
System Synthesis - VHDL Basics Fö 2 - 1

Petru Eles, IDA, LiTH

VHDL
Basic Issues and Simulation Semantics

1. VHDL: History and Main Features

2. Basic Constructs

3. An Example: Behavioral and Structural Models

4. Concurrent Statements

5. Signals and the Wait Statement

6. The VHDL Simulation Mechanism

7. The Delay Mechanism

8. Resolved Signals

9. VHDL for System Synthesis

System Synthesis - VHDL Basics Fö 2 - 2

Petru Eles, IDA, LiTH

VHDL Histor y

• The name: VHSIC Hardware Description Language

• Important dates:

- 1983: development started with support from
US government.

- 1987: adopted by IEEE as a standard (IEEE
Std. 1076 - 1987).

- 1993: VHDL’92 adopted as a standard after re-
vision of the initial version (IEEE Std. 1076 -
1993).

• Work is going on for the release of new revisions (e.g.
including facilities for analog modeling and simulation).

System Synthesis - VHDL Basics Fö 2 - 3

Petru Eles, IDA, LiTH

Main Features

• Supports the whole design process from high to
low abstraction levels:

- system and algorithmic level
- Register Transfer (RT) level
- logic level
- circuit level (to some extent)

• Suitable for specification in

- behavioral domain
- structural domain

System Synthesis - VHDL Basics Fö 2 - 4

Petru Eles, IDA, LiTH

Main Features (cont’d)

• Precise simulation semantics is associated with the
language definition:

- specifications in VHDL can be simulated;

- the simulation output is uniquely defined and in-
dependent of the tool (VHDL implementation)
and of the computer on which the tool runs.

• VHDL specifications are accepted by hardware
synthesis tools.

- Both the input and the output of the synthesis
process are very often codified in VHDL.

System Synthesis - VHDL Basics Fö 2 - 5

Petru Eles, IDA, LiTH

Basic Constructs

• The basic building block of a VHDL model is the entity.

• A digital system in VHDL is modeled as an entity which
itself can be composed of other entities.

• An entity is described as a set of design units:
- entity declaration
- architecture body
- package declaration
- package body
- configuration declaration

• A design unit can be compiled separately.

System Synthesis - VHDL Basics Fö 2 - 6

Petru Eles, IDA, LiTH

An Example

A four bit parity generator

V EVEN

entity PARITY is

port (V: in BIT_VECTOR(3 downto 0);

EVEN:out BIT);

end PARITY;

System Synthesis - VHDL Basics Fö 2 - 7

Petru Eles, IDA, LiTH

An Example (cont’d)

Architecture body for parity generator - behavioral

architecture PARITY_BEHAVIORAL of PARITY is

begin

process

variable NR_1: NATURAL;

begin

NR_1:=0;

for I in 3 downto 0 loop

if V(I)=’1’ then

NR_1:=NR_1+1;

end if ;

end loop ;

if NR_1 mod 2 = 0 then

EVEN<=’1’ after 2.5 ns;

else

EVEN<=’0’ after 2.5 ns;

end if ;

wait on V ;

end process ;

end PARITY_BEHAVIORAL;

System Synthesis - VHDL Basics Fö 2 - 8

Petru Eles, IDA, LiTH

An Example (cont’d)

Parity generator - structural

The same external interface as before; only the internal
description differs.

The same entity declared on slide 7.
But another architecture body has to be attached to it.

T1

T2

T3

V(0)

V(1)

V(2)

V(3)

EVENV

System Synthesis - VHDL Basics Fö 2 - 9

Petru Eles, IDA, LiTH

An Example (cont’d)

Let’s first specify the building blocks

architecture ARCH_XORof XOR_GATE is

begin

Z<=X xor Y after 1 ns;

end ARCH_XOR;

entity XOR_GATE is

port (X, Y: in BIT;

Z: out BIT);

end XOR_GATE;

Z
X

Y

System Synthesis - VHDL Basics Fö 2 - 10

Petru Eles, IDA, LiTH

An Example (cont’d)

X Z

entity INV is

generic (DEL: TIME);

port (X: in BIT;

Z: out BIT);

end INV;

architecture ARCH_INV of INV is

begin

Z<=not X after DEL;

end ARCH_INV;

System Synthesis - VHDL Basics Fö 2 - 11

Petru Eles, IDA, LiTH

An Example (cont’d)

Architecture body for parity generator - structural

use WORK.all ;

architecture PARITY_STRUCTURAL of PARITY is

component XOR_GATE --component declaration

port (X,Y: in BIT; Z: out BIT);

end component ;

component INV --component declaration

generic (DEL: TIME);

port (X: in BIT; Z: out BIT);

end component ;

signal T1, T2, T3: BIT;

begin

-- component instantianon statements:

XOR1: XOR_GATE port map (V(0), V(1), T1);

XOR2: XOR_GATE port map (V(2), V(3), T2);

XOR3: XOR_GATE port map (T1, T2, T3);

INV1: INV

generic map (0.5 ns)

port map (T3, EVEN);

end PARITY_STRUCTURAL;

System Synthesis - VHDL Basics Fö 2 - 12

Petru Eles, IDA, LiTH

Component Dec laration and Instantiation

• Component declarations introduce templates for
building blocks (sub-components) that will be used
inside the architecture.

• A component instantiation statement creates an
instance of a declared component.

- The port map specifies the actual interconnec-
tions on the ports of the sub-components.

- The generic map specifies actual values for the
generic parameters.

• Once instantiated, components become active and
work in parallel.

System Synthesis - VHDL Basics Fö 2 - 13

Petru Eles, IDA, LiTH

Component Configuration

• Component instantiation statements activate a
certain architecture body related to a certain entity
declaration.

(entity declaration/architecture body) pairs have to
be associated to component instances.
This binding is called component configuration.

• Default binding solves configuration of the
components in absence of any explicit binding
indication (this has been used in the example before):

- That entity declaration will be associated to an
instance of a component which has the same
name as the declared component.

- For the association of an architecture body to
the entity declaration:

a. If one single architecture body has been
defined for a given entity, that architecture
will be associated.

b. If several architecture bodies have been
defined for a given entity, the most recently
analyzed (compiled) will be associated.

• VHDL offers a very sophisticated mechanism to
perform component configuration in a flexible manner.

System Synthesis - VHDL Basics Fö 2 - 14

Petru Eles, IDA, LiTH

A Sim ulation T estbenc h for the Example

• In order to verify a model by simulation, a testbench is
usually created.

entity BENCH is

end BENCH;

use WORK.all ;

architecture ARCH_BENCHof BENCH is

component PARITY

port (V: in BIT_VECTOR (3 downto 0);

EVEN: out BIT);

end component;

signal VECTOR: BIT_VECTOR (3 downto 0);

signal E: bit;

begin

VECTOR <= ”0010”,

”0000” after 3 ns,

”1001” after 5.8 ns,
. . .

”0111” after 44.5 ns,

”1101” after 50 ns;

PARITY_GENERATOR:PARITYport map (VECTOR, E);

end ARCH_BENCH;

System Synthesis - VHDL Basics Fö 2 - 15

Petru Eles, IDA, LiTH

A Simulation Testbench (cont’d)

• The architecture body consists of two concurrent
statements:

1. A concurrent signal assignment.
2. A component instantiation.

• Which model will actually be simulated?

The testbench above uses the default binding

The entity PARITY (see slide 7) will be used.
But which of the two architecture bodies will be
associated to it: PARITY_STRUCTURAL or
PARITY_BEHAVIORAL?

According to default binding, the one will be
simulated which has been compiled most recently.

• Of course, we want to simulate any of the two
models, regardless when they have been compiled!

System Synthesis - VHDL Basics Fö 2 - 16

Petru Eles, IDA, LiTH

Configuration Specification

• By a configuration specification we explicitly specify
which entity declaration and architecture body to use for
a certain instantiated component.

entity BENCH is

end BENCH;

use WORK.all ;

architecture ARCH_BENCHof BENCH is

component PARITY

port (V: in BIT_VECTOR (3 downto 0);

EVEN: out BIT);

end component;

for PARITY_GENERATOR:PARITY use

entity PARITY(PARITY_STRUCTURAL);

signal VECTOR: BIT_VECTOR (3 downto 0);

signal E: bit;

begin

VECTOR <= ”0010”,

”0000” after 3 ns,

”1001” after 5.8 ns,
. . .

”0111” after 44.5 ns,

”1101” after 50 ns;

PARITY_GENERATOR:PARITYport map (VECTOR, E);

end ARCH_BENCH;

System Synthesis - VHDL Basics Fö 2 - 17

Petru Eles, IDA, LiTH

Concurrent Statements

• The statement part of an architecture body consists
of several concurrent statements.

After activation of the architecture body all the
concurrent statements are started and executed in
parallel (and in parallel with the concurrent
statements in all other architecture bodies which
are part of the model).

Concurrent statements
- Component instantiation
- Process statement

- Concurrent signal assignment
- Concurrent procedure call
- Concurrent assertion statement

• The last three are simple short-hand notations
equivalent to processes containing only a signal
assignment, a procedure call, or an assertion
statement respectively, together with a wait
statement.

System Synthesis - VHDL Basics Fö 2 - 18

Petru Eles, IDA, LiTH

Process Statement

• The statement body of a process consists of a
sequence of (sequential) statements which are
executed one after the other (see slide 8).

• The process is an implicit loop.

• After being created at the start of the simulation,
the process is either in an active state or is
suspended and waiting for a certain event to occur.

Suspension of a process results after execution of a
wait statement. This wait statement can be:

- implicit
- explicitly specified by the designer.

System Synthesis - VHDL Basics Fö 2 - 19

Petru Eles, IDA, LiTH

Process Statement (cont’d)

entity AND_WITH_NOT is

port (X, Y: in BIT;

Z: out BIT);

end AND_WITH_NOT;

architecture SIMPLE_1 of AND_WITH_NOT is

signal S: BIT;

begin

AND_GATE: process

begin

S<=X and Y after 1 ns;

wait on X,Y;

end process ;

INVERTER: process

begin

Z<=not S after 0.5 ns;

wait on S;

end process ;
end SIMPLE_1;

Z
Y

X

System Synthesis - VHDL Basics Fö 2 - 20

Petru Eles, IDA, LiTH

Process Statement (cont’d)

• If the process has a sensitivity list, a wait statement is
automatically introduced at the end of the statement list.

The following is equivalent with the specification before:

entity AND_WITH_NOT is

port (X, Y: in BIT;

Z: out BIT);

end AND_WITH_NOT;

architecture SIMPLE_2 of AND_WITH_NOT is

signal S: BIT;

begin

AND_GATE: process (X,Y)

begin

S<=X and Y after 1 ns;

end process ;

INVERTER: process (S)

begin

Z<=not S after 0.5 ns;

end process ;
end SIMPLE_2;

System Synthesis - VHDL Basics Fö 2 - 21

Petru Eles, IDA, LiTH

The wait statement

• A process may suspend itself by executing a wait
statement:

wait on A,B,C until A<2*B for 100 ns;

- Sensitivity clause (list of signals)

- Condition clause

- Time-out clause

System Synthesis - VHDL Basics Fö 2 - 22

Petru Eles, IDA, LiTH

Signals

• A VHDL object is a named entity that has a value of
a given type.

Objects in VHDL: constants, signals, variables, files.

• Signals are used to connect different parts of the
design.

Signals are the objects through which information is
propagated between processes and between
subcomponents of an entity.

Ports are implicitly objects of class signal.

A signal declaration is similar to the declaration of a
variable. Signals may not be declared within
processes or subprograms.

• The semantics of signals is closely connected to
the notion of time in VHDL:
A signal has not only a current value but also a
projected waveform with determines its future
values at certain moments of simulation time.

System Synthesis - VHDL Basics Fö 2 - 23

Petru Eles, IDA, LiTH

Concurrent Signal Assignment

• A signal assignment that appears as part of an
architecture body (outside a process or a
subprogram) is interpreted as a concurrent
statement.

Such a concurrent signal assignment is equivalent
to a process containing only that particular signal
assignment followed by a wait statement.
The wait is on the signals occurring in the
expression on the right side of the assignment.

The following is equivalent to the models on slides 20, 21:

entity AND_WITH_NOT is

port (X, Y: in BIT;

Z: out BIT);

end AND_WITH_NOT;

architecture SIMPLE_3 of AND_WITH_NOT is

signal S: BIT;

begin

S<=X and Y after 1 ns;

Z<=not S after 0.5 ns;
end SIMPLE_3;

Such a (behavioral) model nicely reflects the dataflow
through the design.

System Synthesis - VHDL Basics Fö 2 - 24

Petru Eles, IDA, LiTH

The VHDL Sim ulation Mec hanism

• After elaboration of a VHDL model results a set of
processes connected through signals.

• The VHDL model is simulated under control of an
event driven simulation kernel (the VHDL simulator).

• Simulation is a cyclic process; each simulation
cycle consists of a signal update and a process
execution phase.

• A global clock holds the current simulation time; as
part of the simulation cycle this clock is
incremented with discrete values.

System Synthesis - VHDL Basics Fö 2 - 25

Petru Eles, IDA, LiTH

The VHDL Simulation Mechanism (cont’d)

Essential feature:

current signal values are only updated by the
simulator at certain moments during simulation !

• • •

X<=1;

if X=1 then

statement_sequence_1
else

statement_sequence_2
end if ;

• • •

• A signal assignment statement only schedules a new
value to be placed on the signal at some later time
which is specified by the designer as part of the signal
assignment:

S<=1 after 20 ns,15 after 35 ns;

System Synthesis - VHDL Basics Fö 2 - 26

Petru Eles, IDA, LiTH

The VHDL Simulation Mechanism (cont’d)

• signal driver contains the projected output waveform of
a signal;
a process that assigns values to a signal will automati-
cally create a driver for that signal;

• projected output waveform is a set of transactions;

• transaction: pair consisting of a value and a time.

A signal assignment only affects the projected output
waveform, by placing one or more transactions into the
driver corresponding to the signal and possibly by
deleting other transactions.

System Synthesis - VHDL Basics Fö 2 - 27

Petru Eles, IDA, LiTH

The VHDL Simulation Mechanism (cont’d)

Resolution function

.
S3 <= ...
.

.
S2 <= ...
.
S3 <= ...

5

1

150
10

20ns
55130ns

15ns
0 50ns
88 100ns

10ns
100 35ns
0 100ns
10 110ns

20ns
0 40ns
0 60ns

.
S1 <= ...
.
S1 <= ...

Dr_S1P1 Dr_S3P3Dr_S2P2 Dr_S3P2

Current
signal valuesS1 S3S2

.

X:=S1+S2+S3;

5 150 f(10,1)

ProcessP2ProcessP1 ProcessP3

ProcessP4

System Synthesis - VHDL Basics Fö 2 - 28

Petru Eles, IDA, LiTH

The VHDL Simulation Mechanism (cont’d)

• As simulation time advances and the current time
becomes equal to the time component of the next
transaction, the first transaction is deleted and the
next becomes the current value of the driver.

The driver gets a new value.
Regardless if this value is different from the previous
one or not, the driver and the signal is said to be
active during that simulation cycle.

• During each simulation cycle, the current value of
the signal is updated for those signals which have
been active during that cycle.

If, as result, the current value of the signal has
changed, an event has occurred on that signal.

• Resolved signal: a signal for which several drivers
exist (several processes assign values to that
signal). For each resolved signal the designer has
to specify an associated resolution function.

System Synthesis - VHDL Basics Fö 2 - 29

Petru Eles, IDA, LiTH

The VHDL Sim ulation Cyc le

• The current time Tc is set to Tn;

• Each active signal is updated; as result of signal up-
dates events are generated.

• Each process that was suspended waiting on signal
events that occurred in this simulation cycle resumes;
processes also resume which were waiting for a
certain, completed, time to elapse;

• Each resumed process executes until it suspends;

• The time Tn of the next simulation cycle is determined
as the earliest of the following three time values:

1. TIME’HIGH;

2. The next time at which a driver becomes active

3. The next time at which a process resumes;

System Synthesis - VHDL Basics Fö 2 - 30

Petru Eles, IDA, LiTH

Delta Dela y and Delta Cyc le

• The simulation philosophy of VHDL is based on the
ordering of events in time:

new events are generated as result of actions
taken in response to other events scheduled for
previous simulation times.

The following concurrent signal assignment statement is
executed in response to an event on signal X, let’s say at
time t:

S<=X+1 after 20 ns,X+15 after 35 ns;

In response, two events will be planned on signal S, for
times t+20 and t+35, respectively.

• What if, in response to an event at time t, another
event at the same time is generated?

S<=X+1;

• Different events that occur at the same simulation
time are ordered and handled in successive
simulation cycles, preserving their cause/effect
relationship.

System Synthesis - VHDL Basics Fö 2 - 31

Petru Eles, IDA, LiTH

Delta Delay and Delta Cycle (cont’d)

entity DELTA_DELAY_EXAMPLEis

port (X, Y: in BIT;

Z: out BIT);

end DELTA_DELAY_EXAMPLE;

architecture DELTA of DELTA_DELAY_EXAMPLE
is

signal S: BIT;

begin

AND_GATE: process (X,Y)

begin

S<=X and Y;

end process ;

INVERTER: process (S)

begin

Z<=not S;

end process ;
end DELTA;

Z
Y

X

System Synthesis - VHDL Basics Fö 2 - 32

Petru Eles, IDA, LiTH

Delta Delay and Delta Cycle (cont’d)

• If the previous model is simulated, successive
simulation cycles will be executed at the same
simulation time.
Such cycles are separated by a so called delta-delay.

A delta-delay is an infinitesimally small delay that
separates events occurring in successive simulation
cycles but at the same simulation time.

A simulation cycle that is performed at the same
simulation time as the previous one is called a delta cycle.

• This mechanism allows a correct simulation of
models where the delay of some components is
ignored and, thus, there is no difference in
simulation time between the events on input and
output of this components.

• For some models, developed for synthesis, we do
not know the delays before synthesis. In the input
model, delays are ignored. For such a model,
functionality can be checked by simulation, but not
timing.
The model generated after synthesis, contains
delays and both correct functionality and timing can
be checked.

System Synthesis - VHDL Basics Fö 2 - 33

Petru Eles, IDA, LiTH

Signal Assignment Statement

The projected output waveform stored in the driver of a
signal can be modified by a signal assignment
statement.

signal_assignment_statement ::=
target <= [transport | [reject time_expression]

inertial] waveform;

waveform ::=
waveform_element {, waveform_element}

waveform_element ::=
value_expression [after time_expression]

S<=transport 100 after 20 ns, 15 after 35 ns;
S <= 1 after 20 ns,15 after 35 ns;

• The concrete way a driver is updated as result of a
signal assignment, depends on the delay
mechanism (transport or inertial).

• The delay mechanism can be explicitly specified as
part of the signal assignment; if no mechanism is
specified, the default is inertial.

System Synthesis - VHDL Basics Fö 2 - 34

Petru Eles, IDA, LiTH

Transpor t Delay

Transport delay models devices that exhibit nearly
infinite frequency response: any pulse is transmitted, no
matter how short its duration.
This is typical when modeling transmission lines.

☞ No transaction scheduled to be executed before a
new one is affected by a signal assignment with
transport delay.

Update rule:

1. All old transactions scheduled to occur at the same
time or after the first new transaction are deleted
from the projected waveform.

2. The new transactions are appended to the end of
the driver.

System Synthesis - VHDL Basics Fö 2 - 35

Petru Eles, IDA, LiTH

Transport Delay (cont’d)

Examples

Consider the following assignments executed at
simulation time 100 ns (the projected waveform, at that
moment, consists of a single transaction with value 0):

S<=transport 100 after 20 ns, 15 after 35
ns;

S<=transport 10 after 40 ns;
S<=transport 25 after 38 ns;

Driver for S after first two assignments:

Driver for S after last assignment:

• Every change on the input will be processed, regard-
less of how short the time interval between this change
and the next one.

0

100 ns

100 15 10

120 ns 135 ns 140 ns

0

100 ns

100 15 25

120 ns 135 ns 138 ns

System Synthesis - VHDL Basics Fö 2 - 36

Petru Eles, IDA, LiTH

Z
 <

=
tr

a
n

sp
o

rt
X

a
ft

e
r

1
5

 n
s

1
0

2
0

3
0

5
0

7
0

7
5

8
5

9
0

X
Z

X

2
5

3
5

4
5

6
5

8
5

9
0

1
0

0
1

0
5

Z

t=
0

 n
s

Tr
an

sp
or

t D
el

ay
 (

co
nt

’d
)

A
 b

uf
fe

r
el

em
en

t w
ith

 d
el

ay
 1

5
ns

—
 tr

an
sp

or
t d

el
ay

System Synthesis - VHDL Basics Fö 2 - 37

Petru Eles, IDA, LiTH

Iner tial Dela y

Inertial delay models the timing behavior of current
switching circuits: an input value must be stable for a
certain duration, called pulse rejection limit, before the
value propagates to the output.

S <= reject 5 ns inertial X after 10 ns;

• Additional update rule (after update operations have
been performed exactly like for transport delay):

All old transactions scheduled to occur at times
between the time of the first new transaction and this
time minus the pulse rejection limit are deleted from
the projected waveform; excepted are those
transactions which are immediately preceding the
first new transaction and have the same value with it.

System Synthesis - VHDL Basics Fö 2 - 38

Petru Eles, IDA, LiTH

Inertial Delay (cont’d)

• If no pulse rejection limit is specified, it is
considered to be equal with the time value in the
first waveform element

S <= X after 10 ns, 0 after 25 ns;

is equivalent to:

S <= reject 10 ns inertial X after 10 ns,
0 after 25 ns;

System Synthesis - VHDL Basics Fö 2 - 39

Petru Eles, IDA, LiTH

Inertial Delay (cont’d)

Examples
Consider the assignments below, executed at simulation
time 100 ns, when the driver for signal S has the
following contents:

S <= 8 after 20 ns,2 after 40 ns,
5 after 65 ns,10 after 100 ns;

S <= reject 55 ns inertial 5 after 90 ns;

Driver for S after first assignment:

Driver for S after second assignment:

0

100 ns

1 15

110 ns 135 ns

0

100 ns

8 2 5

120 ns 140 ns 165 ns

10

200 ns

0

100 ns

5 5

165 ns 190 ns

8

120 ns

System Synthesis - VHDL Basics Fö 2 - 40

Petru Eles, IDA, LiTH

In
er

tia
l D

el
ay

 (
ca

nt
o)

A
 b

uf
fe

r
el

em
en

t w
ith

 d
el

ay
 1

5
ns

—
 in

er
tia

l Z
 <

=
in

e
rt

ia
l

X
a

ft
e

r
1

5
 n

s

1
0

2
0

3
0

5
0

7
0

7
5

8
5

9
0

4
5

6
5

X
Z

X Z

Z
1

 <
=

re
je

ct
 8

 n
si

n
e

rt
ia

l
X

a
ft

e
r

1
5

 n
s

X
Z

1

2
5

3
5

4
5

6
5

Z
1

t=
0

 n
s

System Synthesis - VHDL Basics Fö 2 - 41

Petru Eles, IDA, LiTH

Resolved Signals and Resolution Functions

• Resolved signal: a signal for which several drivers
exist (several processes assign values to that
signal). For each resolved signal the designer has
to specify an associated resolution function.

• The resolution function computes the value which
is used to update the current signal value,
depending on the actual values of the drivers.

• The resolution function is automatically called by
the simulation kernel every time the signal value
has to be updated.

System Synthesis - VHDL Basics Fö 2 - 42

Petru Eles, IDA, LiTH

Resolved Signals and Resolution Functions (cont’d)

Example:
A resolved signal, Line , which models an interconnec-
tion line to which the output of several devices is con-
nected. Each device is modeled by one process.

The resolution function implements a wired or.

architecture Example of ... is

type Bit4 is (‘X’,’0’,’1’,’Z’);

type B_Vector is array (Integer range <>)

of Bit4;

function Wired_Or(Input: B_Vector)

return Bit4 is

variable Result: Bit4:=’0’;

begin

for I in Input’Range loop

if Input(I)=’1’ then

Result:=’1’;

exit ;

elsif Input(I)=’X’ then

Result:=’X’;

end if ;

end loop ;

return Result;

end Wired_or;

System Synthesis - VHDL Basics Fö 2 - 43

Petru Eles, IDA, LiTH

Example (cont’d)

signal Line: Wired_Or Bit4;

begin

P1: process

begin

- - - - - -

Line <= ‘1’;

- - - - - -

end process ;

P2: process

begin

- - - - - -

Line <= ‘0’;

- - - - - -

end process ;

end Example.

• Each time a resolution function is invoked by the
simulation kernel, it is passed an array value, each
element of which is determined by a driver of the
corresponding resolved signal.

System Synthesis - VHDL Basics Fö 2 - 44

Petru Eles, IDA, LiTH

VHDL For System Synthesis

• Semantic of VHDL is simulation based

• VHDL widely used for synthesis

Problems:
1. VHDL has the rich capabilities of a modern

programming language ⇒ some facilities
are not relevant for hardware synthesis.

2. Some features are semantically explained
in terms of simulation (process interaction,
timing model).

subsetting modeling guidelines

S
ystem

 S
ynthesis - V

H
D

L B
asics

F
ö 2 - 45

P
etru E

les, ID
A

, LiT
H

V
H

D
L F

or S
ystem

 S
ynthesis (cont’d)

•
V

H
D

L - S
ynthesis tools at logic and R

T
 level are

com
m

only available today. IE
E

E
 standards w

ill
be released soon for interpretation and use of
V

H
D

L in logic synthesis.

•
Industrial use of high-level synthesis w

ith V
H

D
L

is at the beginning.

S
ystem

 S
ynthesis - V

H
D

L B
asics

F
ö 2 - 46

P
etru E

les, ID
A

, LiT
H Commonly accepted restrictions for High-Level

synthesis:

1. Features which are not relevant from HL
synthesis point of view are excluded:
structural specification, resolution functions,
certain signal attributes, etc.

2. The input specification is purely sequential -
formulated as a single VHDL process.

3. All synchronization is restricted to a clock
signal; wait statements are allowed
exclusively on this explicit clock. Signal
assignment are allowed only on output ports.

4. The scheduling of certain operations is fixed
in terms of clock cycles.

5. VHDL strict timing is not considered.

not acceptable in the context
of system-level synthesis

VHDL For System Synthesis (cont’d)

