
Transformational Design Basics 1

Zebo
Transf ormational Design Basics

1. Introduction

2. Unified design representations

3. ETPN

4. The ETPN transformation process.

5. Basic ETPN transformations
 Peng, IDA, LiTH

Transformational Design Basics 2

Zebo
Transf ormational Appr oach to HLS

• Optimization heuristics

• Correctness by construction

• Integration of several synthesis tasks

• Several criteria can be considered simultaneously:

- performance/cost trade-offs

- power consumption and testability

- geometry information

- pre-specified partial structure (design re-use)

Allocation

Scheduling

Binding

Traditional
Approach Transformational Approach

......

VHDL

RTL
 Peng, IDA, LiTH

Transformational Design Basics 3

Zebo
Unified Design Representation

• Used to capture the intermediate results of the trans-
formational process.

• Data flow and control flow information must be explic-
itly represented.

• Expressiveness : It should represent both the struc-
tural and behavioral aspects of a design.

• Concurrency : It must be able to deal naturally with
concurrency of computations.

• Modularity : It should support decomposition of sys-
tems in a clear and well-defined way.

• Interface : It should represent a design to the design-
ers in a convenient way, best by means of graphics.

• Formalness : It should have a precisely defined se-
mantics so that an equivalent relation between differ-
ent designs can be proved.
 Peng, IDA, LiTH

Transformational Design Basics 4

Zebo
Extended Timed P etri Nets (ETPN)

Control

Part

Data
Path

Control Signals

Conditional Signals

Scheduling Allocation and
Binding

Microprogram RTL net-list

Timed Petri net Directed graph
 Peng, IDA, LiTH

Transformational Design Basics 5

Zebo
The Basic P etri Net Model

PN = (P, T, A, M)
P = {p1, p2, ..., pn}, a set ofplaces;
T = {t1, t2, ..., tm}, a set oftransitions;
A ⊆ (P× T) ∪ (T × P), a set of input and outputarcs;
M = {m1, m2, ..., mn}, the initial marking.

Execution rule: anenabled transition can befired at any
time to generate a new marking.

Ex.

parallel start

sequential

synchronization

non-deterministic choice
 Peng, IDA, LiTH

Transformational Design Basics 6

Zebo
Partial Or dering in ETPN

S3

S1

S2

 (a) (b)

S1 S2

S3

S2

S1

S3

 (c)

Floating point multiplication example

S1: addition of exponents
S2: multiplication of mantissa
S3: normalization of the results

8.4 e2 x 9.4 e3 = 78.96 e5 = 7.896 e6
 Peng, IDA, LiTH

Transformational Design Basics 7

Zebo
Formal Definition of ETPN

A data path, D = (V, I, O, A, B):

V = {V1,V2,...,Vn} is a finite set of vertices each of which
represents a data manipulation or storage unit;

I = I(V1) ∪ I(V2) ∪... ∪ I(Vn) with I(Vj) = the set of input ports
associated with vertex Vj;

O = O(V1) ∪ O(V2) ∪... ∪ O(Vn) with O(Vj) = the set of
output ports associated with vertex Vj;

A ⊆ O × I = {<O, I>  O ∈ O, I ∈ I} is a finite set of arcs
each connecting an output port to an input port;

B : O → 2OP is a mapping from output ports to sets of
operations; OP = {OP1, OP2, ..., OPm} is a finite set of
operations which is divided into the sequential subset
SEQ and the combinatorial subset COM.

Ry

+ >

OP

IP“1”“0”

“0”

C

S2 S7

S3 S3

S3

S4

S5 S5S5

S6

1

Rx

C

S3

1

 Peng, IDA, LiTH

Transformational Design Basics 8

Zebo
Formal Definition of ETPN (Cont’ d)

A data/control flow system, Γ = (D, S, T, F, C, G, R, Mo):

D = (V, I, O, A, B) is a data path;

S = {S1, S2, ..., Sn} is a finite set of S-elements;

T = {T1, T2, ..., Tm} is a finite set of T-elements;

F ⊆ (S × T) ∪ (T × S) is a binary relation, called the control
flow relation;

C : S → 2A is a mapping from control places to sets of
arcs of the given data path; an arc Ai is controlled by a
control place Sj if Ai ∈C(Sj);

G : O → 2T is a mapping from output ports of data path
vertices to sets of transitions; a transition Ti is guarded by
an output port Oj if Ti ∈G(Oj);

R : S → 2(O ×OP) is a mapping from control places to sets
of pairs consisting of an output port and an operation; an
output port/operation pair <Oi, OPj> is selected by Sk if <Oi,
OPj> ∈R(Sk);

Mo : S → {0, 1} is an initial marking function.
 Peng, IDA, LiTH

Transformational Design Basics 9

Zebo
An ETPN Example

S0

S3

S6 S4

S5

Ry

+ >

OP

IP“1”“0”

“0”

C

CC

S2 S7

S3 S3

S3

S4

S5 S5S5

1 S6

Control Part Data Path

S S7

1

S1

1

IP : input pin, OP : output pin, R : register,
+ : adder, > : comparator, C : condition,
"0" : constant 0, “1” : constant 1.

Rx

C

S3

1

T1

T2

T3

T4

T5

T6

T7

BEGIN
y := 0;
x := 1;
WHILE x > 0 DO
BEGIN

Read(x);
y := y + x;

END;
Write(y);

END;

2

 Peng, IDA, LiTH

Transformational Design Basics 10

Zebo
Execution Rules

1) A marking is an assignment of tokens to the places.
Initially there is a token in each of the initial places, i.e.,
place Si such that Mo(Si) = 1.

2) A transition T is enabled at a marking M if and only if for
every S such that (S, T) ∈ F, we have M(S) ≥ 1.

3) A transition T may be fired when it is enabled and the
guarding condition is true.

4) Firing an enabled transition T removes a token from
each of its input places and deposits a token in each of its
output places, resulting in a new marking.

5) ν(P) denotes the data value present at input or output
port P. When a control place holds a token, its associated
arcs in the data path will open for data to flow.

6) For each output port O of a vertex V, ν(O) = OP(ν(I(V))),
where OP ∈ B(O), <O, OP> is selected and OP ∈ COM. If
OP ∈ SEQ, it is assumed that O has memory capability
and ν(O) remains the same until it is changed.

7) If none of the connected arcs of an input port I is active,
ν(I) is undefined.
 Peng, IDA, LiTH

Transformational Design Basics 11

Zebo
Compiling VHDL to ETPN

VHDL specification

syntactic & semantic
analysis

program
graph

transformation &
optimization

data/control flow
description

parallelization

parallelized data/control
flow description

ETPN generation

data path control
 Peng, IDA, LiTH

Transformational Design Basics 12

Zebo
An Example

VA

S1

X “1”

+ ×

≥ +

C C

“2”

“100”

R

S1

S2

S3

S4

S5

S6

S1 S2

S3

S6 S4 S5

C C

C C

“1”

“1”

S2

S3

S3S3

S3

S4 S4

S4

S5

S5 S5

S6 S6

S6

• • •

S1: A:=1;
S2: X:=1;
S3: while 100>=X loop
S4: V:=V*2;
S5: X:=X+1;

end loop ;
S6: R:=V+A;

• • •
 Peng, IDA, LiTH

Transformational Design Basics 13

Zebo
IF Statements

controls evaluation of
conditionC

sequence_1

sequence_3

• • •

if C then
sequence_1

else
sequence_2

end if;
• • •

statement sequence follow-
ing the if statement

C C

• • •

if C1 then
sequence_1

elsif C2 then
sequence_2

else
sequence_3

end if;
• • •

C1 C1

C2 C2

controls evaluation of
conditionC1

controls evaluation of
conditionC2

sequence_1

sequence_2

sequence_2

statement sequence follow-
ing the if statement
 Peng, IDA, LiTH

Transformational Design Basics 14

Zebo
ETPN to RTL Mapping

• Each data path node is implemented by a RTL com-
ponent from a module library.

• The control part is mapped into a FSM notation, which
can then be implemented as microprogram, PLA, or
random logic.

FSM Generation (ASAP Scheduling)

C2

C1

M8

M7

M6

M5

M3

M2

M1

M4

M0

C1

C2

S0

S1 S2 S3

S5 S6

S4

S7

S8

S9

S10

S11

S12
S13

C2

C2

C1 C1

S14

M0 : S0 exit TRUE -> M1;
M1 : S1,S2,S3 exit TRUE -> M2;

M2 : S4,S5,S6 exit TRUE -> M3;

M3 : S4,S7,S8 exit C1 -> M4;

exit NOT C1 -> M5;

M4 : S4,S7,S9 exit TRUE -> M5;

M5 : S4,S7,S10 exit TRUE -> M6;

M6 : S11 exit C2 -> M2;

exit NOT C2 -> M7;

M7 : S12,S13 exit TRUE -> M8;

M8 : S14 exit;
 Peng, IDA, LiTH

Transformational Design Basics 15

Zebo
ETPN Transf ormations

• Compiler oriented transformations

• Operation scheduling oriented transformations

• Data path oriented transformations

• Control oriented transformations

• Advanced transformations (e.g., pipelining)
 Peng, IDA, LiTH

Transformational Design Basics 16

Zebo
Compiler Oriented T ransf ormations

• Algebraic transformations — make use of basic alge-
braic laws, such as associativity, commutativity and
distribution.

• Common subexpression elimination

• Dead code elimination

• Constant and variable propagation

• Loop unrolling

• ...

+

a b c d

+

c d

+

Tree-height reduction transformation example.

+

+
+

a b
 Peng, IDA, LiTH

Transformational Design Basics 17

Zebo
Operation Sc heduling Oriented
Transf ormations

• Determination of the serial/parallel nature of the de-
sign.

• Division or grouping of operations into time steps.

• Change of the order of operations.

SS i j

S

S i

j

place-stretch

parallelization

S7

S

+

S S

S

S

×

7

7 7

7

7

S ’

S7

7
+

S S

S ’

S ’

×
7 7

7

7

Splitting

Folding

B C

D

B C

D

Tmp
S7

A

A

S ’7

S ’7

S7
 Peng, IDA, LiTH

Transformational Design Basics 18

Zebo
Operation Sc heduling Oriented
Transf ormations (Cont’ d)

• Rescheduling transformation — introduction of dum-
my places into the Petri net to change the default
scheduling of the operations

-
Rescheduling

×

+ +

S3

S1

S2

S4
S1

S2

S3 S4

b c

s a

d f

e

zy

x

S1 S1

S1

S2 S2

S2

S3 S3

S3

S4 S4

S4
 Peng, IDA, LiTH

Transformational Design Basics 19

Zebo
Data Path Oriented T ransf ormations

• Vertex merger folds two combinatorial vertices into
one

• Vertex splitter is an inverse transformation.

+

+

×

b c

az

x

u

y

q

S1 S1

S1

S2

S2

S2

S3

S3

S4 S4

S4

+

+

+

×

b c

az

x

u

y

q

S1 S1

S1

S2
S2

S2 S3 S3

S3

S4

S4

S4

S3
 Peng, IDA, LiTH

Transformational Design Basics 20

Zebo
Contr ol Oriented T ransf ormations

• Control merger folds a set of Petri net places, that are
strictly parallel (they all have the same input transi-
tion), into one place.

-

×

+ +
S1

S2

S

b c

s a

d f

e

zy

x

S1 S1

S1

S2 S2

S2

S S

S

S S

S

S1

S2

S3
S4
 Peng, IDA, LiTH

Transformational Design Basics 21

Zebo
Contr ol/Data Path Exc hang e

• Conditional statement transformation

if cond then a:= b+c; else a:= d + e; end ;

+ +

S1

b c

a

ed

S2 S2

S2, S3

S S

S

S2 S3

S4

d e

S3
S3

cond cond

+

cb

a

S S

S

Mux
S

S

S

cond
 Peng, IDA, LiTH

Transformational Design Basics 22

Zebo
Summar y

• An intermediate design representation is critical to a
transformational approach.

• A formal notation of semantic equivalence must be
defined in order to prove that the design transforma-
tions are semantics-preserving.

• Explicit representation of parallel computations is im-
portant.

• Timing information should be explicit to facilitate per-
formance estimation.

• If the design representation captures both scheduling
and allocation information, these tasks can be inte-
grated in a single algorithm.

• Advanced optimization techniques are required for the
selection of transformations.
 Peng, IDA, LiTH

	Transformational Design Basics
	1. Introduction
	2. Unified design representations
	3. ETPN
	4. The ETPN transformation process.
	5. Basic ETPN transformations

	Transformational Approach to HLS
	• Optimization heuristics
	• Correctness by construction
	• Integration of several synthesis tasks
	• Several criteria can be considered simultaneously:
	- performance/cost trade-offs
	- power consumption and testability
	- geometry information
	- pre-specified partial structure (design re-use)

	Unified Design Representation
	• Used to capture the intermediate results of the transformational process.
	• Data flow and control flow information must be explicitly represented.
	• Expressiveness: It should represent both the structural and behavioral aspects of a design.
	• Concurrency: It must be able to deal naturally with concurrency of computations.
	• Modularity: It should support decomposition of systems in a clear and well-defined way.
	• Interface: It should represent a design to the designers in a convenient way, best by means of ...
	• Formalness: It should have a precisely defined semantics so that an equivalent relation between...

	Extended Timed Petri Nets (ETPN)
	The Basic Petri Net Model
	Partial Ordering in ETPN
	Formal Definition of ETPN
	A data path, D = (V, I, O, A, B):
	V = {V1,V2,...,Vn} is a finite set of vertices each of which represents a data manipulation or st...
	I = I(V1) » I(V2) »... » I(Vn) with I(Vj) = the set of input ports associated with vertex Vj;
	O = O(V1) » O(V2) »... » O(Vn) with O(Vj) = the set of output ports associated with vertex Vj;
	A Õ O ¥ I = {<O, I> Í O Œ O, I Œ I} is a finite set of arcs each connecting an output port to an ...
	B : O Æ 2OP is a mapping from output ports to sets of operations; OP = {OP1, OP2, ..., OPm} is a ...

	Formal Definition of ETPN (Cont’d)
	A data/control flow system, G = (D, S, T, F, C, G, R, Mo):
	D = (V, I, O, A, B) is a data path;
	S = {S1, S2, ..., Sn} is a finite set of S-elements;
	T = {T1, T2, ..., Tm} is a finite set of T-elements;
	F Õ (S ¥ T) » (T ¥ S) is a binary relation, called the control flow relation;
	C : S Æ 2A is a mapping from control places to sets of arcs of the given data path; an arc Ai is ...
	G : O Æ 2T is a mapping from output ports of data path vertices to sets of transitions; a transit...
	R : S Æ 2(O ¥ OP) is a mapping from control places to sets of pairs consisting of an output port ...
	Mo : S Æ {0, 1} is an initial marking function.

	An ETPN Example
	BEGIN
	y := 0;
	x := 1;
	WHILE x > 0 DO
	BEGIN
	Read(x);
	y := y + x;
	END;
	Write(y);
	END;

	Execution Rules
	1) A marking is an assignment of tokens to the places. Initially there is a token in each of the ...
	2) A transition T is enabled at a marking M if and only if for every S such that (S, T) Œ F, we h...
	3) A transition T may be fired when it is enabled and the guarding condition is true.
	4) Firing an enabled transition T removes a token from each of its input places and deposits a to...
	5) n(P) denotes the data value present at input or output port P. When a control place holds a to...
	6) For each output port O of a vertex V, n(O) = OP(n(I(V))), where OP Œ B(O), <O, OP> is selected...
	7) If none of the connected arcs of an input port I is active, n(I) is undefined.

	Compiling VHDL to ETPN
	VHDL specification

	An Example
	V

	IF Statements
	controls evaluation of condition C

	ETPN to RTL Mapping
	• Each data path node is implemented by a RTL component from a module library.
	• The control part is mapped into a FSM notation, which can then be implemented as microprogram, ...
	FSM Generation (ASAP Scheduling)
	C2

	ETPN Transformations
	• Compiler oriented transformations
	• Operation scheduling oriented transformations
	• Data path oriented transformations
	• Control oriented transformations
	• Advanced transformations (e.g., pipelining)

	Compiler Oriented Transformations
	• Algebraic transformations — make use of basic algebraic laws, such as associativity, commutativ...
	Tree-height reduction transformation example.
	• Common subexpression elimination
	• Dead code elimination
	• Constant and variable propagation
	• Loop unrolling
	• ...

	Operation Scheduling Oriented Transformations
	• Determination of the serial/parallel nature of the design.
	place-stretch
	• Division or grouping of operations into time steps.
	• Change of the order of operations.

	Operation Scheduling Oriented Transformations (Cont’d)
	• Rescheduling transformation — introduction of dummy places into the Petri net to change the def...
	S3

	Data Path Oriented Transformations
	• Vertex merger folds two combinatorial vertices into one
	• Vertex splitter is an inverse transformation.
	+

	Control Oriented Transformations
	• Control merger folds a set of Petri net places, that are strictly parallel (they all have the s...
	S1

	Control/Data Path Exchange
	• Conditional statement transformation
	S1

	Summary
	• An intermediate design representation is critical to a transformational approach.
	• A formal notation of semantic equivalence must be defined in order to prove that the design tra...
	• Explicit representation of parallel computations is important.
	• Timing information should be explicit to facilitate performance estimation.
	• If the design representation captures both scheduling and allocation information, these tasks c...
	• Advanced optimization techniques are required for the selection of transformations.

