
Specification Languages

Presented by Cecilia Ekelin



Purpose of the language

� To express the specification of the system to be designed

� To enable formal reasoning about the design

� To provide possibilities for tool support on modeling, validation and
implementation



Implications on language design

� A high-level approach necessary to cope with system complexity
- Should be possible to express typical concepts

� The language should be based on formal semantics (Models of Computation)
- No assumptions about implementation

� Formal syntax required as input to tools
- Should be intuitive to the user



Concepts of embedded systems

� Concurrency
- Interleaved vs Parallel
- Control vs Data oriented

� Hierarchy
- Behavioral vs Structural

� Communication
- Message passing vs Shared memory

� Synchronization
- Synchronous vs Asynchronous

� Implementation
- Software vs Hardware

� Time ?



Models of computation

� Synchronization (Communication)
- Single vs Multi-thread

� Concurrency (Functionality)
- Data vs Control-driven

Representations: language-oriented (graphs), architecture-oriented (FSM)



Languages

VLSI System Design:

� Hardware abstraction levels, timing and data flow computations

� Hardware Description Languages (HDLs)

� E.g., VHDL, HardwareC, SpecCharts, SpecC



Languages (continued)

Protocol specification:

� Formal description to enable verification

� LOTOS
- Based on process algebra and abstract data types
- Specification is executable

� SDL
- Based on extended FSMs
- Both graphical and textual modeling

� ESTELLE
- Pascal-like programming language
- Implementation details necessary



Languages (continued)

Reactive (real-time) system design:

� Need to guarantee (timely) response to events

� ESTEREL
- Based on events
- Synchronous time model

� LUSTRE, SIGNAL
- Based on programmable automaton
- Simple time aspects in LUSTRE but more advanced in SIGNAL

� Petri net tools
- Based on Petri nets
- Not always formally defined



Languages (continued)

Programming languages:

� Often lacking constructs for concurrency and timing

� Extensions break the language standards

� E.g., C, Ada, Java, Fortran



Languages (continued)

Formal methods:

� Offers high abstraction but perhaps not all necessary concepts

� VDM, Z
- Based on set theory and predicate logic
- “Lack of tools” (www.ifad.dk)

� B
- Based on Abstract Machine Notation



Languages (continued)

Structural Analysis:

� Systematic approach for structuring code and data in software systems

� “Divide and conquer”

� E.g., OO, UML



Languages (continued)

Continuous languages:

� High-level modeling based on differential equations

� Used for DSP, mechanical and hydraulic design

� Large expressiveness makes verification and synthesis hard

� E.g., Matlab, Matrixx, Mathematica



Case Study: SDL

Hierarchy

� System

� Block

� Process

� Procedures



Case Study: SDL (continued)

Communication & Concurrency

� No global data

� Asynchronous signals

� Synchronous RPC:s

� Channels interface blocks and processes

� A signal is sent to an explicit process instances



Case Study: SDL (continued)

Time

� time and duration

� A process may start timers

� Timeouts are received as signals

� Timing can be simulated before implementation



Case Study: SDL (continued)

Implementation

� Data is described using ADT or ASN.1

� Easily converted to other languages

� Reuse possible



Tool support

� Editor

� Simulator

� Proover

� Debugger

� Prototyper



Heterogeneous modeling

� Different phases (specification, design, implementation)

� Different subsystems (protocols, signal processing, control tasks)

Multilanguage design: Select language for each component and perform integrated
validation



Multilanguage validation

� Independent approach
- Individual validation

� Integrated (compositional) approach
- Translate each language into a general representation on which validation is
performed
- E.g., Polis environment which is based on Codesign FSM

� Coordinated (cosimulation) approach
- Validate each component separately but within a common framework



Cosimulation models

� Data model
- User-defined types ?

� Timing model
- No time (functional validation)
- Time (granularity)

� Synchronization (communication) model
- Master-slave (direct connection)
- Distributed (software “bus”)

� Interfaces
- In framework and implementation



Example - Automotive application

Three levels: system, system architecture, cycle

� System: Electronics (SDL) and Mechanics (Matlab)
- Determines external specification

� Architecture: Hardware (VHDL) and Software (C)
- Validates partitioning and communication protocols

� Cycle: Gates and Binary code
- Verifies timing behavior

Prototyping



Comments

� “Performance” measures (development, usability, turn-around time, cost)

� Generalization (tools, concepts)


