
High-Level Synthesis 1

Zebo
High-Level Synthesis

1. Basic definition

2. A typical HLS process

3. Scheduling techniques

4. Allocation and binding techniques

5. Advanced issues
 Peng, IDA, LiTH

High-Level Synthesis 2

Zebo Pen
Intr oduction

Definition: HLS generates register-transfer level
designs from behavioral specifications, in a
automatic manner.

• Input:

- The behavioral specification.

- Design constraints (cost, performance, pow-
er consumption, pin-count, testability, etc.).

- An optimization function.

- A module library representing the available
components at RTL.

• Output:

- RTL implementation structure (netlist).

- Controller (captured usually as a symbolic
FSM).

- Other attributes, such as geometrical infor-
mation.

• Goal: to generate a RTL design that implements
the specified behavior while satisfying the de-
sign constraints and optimizing the given cost
function.
g, IDA, LiTH

High-Level Synthesis 3

Zebo
A Typical HLS Pr ocess

1. Behavioral specification:

• Which language to use?

Procedural languages

Functional languages

Graphics notations

• Explicit parallelism?

PROCEDURE Test;

VAR

A,B,C,D,E,F,G:integer;

BEGIN

Read(A,B,C,D,E);

F := E*(A+B);

G := (A+B)*(C+D);

...

END;

Input behavioral specification
2. Dataflow analysis:

• Parallelism extraction.

• Eliminating high-level
language constructs.

• Loop unrolling.

• Program transformation.

• Common subexpression
detection.

Dataflow description

*

++

A B C DE

*

GF
 Peng, IDA, LiTH

High-Level Synthesis 4

Zeb
A Typical HLS Pr ocess (Cont’ d)

3. Operation scheduling:

• Performance/cost trade-
offs.

• Performance measure.

• Clocking strategy.

Scheduled dataflow description

*

++

A B C DE

*

GF

4. Data-path allocation:

• Operator selection.

• Register/memory alloca-
tion.

• Interconnection genera-
tion.

• Hardware minimization.

Partial data-path

Reg R1 Reg R2

+

Reg R3

M

A<0:7> B<0:7>

*

o Peng, IDA, LiTH

High-Level Synthesis 5

Z

A Typical HLS Pr ocess (Cont’ d)

5. Control allocation:

• Selection of control style (PLA, micro-
code, random logic, etc.).

• Controller generation.

Reg R1 Reg R2

+

Reg R3

M

A<0:7> B<0:7>

Controller description:

S1: M1=1, Load R1 next S2;

S2: Load R2 next S3;

S3: Add, Load R3 next S4;

S4: M1=0, Load R1 next...

RTL structure with controller description
ebo Peng, IDA, LiTH

High-Level Synthesis 6

Zebo
A Typical HLS Pr ocess (Cont’ d)

6. Module binding and controller implementation:

• Selection of physical modules.

• Specification of module parameters and constraints.

• Controller implementation.

Reg R1 Reg R2

Adder 8

Reg R3

A<0:7> B<0:7>

M1

Controller ROM:

0000 : 11000000 0001

0001 : 00100000 0010

0010 : 00011000 0011

0011 : 01000000 0100

Final results
 Peng, IDA, LiTH

High-Level Synthesis 7

Zebo
The Basic Issues

• Scheduling Assignment of each operation to a
time slot corresponding to a clock cycle or time inter-
val.

• Resource Allocation Selection of the types of
hardware components and the number for each type
to be included in the final implementation.

• Module Binding Assignment of operation to the al-
located hardware components.

• Controller Synthesis Design of control style and
clocking scheme.

• Compilation of the input specification language to the
internal representation must be done.

• Parallelism Extraction To extract the inherent par-
allelism of the original solution, which is usually done
with data flow analysis techniques.

• Operation Decomposition Implementation of
complex operations in the behavioral specification.

• ...
 Peng, IDA, LiTH

High-Level Synthesis 8

Zebo
The Scheduling Pr oblem

• Resource-constrained (RC) scheduling:

- Given a set O of operations with a partial ordering
which determines the precedence relations, a set
K of functional unit types, a type function, τ: O→K,
to map the operations into the functional unit types,
and resource constraints mk for each functional
unit type.

- Find a (optimal) schedule for the set of operations
that obeys the partial ordering and utilizes only the
available functional units.

Ex.

• Time-constrained (TC) scheduling:

+ *

+

*

*+

-

*

+

+

a := i1 + i2;

o1 := (a - i3) * 3;

o2 := i4 + i5 + i6;

d := i7 * i8;

g := d + i9 + i10;

o3 := i11 * 7 * g;

1 adder, 1 multiplier

τ: +,- → Adder
* → Multiplier
 Peng, IDA, LiTH

High-Level Synthesis 9

Zebo
RC Scheduling T echniques

• ASAP: As soon as possible

- Sort the operations topologically according to their
data /control flow;

- Schedule operations in the sorted order by placing
them in the earliest possible control step.

Control
Step

+ *

+

*

*+
1 3 4 5

8

10

-

*

+

+

2

6 7

9

+ *

+

*

*

+

1 3

4

5

8

10

-

*

+

+

2

7

ASAP

(a) Sorted DFG (b) ASAP schedule

2

3

4

6

7

5

1

6

9

 Peng, IDA, LiTH

High-Level Synthesis 10
RC Scheduling T echniques (Cont’ d)

• ALAP: As late as possible

- Sort the operations topologically according to their data /
control flow;

- Schedule operations in the reversed order by placing
them in the latest possible control step.

Control
Step

+ *

+

*

*+
1 3 4 5

8

10

-

*

+

+

2

6 7

9

(a) Sorted DFG (b) ALAP schedule

+

*

+

*

*

+

1

3 4

5

8

10

-

*

+

+

2

6

7

9

1

2

3

4

6

5

Zebo Peng, IDA, LiTH

High-Level Synthesis 11

Zebo
RC Scheduling T echniques (Cont’ d)

• List Scheduling

- For each control step, the operations that are avail-
able to be scheduled are kept in a list;

- The list is ordered by some priority function:

1. The length of path from the operation to the
end of the block;

2. Mobility: the number of control steps from the
earliest to the latest feasible control step.

- Each operation on the list is scheduled one by one
if the resources it needs are free; otherwise it is de-
ferred to the next control step.

Control
Step

+ *

+

*

*+
1 3 4 5

8

10

-

*

+

+

2

6 7

9

+ *

+

*

*+

1 3

4 5

8

10

-

*

+

+

2

6

7

9

1

2

3

4

6

5

(a) DFG (b) List schedule
 Peng, IDA, LiTH

High-Level Synthesis 12

Zebo
TC Scheduling T echniques

• Force-Directed Scheduling: The basic idea is to bal-
ance the concurrency of operations.

- ASAP and ALAP schedules are calculated to de-
rive the time frames for all operations.

- For each type of operations, a distribution graph is
built to denote the possible control steps for each
operation. If an operation could be done in k steps,
then 1/k is added to each of these k steps.

- The algorithm tries to balance the distribution
graph by calculate the force of each operation-to-
control step assignment and select the smallest
force:

An example:

+

+

*

*

+

a1

a3a2

Range

1

2

3

a1

a2
a3

1

2

3

a2

Distribution Graph

*

+
a3

ASAP ALAP

Force σ oi() sj=() DG sj() 1
∆T oi()
----------------- DG s()

s σASAP oi()=

σALAP oi()

∑⋅–=
 Peng, IDA, LiTH

High-Level Synthesis 13
Classification of Sc heduling Appr oaches

• Constructive scheduling - one operation is assigned to one
control step at a time and this process is iterated from con-
trol step (operation) to control step (operation).

- ASAP

- ALAP

- List scheduling

• Global scheduling - All control step and all operations are
considered simultaneously when operations are assigned
to control steps.

- Force-directed scheduling

- Neural net scheduling

- Integer Linear Programming algorithms

• Transformational scheduling - starting from an initial sched-
ule, a final schedule is obtained by successively transfor-
mations.
Zebo Peng, IDA, LiTH

High-Level Synthesis 14

Zebo
Advanced Sc heduling Issues

• Control construct consideration.

- conditional branches

- loops

• Chaining and multicycling.

• Scheduling with local timing constraints.

*
100ns

(a) No chaining or multicycling

+

200ns

+

*
100ns

(b) Two chained additions

+

+

100ns

(c) A multicycle multiplication

+

+

50ns
*

 Peng, IDA, LiTH

High-Level Synthesis 15

Zebo
Allocation and Binding

• Allocation (unit selection) Determination of the
type and number of resources required:

- Number and types of functional units
- Number and types of storage elements
- Number and types of busses

• Binding Assignment to resource instances:

- Operations to functional unit instances
- Values to be stored to instances of storage ele-

ments
- Data transfers to bus instances

• Optimization goal

- Minimize total cost of functional units, register, bus
driver, and multiplexor

- Minimize total interconnection length

- Constraint on critical path delay

s1 +

+

a

a b,e,g

+1, +3

+

+

b c d

s2

o1

o3

o2

o4

e f

g h

c,f,h d

+2, +4
 Peng, IDA, LiTH

High-Level Synthesis 16

Zebo
Appr oaches to Allocation/Binding

• Constructive start with an empty datapath and
add functional, storage and interconnects as neces-
sary.

- Greedy algorithms perform allocation for one
control step at a time.

- Rule-based used to select type and numbers of
function units, especially prior to scheduling.

• Graph-theoretical formulations sub-tasks are
mapped into well-defined problems in graph theory.

- Clique partitioning.

- Left-edge algorithm.

- Graph coloring.

• Transformational allocation

+

*

*

+

+

1

2

3

a1

+

m1

a2 a3

m2

a4

+ +

*

Reg

a1, a3, a4 a2

m1, m2
 Peng, IDA, LiTH

High-Level Synthesis 17
Clique P artitioning

• Let G = (V, E) be an undirected graph with a set V of vertices
and a set E of edges.

• A clique is a set of vertices that form a complete subgraph of
G.

• The problem of partitioning a graph into a minimal number of
cliques such that each vertex belongs to exactly one clique
is called clique partitioning.

• Formulation of functional unit allocation as a clique partition-
ing problem:

- Each vertex represents an operation.

- An edge connects two vertices iff:

1. the two operations are scheduled into different con-
trol steps, and

2. there exists a functional unit that is capable of carry-
ing out both operations.

+

*

*

+

+

1

2

3

a1

+

m1

a2 a3

m2

a4

a1

a2

a4

a3

a clique

m1

m2
Zebo Peng, IDA, LiTH

High-Level Synthesis 18
Clique P artitioning (Cont’ d)

• Formulation of storage allocation as a clique partitioning
problem:

- Each value needed to be stored is mapped to a vertex.

- Two vertices are connected iff the life-time of the two val-
ues do not intersect.

☞ The clique partitioning problem is NP-complete.

☞ Efficient heuristics have been developed; e.g., Tseng used
a polynomial time algorithm which generates very good re-
sults.
Zebo Peng, IDA, LiTH

High-Level Synthesis 19

Zebo
Tseng’ s Algorithm

• A super-graph is derived from the original graph.

• Find two connected super-nodes such that they have
the maximum number of common neighbors.

• Merge the two nodes and repeated from the first step,
until no more merger can be carried out.

v1

v3 v4 v5

v2

e1,3 e1,4
e2,5

e4,5
e3,4

e2,3

(a)

v1

v3 v4 v5

v2

(b)

Edge Common
neighbors

e’1,3 1
e’1,4 1
e’2,3 0
e’2,5 0
e’3,4 1
e’4,5 0

v1

v3 v4 v5

v2

(c)

Edge Common
neighbors

e’13,4 0
e’2,5 0
e4,5 0

v1

v3 v4 v5

v2

(e)

Edge Common
neighbors

e’2,5 0

v1

v3 v4 v5

v2

(d)

s13

s134

s134

s25 Cliques:

S134=(V 1,V 3,V 4)

S25 =(V 2,V 5)
 Peng, IDA, LiTH

High-Level Synthesis 20

Zebo
Left-Edg e (LE) Algorithm

• The LE algorithm is used in channel routing to mini-
mize the number of tracks used to connect points.

• The register allocation problem can be solved by the
LE algorithm by mapping the birth time of a value to
the left edge, and the death time of a value to the right
edge of a wire.

o2

+ *

+ *

+
1 3 4

5
8

Variable life-times

-

* +

+

2

6

7

9

*

10

’3’

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10i11

’7’a

t1

t2

d t3

g
t4

o1 o3

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11

a d t3

t1

o1

g t4

t2

o2 o3
 Peng, IDA, LiTH

High-Level Synthesis 21

Zebo
Left-Edg e (LE) Algorithm (Cont’ d)

• The algorithm works as follows:
- The values are sorted in increasing order of their

birth time.

- The first value is assigned to the first register.

- The list is then scanned for the next value whose
birth time is larger than or equal to the death time
of the previous value.

- This value is assigned to the current register.

- The list is scanned until no more value can shared
the same register. A new register will then be intro-
duced.

t4

t2

o3

i1i2i3 i4 i5i6 i7i8 i9i10i11

a d t3

t1 g

o1

o2

i1 i2 i3 i4 i5i6 i7i8 i9i10i11

a

t1

o1

d

g

o2

t3

t4

t2

o3

a) sorted list of variables b) assignment of variables into registers
 Peng, IDA, LiTH

High-Level Synthesis 22

Zebo
Left-Edg e (LE) Algorithm (Cont’ d)

• The algorithm guarantees to allocate the minimum
number of registers, but has two disadvantages:

- Not all life-time table might be interpreted as inter-
secting intervals on a line.

loop

conditional branches

- The assignment is neither unique nor necessarily
optimal (in terms of minimal number of multiplex-
ors, for example).
 Peng, IDA, LiTH

High-Level Synthesis 23

Zebo
Advanced Issues of HLS

• Target architecture consideration, e.g. pipelining.

• General library organization.

- Component hierarchy.

- Many-to-many mapping between operations and
physical components.

- Multiple technology components.

• Domain-specific synthesis strategies.

- Control-dominated applications.

- Timing-driven optimization.

• Re-use of previous designs.

• Synthesis with commercially available sub-systems,
IP-based synthesis.

• HLS with testability consideration.

• HLS with power consideration.
 Peng, IDA, LiTH

High-Level Synthesis 24

Zebo
Advanced Issues of HLS

• Target architecture consideration.

- Multiplexed data-path:

Operations are mapped to combinational units.

Storage is provided by distributed registers.

Interconnect is established by multiplexors/nets.

A single system clock controls all registers.

- Bidirectional bus architecture:

Functional units have storage capabilities.

Register files are often supported.

Interconnect hardware comprises bidirectional
busses, multiplexors, drivers, and nets.

- Pipelined data paths.
 Peng, IDA, LiTH

	High-Level Synthesis
	1. Basic definition
	2. A typical HLS process
	3. Scheduling techniques
	4. Allocation and binding techniques
	5. Advanced issues

	Introduction
	Definition: HLS generates register-transfer level designs from behavioral specifications, in a au...
	• Input:
	- The behavioral specification.
	- Design constraints (cost, performance, power consumption, pin-count, testability, etc.).
	- An optimization function.
	- A module library representing the available components at RTL.

	• Output:
	- RTL implementation structure (netlist).
	- Controller (captured usually as a symbolic FSM).
	- Other attributes, such as geometrical information.

	• Goal: to generate a RTL design that implements the specified behavior while satisfying the desi...

	A Typical HLS Process
	1. Behavioral specification:
	• Which language to use?

	P rocedural languages
	Functional languages
	Graphics notations
	• Explicit parallelism?

	A Typical HLS Process (Cont’d)
	3. Operation scheduling:
	• Performance/cost trade- offs.
	• Performance measure.
	• Clocking strategy.

	A Typical HLS Process (Cont’d)
	5. Control allocation:
	• Selection of control style (PLA, microcode, random logic, etc.).
	• Controller generation.

	A Typical HLS Process (Cont’d)
	6. Module binding and controller implementation:
	• Selection of physical modules.
	• Specification of module parameters and constraints.
	• Controller implementation.

	The Basic Issues
	• Scheduling æ Assignment of each operation to a time slot corresponding to a clock cycle or time...
	• Resource Allocation æ Selection of the types of hardware components and the number for each typ...
	• Module Binding æ Assignment of operation to the allocated hardware components.
	• Controller Synthesis æ Design of control style and clocking scheme.
	• Compilation of the input specification language to the internal representation must be done.
	• Parallelism Extraction æ To extract the inherent parallelism of the original solution, which is...
	• Operation Decomposition æ Implementation of complex operations in the behavioral specification.
	• ...

	The Scheduling Problem
	• Resource-constrained (RC) scheduling:
	- Given a set O of operations with a partial ordering which determines the precedence relations, ...
	- Find a (optimal) schedule for the set of operations that obeys the partial ordering and utilize...

	Ex.
	a := i1 + i2;
	o1 := (a - i3) * 3;
	o2 := i4 + i5 + i6;
	d := i7 * i8;
	g := d + i9 + i10;
	o3 := i11 * 7 * g;

	1 adder, 1 multiplier
	t: +,- Æ Adder
	* Æ Multiplier
	• Time-constrained (TC) scheduling:

	RC Scheduling Techniques
	• ASAP: As soon as possible
	- Sort the operations topologically according to their data /control flow;
	- Schedule operations in the sorted order by placing them in the earliest possible control step.

	RC Scheduling Techniques (Cont’d)
	• ALAP: As late as possible
	- Sort the operations topologically according to their data / control flow;
	- Schedule operations in the reversed order by placing them in the latest possible control step.

	RC Scheduling Techniques (Cont’d)
	• List Scheduling
	- For each control step, the operations that are available to be scheduled are kept in a list;
	- The list is ordered by some priority function:
	1. The length of path from the operation to the end of the block;
	2. Mobility: the number of control steps from the earliest to the latest feasible control step.

	- Each operation on the list is scheduled one by one if the resources it needs are free; otherwis...

	TC Scheduling Techniques
	• Force-Directed Scheduling: The basic idea is to balance the concurrency of operations.
	- ASAP and ALAP schedules are calculated to derive the time frames for all operations.
	- For each type of operations, a distribution graph is built to denote the possible control steps...
	- The algorithm tries to balance the distribution graph by calculate the force of each operation-...

	Classification of Scheduling Approaches
	• Constructive scheduling - one operation is assigned to one control step at a time and this proc...
	- ASAP
	- ALAP
	- List scheduling

	• Global scheduling - All control step and all operations are considered simultaneously when oper...
	- Force-directed scheduling
	- Neural net scheduling
	- Integer Linear Programming algorithms

	• Transformational scheduling - starting from an initial schedule, a final schedule is obtained b...

	Advanced Scheduling Issues
	• Control construct consideration.
	- conditional branches
	- loops

	• Chaining and multicycling.
	• Scheduling with local timing constraints.

	Allocation and Binding
	• Allocation (unit selection) æ Determination of the type and number of resources required:
	- Number and types of functional units
	- Number and types of storage elements
	- Number and types of busses

	• Binding æ Assignment to resource instances:
	- Operations to functional unit instances
	- Values to be stored to instances of storage elements
	- Data transfers to bus instances

	• Optimization goal
	- Minimize total cost of functional units, register, bus driver, and multiplexor
	- Minimize total interconnection length
	- Constraint on critical path delay

	Approaches to Allocation/Binding
	• Constructive æ start with an empty datapath and add functional, storage and interconnects as ne...
	- Greedy algorithms æ perform allocation for one control step at a time.
	- Rule-based æ used to select type and numbers of function units, especially prior to scheduling.

	• Graph-theoretical formulations æ sub-tasks are mapped into well-defined problems in graph theory.
	- Clique partitioning.
	- Left-edge algorithm.
	- Graph coloring.

	• Transformational allocation

	Clique Partitioning
	• Let G = (V, E) be an undirected graph with a set V of vertices and a set E of edges.
	• A clique is a set of vertices that form a complete subgraph of G.
	• The problem of partitioning a graph into a minimal number of cliques such that each vertex belo...
	• Formulation of functional unit allocation as a clique partitioning problem:
	- Each vertex represents an operation.
	- An edge connects two vertices iff:
	1. the two operations are scheduled into different control steps, and
	2. there exists a functional unit that is capable of carrying out both operations.

	Clique Partitioning (Cont’d)
	• Formulation of storage allocation as a clique partitioning problem:
	- Each value needed to be stored is mapped to a vertex.
	- Two vertices are connected iff the life-time of the two values do not intersect.
	The clique partitioning problem is NP-complete.
	Efficient heuristics have been developed; e.g., Tseng used a polynomial time algorithm which gene...

	Tseng’s Algorithm
	• A super-graph is derived from the original graph.
	• Find two connected super-nodes such that they have the maximum number of common neighbors.
	• Merge the two nodes and repeated from the first step, until no more merger can be carried out.

	Left-Edge (LE) Algorithm
	• The LE algorithm is used in channel routing to minimize the number of tracks used to connect po...
	• The register allocation problem can be solved by the LE algorithm by mapping the birth time of ...
	Variable life-times

	Left-Edge (LE) Algorithm (Cont’d)
	• The algorithm works as follows:
	- The values are sorted in increasing order of their birth time.
	- The first value is assigned to the first register.
	- The list is then scanned for the next value whose birth time is larger than or equal to the dea...
	- This value is assigned to the current register.
	- The list is scanned until no more value can shared the same register. A new register will then ...

	Left-Edge (LE) Algorithm (Cont’d)
	• The algorithm guarantees to allocate the minimum number of registers, but has two disadvantages:
	- Not all life-time table might be interpreted as intersecting intervals on a line.
	loop
	conditional branches

	- The assignment is neither unique nor necessarily optimal (in terms of minimal number of multipl...

	Advanced Issues of HLS
	• Target architecture consideration, e.g. pipelining.
	• General library organization.
	- Component hierarchy.
	- Many-to-many mapping between operations and physical components.
	- Multiple technology components.

	• Domain-specific synthesis strategies.
	- Control-dominated applications.
	- Timing-driven optimization.

	• Re-use of previous designs.
	• Synthesis with commercially available sub-systems, IP-based synthesis.
	• HLS with testability consideration.
	• HLS with power consideration.

	Advanced Issues of HLS
	• Target architecture consideration.
	- Multiplexed data-path:
	Operations are mapped to combinational units.
	Storage is provided by distributed registers.
	Interconnect is established by multiplexors/nets.
	A single system clock controls all registers.

	- Bidirectional bus architecture:
	Functional units have storage capabilities.
	Register files are often supported.
	Interconnect hardware comprises bidirectional busses, multiplexors, drivers, and nets.

	- Pipelined data paths.

