction
g s oo Uw® e e e e T

= System on Chip
= Many different types of DSPs and embedded processors

o ASIPs (replace by latest general purpose processor?)

0 no compromise, high speed, low cost, low power

= Compilation plays important role

Retargetable Processors
Daniel Karlsson

2 of 36
November 7, 2001

Basic Compilation Techniques (Overview)

Source

le—>»]  Lexical Anaysis |-
v
le—>»[  syntax Analysis__|— —

l—>»]  semantic Analysis = =3 arvs

S

Front End Processing

R 3 Message
Symbaol -(—)-I Int. Code Gen. l— >
Table
———
Int. Code

-(—,-I Code Optimization ]

;'- Back End Processing
-(—)‘I Code Generation I— —
e ——

Figure 3 - Typical Compilation Process Flow

Retargetable Processors 4 of 36

h Daniel Karlsson November 7, 2001



Front-End Processing

= Lexical analysis

o Generating tokens

= Syntax analysis

o Generating parse tree
o Creating symbol table
= Semantic analysis
o0 Generating syntax tree
= Intermediate code generation

o Generating quadruples (virtual machine)

Retargetable Processors

h Daniel Karlsson

5 of 36
November 7, 2001

Back-End Processing (2/3)

= Machine dependent code optimisation

o Machine specific instruction mapping

- Auto incr/decr indexed memory access instructions

- Stack instructions

- MAC (Multiply and ACcumulate) instruction
o Spill code reduction

- Too many pseudo registers -> memory space access
o Instruction scheduling

- Pipeline hazards

Retargetable Processors

h Daniel Karlsson

7 of 36
November 7, 2001

Back-End Processing (1/3)

= Machine independent code optimisation

o Common sub-expression elimination
o Loop unrolling

0 Loop-invariant expression movement
0 Induction variable elimination

o Unreachable code elimination

o Control flow optimisation

o Arithmetic optimisation

o Operation combining

6 of 36
November 7, 2001

Retargetable Processors
Daniel Karlsson

Back-End Processing (3/3)

= Object code generation

o Code reordering
o Instruction pattern matching
0 Register allocation

o0 Register assignment

Retargetable Processors 8 of 36

h Daniel Karlsson November 7, 2001



Questions What's the Difference?

5 om oo U TR T e ] 5 om oo U T ST e e e ey
= What stages/transformations does the code go through in a compiler? = Retargetability
= Name a few optimisation strategies, both machine independent and machine = Register constraints
dependent. 0 Special-purpose registers
= What are the tasks of code generation? 1 Unusual wordlength

= Arithmetic specialisation

= Instruction-level parallelism

Discussion:
= s there one optimisation strategy which generally generates better results o DCUand ACU
than others? = Optimisations

o Poor compilation unaffordable

Retargetable Processors 9 of 36

h Daniel Karlsson November 7, 2001

Retargetable Processors
Daniel Karlsson

10 of 36
November 7, 2001

About Retargetability Levels of Retargetability

Rapid set-up of a compiler will boost for algorithm developers wishing to
evaluate the efficiency of application code on different existing architectures.

Retargetability permits architecutre exploration. The processor designer is able = Automatically retargetable
to tune the architecture to run efficiently for a set of source applications in a .

. . = Compiler user retargetable
particular domain.

= Compiler developer retargetable

__p Instruction-Set Source Code -
Specification |

FirmWare
Development

Retargetable
Compiler

y

Machine Code

Architecture
Exploration

SoftWare
Design
Cycle

HardWare
Design
Cycle

Retargetable Processors 11 of 36 Retargetable Processors 12 of 36

h Daniel Karlsson November 7, 2001 h Daniel Karlsson November 7, 2001



Processor Modelling Langu

= Mimola (HDL)
0 Netlists display an explicit activation of functional components by
in the instruction word.
= nML

0 Describes behavioural mechanics rather than structural detail.

ages

bits

o Description of operations, storage elements, binary and assembly syn-

tax, and an execution model.
0 Based on synchronous register-transfer model

= Instruction Set Graph (ISG)

0 Associates behavioural information with structural information.

Retargetable Processors

h Daniel Karlsson

13 of 36
November 7, 2001

Instruction-Set Matching and Selection

Instruction set matching:  Determine wide set of target instructions which
implement the source code.

Instruction set selection:  Choose the best subset of instructions from the
matched set.

A pattern based approach:

1: Produce a template base of patterns, each member represents
an instruction.

2: Translate the source program to a forest of syntax trees.

3: Match the trees to the pattern set.

4: A subset of all the matched patterns are selected to form the
implementation in microcode.

Retargetable Processors

h Daniel Karlsson

can

15 of 36
November 7, 2001

Principal Compiler Tasks
Bom oo Uom T o e T R,

= Instruction-set matching and selection

= Register allocation and assignment

= Instruction scheduling and compaction

Retargetable Processors
Daniel Karlsson

14 of 36
November 7, 2001

Register Allocation and Assignment
Bom oo O ow "o e e e T

Register allocation: Determine a set of registers which may hold the value of a
variable.

Register assignment: Determine a physical register which is specified to hold
the value of a variable.

Solution based on graph colouring:

1: Build interference graph. (nodes=variables, edges=overlap)

2: Assign colours to each node. Adjacent nodes may not have the
same colour.

Drawback: Can not handle control-flow constructs (if, case, function calls, ...)
Special purpose registers complicate the matter.

Retargetable Processors 16 of 36

h Daniel Karlsson November 7, 2001



Instruction Scheduling

Scheduling: Determine an order of execution of instructions.
Huge interdependence with instruction selection and register allocation.

Mutation scheduling:

1. Implementations of instructions can be regenerated by means
of a mutation set.

2: After generation of quadruples, calculate critical path.

3: Improve speed by identifying the instructions which lie on
critical paths and mutating them to other implementations which
allow a rescheduling of the instructions.

Integer Linear Programming (ILP):

1: Consider the following aspects: pattern-matching, scheduling,
register assignment and spilling to memory.

2. Dynamically make trade-offs between these based on an objec-
tive function and a set of constraints.

Common obj. func.: minimise time.

Common constraints: architecture characteristics.

Retargetable Processors 17 of 36

h Daniel Karlsson November 7, 2001

Optimisation for Embedded Processors
om0 T o e e e T e o

"Optimisations” which could reduce efficiency:
Common subexpression elimination -> increase register pressure.
Constant propagation -> too narrow instruction word

Loop optimisations (unrolling, pipelining, ...) are important.
Take processor characteristics into account!

Memory optimisations may lead to cost reduction.
= Narrowing of instruction words

= Paged memory

o Reduce number of page changes
o Long subroutines broken into several pieces

= Multi-memory allocation

Retargetable Processors 19 of 36

h Daniel Karlsson November 7, 2001

Instruction Compaction
Bom oo Uom T o e T R,

Compaction: Fine-grained scheduling to support instruction-level parallelism.

1: Define pseudo microinstructions and sequences of micro-oper-
ations with source and destinations properties.

2: Pack and upward past pseudo microinstructions to form real
microinstructions.

18 of 36
November 7, 2001

Retargetable Processors
Daniel Karlsson

Questions
om0 U ow T o e e e T e o el

=  What are the main differences between compilationfor general purpose proc-
essors and embedded processors?
= What are the principal compiler tasks?

= Can we just adopt optimisation techniques for general purpose compilers?

Retargetable Processors 20 of 36

h Daniel Karlsson November 7, 2001



Instructlon Set Graph (ISG) (1/2)

= Bipartite graph G5 = IV|gg EjgdWith  V,gg = Vg Wrhere  \ontains
all vertices representing storage elements in the processor and  cowfains all
vertices representing its operation types. Edges EiggD(VgxV)) O (V, x&yp-

resent the connectivity of the processor.

= An operation type is a primitive processor activity.

Retargetable Processors 21 of 36

‘ Daniel Karlsson November 7, 2001

Enabling and Encoding

= The set of instructions  Epat enables operation type is dalled its enabling
condition . enablingV, - 2B.

- - i O-
= Given a subset of operation types VIO av, enablmd_a\/I a=n; ov,
is the enabling condition for the set v 0

o

enabling )

= Theset v, hasan encoding confiict if enablingdy, 5= O.
(o)

Retargetable Processors 23 of 36

‘ Daniel Karlsson November 7, 2001

Instruction Set Graph (1ISG) (2/2)
o T g TR,

Storage Elements
Bom oo O ow "o e e e T

= Static storage

= Transitory storage

Memory: Vum
Registers: Vg
Transitories: Vi

Structural skeleton: Vg =V OVROVy

Retargetable Processors 24 of 36

‘ Daniel Karlsson November 7, 2001



Hardware Conflicts

= Hardware conflict = access conflict on transitory

. \ L .
= The function resourcesV| - 2 Treturns the set of transitories that are written
by operation type .i

= Operation types VvV, OVeare free from structural hazards if
(0]

Elii,i- ov, (ii ¢ij) O resource$ ii) n resource$ Ji) = 0.
o

J

Retargetable Processors
Daniel Karlsson

25 of 36

November 7, 2001

Code Generation
om0 U e e e T e

The source code is given as a dataflow graph (DFG):
= A dataflow graph is a bipartite graph Gpee = Vpre EDPd\Zhere

Vpeg = Vo U Vy with Vorepresenting CDFG operations and \A’gpresenting

the values they can produce and consume. The edges represent the dataflow.

= Code generation is mapping Gprgnto G, ydth values in mgpped on

Vgand V,mapped on V,

Retargetable Processors
Daniel Karlsson

27 of 36

November 7, 2001

Operation Type Hierarchy

/ \

L = {sub, subXY, subYX, subAB, subBA, add, ... } \. " it‘#‘ =
V= (SUbXY, SubYX, subAB, 5ubBA, addAB ...} .

Retargetable Processors
Daniel Karlsson

26 of 36

November 7, 2001

Refinement

Retargetable Processors
Daniel Karlsson

28 of 36

November 7, 2001



Y
12
Direct data dep.

Retargetable Processors

h Daniel Karlsson

vl

V2

Dir. data dep. w. move

Data Dependencies

Allocated data dep.

29 of 36
November 7, 2001

Bundles

= CDFG operations are grouped into bundles. Operations in a bundle have di-

rect data dependency.

= All operations in a bundle are executed in the same clock cycle.

Retargetable Processors

h Daniel Karlsson

31 of 36
November 7, 2001

Questions
B om oo P ow ey T

= Whatis an ISG?

= How are hardware conflicts detected?

= How does code generation work?

30 of 36
November 7, 2001

Retargetable Processors
Daniel Karlsson

Code Selection
gm0 Pw e e e T e

= Partition the CDFG into DAG patterns that can be implemented by a single in-

struction.

= Two subtasks:

0 Matching template patterns (NP-complete). Patterns may overlap.

o Covering (NP-complete)

Retargetable Processors 32 of 36

h Daniel Karlsson November 7, 2001



Matching

COFG I15G

Retargetable Processors 33 of 36

h Daniel Karlsson November 7, 2001

Questions

=  What are the subtasks of code selection?

Retargetable Processors 35 of 36

h Daniel Karlsson November 7, 2001

Covering
Bom oo Uom T o e T R,

Cost function: Minimise cost = number of clock cycles. E.g. minimise number of
extra moves.

(a) (b}
{B4, B5} yields an illegal covering.

34 of 36
November 7, 2001

Retargetable Processors
Daniel Karlsson

Summary
Bom oo O ow "o e e e T

= SoC puts a challenge on retargetable compielers.
= Truths for general purpose no longer true.
= Examples of retargetable compilers, modelling processor with ISG.

= A lot more details, not brought up here..

Retargetable Processors 36 of 36

h Daniel Karlsson November 7, 2001



