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Intr oduction

Definition: HLS generates register-transfer level
designs from behavioral specifications, in a
automatic manner.

• Input:

- The behavioral specification.

- Design constraints (cost, performance, pow-
er consumption, pin-count, testability, etc.).

- An optimization function.

- A module library representing the available
components at RTL.

• Output:

- RTL implementation structure (netlist).

- Controller (captured usually as a symbolic
FSM).

- Other attributes, such as geometrical infor-
mation.

• Goal: to generate a RTL design that implements
the specified behavior while satisfying the de-
sign constraints and optimizing the given cost
function.
g, IDA, LiTH
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A Typical HLS Pr ocess

1. Behavioral specification:

• Which language to use?

Procedural languages

Functional languages

Graphics notations

• Explicit parallelism?

PROCEDURE Test;

VAR

A,B,C,D,E,F,G:integer;

BEGIN

Read(A,B,C,D,E);

F := E*(A+B);

G := (A+B)*(C+D);

...

END;

Input behavioral specification
2. Dataflow analysis:

• Parallelism extraction.

• Eliminating high-level
language constructs.

• Loop unrolling.

• Program transformation.

• Common subexpression
detection.

Dataflow description

*
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A B C DE

*

GF
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A Typical HLS Pr ocess (Cont’ d)

3. Operation scheduling:

• Performance/cost trade-
offs.

• Performance measure.

• Clocking strategy.

Scheduled dataflow description

*

++

A B C DE

*

GF

4. Data-path allocation:

• Operator selection.

• Register/memory alloca-
tion.

• Interconnection genera-
tion.

• Hardware minimization.

Partial data-path

Reg R1 Reg R2

+

Reg R3

M

A<0:7> B<0:7>

*
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A Typical HLS Pr ocess (Cont’ d)

5. Control allocation:

• Selection of control style (PLA, micro-
code, random logic, etc.).

• Controller generation.

Reg R1 Reg R2

+

Reg R3

M

A<0:7> B<0:7>

Controller description:

S1: M1=1, Load R1 next S2;

S2: Load R2 next S3;

S3: Add, Load R3 next S4;

S4: M1=0, Load R1 next...

RTL structure with controller description
ebo Peng, IDA, LiTH
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A Typical HLS Pr ocess (Cont’ d)

6. Module binding and controller implementation:

• Selection of physical modules.

• Specification of module parameters and constraints.

• Controller implementation.

Reg R1 Reg R2

Adder 8

Reg R3

A<0:7> B<0:7>

M1

Controller ROM:

0000 : 11000000 0001

0001 : 00100000 0010

0010 : 00011000 0011

0011 : 01000000 0100

Final results
 Peng, IDA, LiTH
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The Basic Issues

• Scheduling  Assignment of each operation to a
time slot corresponding to a clock cycle or time inter-
val.

• Resource Allocation  Selection of the types of
hardware components and the number for each type
to be included in the final implementation.

• Module Binding  Assignment of operation to the al-
located hardware components.

• Controller Synthesis  Design of control style and
clocking scheme.

• Compilation of the input specification language to the
internal representation must be done.

• Parallelism Extraction  To extract the inherent par-
allelism of the original solution, which is usually done
with data flow analysis techniques.

• Operation Decomposition  Implementation of
complex operations in the behavioral specification.

• ...
 Peng, IDA, LiTH
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The Scheduling Pr oblem

• Resource-constrained (RC) scheduling:

- Given a set O of operations with a partial ordering
which determines the precedence relations, a set
K of functional unit types, a type function, τ: O→K,
to map the operations into the functional unit types,
and resource constraints mk for each functional
unit type.

- Find a (optimal) schedule for the set of operations
that obeys the partial ordering and utilizes only the
available functional units.

Ex.

• Time-constrained (TC) scheduling:

+ *

+

*

*+

-

*

+

+

a := i1 + i2;

o1 := (a - i3) * 3;

o2 := i4 + i5 + i6;

d := i7 * i8;

g := d + i9 + i10;

o3 := i11 * 7 * g;

1 adder, 1 multiplier

τ: +,- → Adder
* → Multiplier
 Peng, IDA, LiTH
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RC Scheduling T echniques

• ASAP: As soon as possible

- Sort the operations topologically according to their
data /control flow;

- Schedule operations in the sorted order by placing
them in the earliest possible control step.

Control
Step
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RC Scheduling T echniques (Cont’ d)

• ALAP: As late as possible

- Sort the operations topologically according to their data /
control flow;

- Schedule operations in the reversed order by placing
them in the latest possible control step.

Control
Step
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+

*

+

*

*

+

1

3 4

5

8

10

-

*

+

+

2

6

7

9

1

2

3

4

6

5

Zebo Peng, IDA, LiTH



High-Level Synthesis  11

Zebo
RC Scheduling T echniques (Cont’ d)

• List Scheduling

- For each control step, the operations that are avail-
able to be scheduled are kept in a list;

- The list is ordered by some priority function:

1. The length of path from the operation to the
end of the block;

2. Mobility: the number of control steps from the
earliest to the latest feasible control step.

- Each operation on the list is scheduled one by one
if the resources it needs are free; otherwise it is de-
ferred to the next control step.

Control
Step
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TC Scheduling T echniques

• Force-Directed Scheduling: The basic idea is to bal-
ance the concurrency of operations.

- ASAP and ALAP schedules are calculated to de-
rive the time frames for all operations.

- For each type of operations, a distribution graph is
built to denote the possible control steps for each
operation. If an operation could be done in k steps,
then 1/k is added to each of these k steps.

- The algorithm tries to balance the distribution
graph by calculate the force of each operation-to-
control step assignment and select the smallest
force:

An example:

+

+
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Classification of Sc heduling Appr oaches

• Constructive scheduling - one operation is assigned to one
control step at a time and this process is iterated from con-
trol step (operation) to control step (operation).

- ASAP

- ALAP

- List scheduling

• Global scheduling - All control step and all operations are
considered simultaneously when operations are assigned
to control steps.

- Force-directed scheduling

- Neural net scheduling

- Integer Linear Programming algorithms

• Transformational scheduling - starting from an initial sched-
ule, a final schedule is obtained by successively transfor-
mations.
Zebo Peng, IDA, LiTH
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Advanced Sc heduling Issues

• Control construct consideration.

- conditional branches

- loops

• Chaining and multicycling.

• Scheduling with local timing constraints.

*
100ns

(a) No chaining or multicycling

+

200ns

+

*
100ns

(b) Two chained additions

+

+

100ns

(c) A multicycle multiplication

+

+
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*
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Allocation and Binding

• Allocation  (unit selection)  Determination of the
type and number of resources required:

- Number and types of functional units
- Number and types of storage elements
- Number and types of busses

• Binding  Assignment to resource instances:

- Operations to functional unit instances
- Values to be stored to instances of storage ele-

ments
- Data transfers to bus instances

• Optimization goal

- Minimize total cost of functional units, register, bus
driver, and multiplexor

- Minimize total interconnection length

- Constraint on critical path delay

s1 +

+

a

a b,e,g

+1, +3

+

+

b c d
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e f

g h
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Appr oaches to Allocation/Binding

• Constructive  start with an empty datapath and
add functional, storage and interconnects as neces-
sary.

- Greedy algorithms  perform allocation for one
control step at a time.

- Rule-based  used to select type and numbers of
function units, especially prior to scheduling.

• Graph-theoretical formulations  sub-tasks are
mapped into well-defined problems in graph theory.

- Clique partitioning.

- Left-edge algorithm.

- Graph coloring.

• Transformational allocation

+
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Clique P artitioning

• Let G = (V, E) be an undirected graph with a set V of vertices
and a set E of edges.

• A clique is a set of vertices that form a complete subgraph of
G.

• The problem of partitioning a graph into a minimal number of
cliques such that each vertex belongs to exactly one clique
is called clique partitioning.

• Formulation of functional unit allocation as a clique partition-
ing problem:

- Each vertex represents an operation.

- An edge connects two vertices iff:

1. the two operations are scheduled into different con-
trol steps, and

2. there exists a functional unit that is capable of carry-
ing out both operations.

+
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+

+
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Clique P artitioning (Cont’ d)

• Formulation of storage allocation as a clique partitioning
problem:

- Each value needed to be stored is mapped to a vertex.

- Two vertices are connected iff the life-time of the two val-
ues do not intersect.

☞ The clique partitioning problem is NP-complete.

☞ Efficient heuristics have been developed; e.g., Tseng used
a polynomial time algorithm which generates very good re-
sults.
Zebo Peng, IDA, LiTH
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Tseng’ s Algorithm

• A super-graph is derived from the original graph.

• Find two connected super-nodes such that they have
the maximum number of common neighbors.

• Merge the two nodes and repeated from the first step,
until no more merger can be carried out.
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e2,3

(a)
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v3 v4 v5
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Edge Common
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e’1,3 1
e’1,4 1
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Edge Common
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Left-Edg e (LE) Algorithm

• The LE algorithm is used in channel routing to mini-
mize the number of tracks used to connect points.

• The register allocation problem can be solved by the
LE algorithm by mapping the birth time of a value to
the left edge, and the death time of a value to the right
edge of a wire.

o2
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Left-Edg e (LE) Algorithm (Cont’ d)

• The algorithm works as follows:
- The values are sorted in increasing order of their

birth time.

- The first value is assigned to the first register.

- The list is then scanned for the next value whose
birth time is larger than or equal to the death time
of the previous value.

- This value is assigned to the current register.

- The list is scanned until no more value can shared
the same register. A new register will then be intro-
duced.

t4
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a) sorted list of variables b) assignment of variables into registers
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Left-Edg e (LE) Algorithm (Cont’ d)

• The algorithm guarantees to allocate the minimum
number of registers, but has two disadvantages:

- Not all life-time table might be interpreted as inter-
secting intervals on a line.

loop

conditional branches

- The assignment is neither unique nor necessarily
optimal (in terms of minimal number of multiplex-
ors, for example).
 Peng, IDA, LiTH
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Advanced Issues of HLS

• Target architecture consideration, e.g. pipelining.

• General library organization.

- Component hierarchy.

- Many-to-many mapping between operations and
physical components.

- Multiple technology components.

• Domain-specific synthesis strategies.

- Control-dominated applications.

- Timing-driven optimization.

• Re-use of previous designs.

• Synthesis with commercially available sub-systems,
IP-based synthesis.

• HLS with testability consideration.

• HLS with power consideration.
 Peng, IDA, LiTH
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Advanced Issues of HLS

• Target architecture consideration.

- Multiplexed data-path:

Operations are mapped to combinational units.

Storage is provided by distributed registers.

Interconnect is established by multiplexors/nets.

A single system clock controls all registers.

-  Bidirectional bus architecture:

Functional units have storage capabilities.

Register files are often supported.

Interconnect hardware comprises bidirectional
busses, multiplexors, drivers, and nets.

- Pipelined data paths.
 Peng, IDA, LiTH
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