
Linköping University
13th Jan. 2005

1Shashi Kumar

Some issues in Application Specific
Network on Chip Design

Shashi Kumar
Embedded Systems Group

Department of Electronics and Computer Engineering
School of Engineering, Jönköping University

Linköping University
13th Jan. 2005

2
Shashi Kumar

Outline
Introduction: rather long!

NoC Evolution
Case for Application Specific NoC

A NoC Methodology
Specializing NoC for an Application

Processor Selection and Evaluation for NoC
Link Optimization and QNoC

Mapping Applications to NoC

Linköping University
13th Jan. 2005

3
Shashi Kumar

An Interesting Cross-road

Chip Design
Computer
ArchitectureSoC

Chip
Multi-
processors

FPGA

Linköping University
13th Jan. 2005

4
Shashi Kumar

An Interesting Cross-road

Chip Design
Computer
ArchitectureSoC

Chip
Multi-
processors

FPGA

NoC

Linköping University
13th Jan. 2005

5
Shashi Kumar

Merging Roads

NoC

Computer
Networks

Linköping University
13th Jan. 2005

6
Shashi Kumar

A case for NoC
Driving Forces

Exponentially increasing Silicon Capacity
Demand of products requiring large capacity
Market: Competitive in price and short Time-to-Market

Techniques to handle large and complex system
design

Reuse
Higher Level of abstraction
CAD tools

NoC paradigm offers all the above features

Linköping University
13th Jan. 2005

7
Shashi Kumar

Design Productivity and Level of Abstraction

Time

Productivity (num
ber of

gates/num
ber of m

odules)

Gates

Modules

Linköping University
13th Jan. 2005

8
Shashi Kumar

Properties for REUSE
Well defined external interfaces

Easy composability in different contexts
Reuse means generalization which leads to under-
utilization

Static Cost : More area
Dynamic cost: Consumes more power

How to make Reuse efficient ?
Specialization:

Trim out the unnecessary resources
Higher utilization through programmability

Linköping University
13th Jan. 2005

9
Shashi Kumar

Evolution of ASIC and Programmable Devices

Years

Log(C
apacity/speed)

ASIC

Programmable
devices

<10

>100

60 70 80 90 00

ASIC used capacity

Linköping University
13th Jan. 2005

10
Shashi Kumar

Evolution: ASIC Vs. PLD Architectures

Time

B
uilding B

locks/
A

rchitecture

ASIC

FPGAs

Custom

PBDCores

Cell Lib.

RTL Library

CLBs

Gates

75 80 85 90 95 00

Linköping University
13th Jan. 2005

11
Shashi Kumar

Abstraction levels of programming: FPGA

•Program logic blocks and interconnections

•Bit file

ARM
core

•ARM core is programmable at higher
level of programming

Linköping University
13th Jan. 2005

12
Shashi Kumar

Chip Multi-processor Road
Question: New computer architecture which can use such a

high available capacity?

Options:
Super-computer on a chip: Powerful instruction set;
Higher accuracy, On-chip main memory, On-chip
interfaces; ……
Super-scalar Architecture
Multi-threaded super-scalar architectures
MultiMulti--processor on a chipprocessor on a chip

Linköping University
13th Jan. 2005

13
Shashi Kumar

Multiprocessor SoC vs. NoC
Multiprocessor SoC is a special NoC

All the cores are processors
Homogenous vs. Heterogeneous

Functionality of the system fully software programmable

Other extreme : ASIC built using special function
hardware IP cores

Functionality of the system quite fixed at the time of fabrication

NoC covers the complete range between these extremes

Linköping University
13th Jan. 2005

14
Shashi Kumar

NoC Architecture Space

Reuse/Flexibility/Programmability

Perform
ance/cost/

design tim
e

General
MPSoC

(Homog.)

Hard-
NoC

MPSoC
(Hetero)

Mixed-
NoC

Application
Specific
MPSoC

Linköping University
13th Jan. 2005

15
Shashi Kumar

Why Application Specific NOC ?
Performance

Use of application specific cores
Specialize Size, Topology, Routers, Links, Protocols
for the application

Power Consumption
Optimal utilization of computing and communication
resources
Optimal voltage and clock selection for computing and
communication resources

Linköping University
13th Jan. 2005

16
Shashi Kumar

Degrees of Freedom in Mixed NoC design
Topology and Size
Core Selection and Core Positioning
Core operating Voltage and Clock Speed
Link specialization
Router Design
Protocol Specialization
OS specialization

Linköping University
13th Jan. 2005

17
Shashi Kumar

ASNOC Design Methodology[1]

Generic backbone

NoC system

Optimised Virtual ComponentsDefinition of
NOC platform

Optimised Intellectual Property

Features

Applications

Algorithms

Cores

Memories
Accelerators

Instantiation
of NoC
platform

Code and
configuration

“Application area specific IPR”

Product area specific platform

“Product specific IPR”

Communication
structure

Processors
and hardware

Linköping University
13th Jan. 2005

18
Shashi Kumar

Development of NOC based systems

BACKBONE

PLATFORMS

SYSTEMS

Baseband platform

Database platform

Multimedia platform

High-perforrmance
communication systems

High-capacity
communication
systems

Virtual reality games

Entertainment
devices

Personal
assistant

Data
collection
systems

Linköping University
13th Jan. 2005

19
Shashi Kumar

Backbone-Platform-System Methodology
Backbone Design

Topology
Switches, Channels and Network Interfaces (with generic parameters)
Protocols

Platform Design
Scaling
Selection and placement of resources
Specialization of Switches, Channels, Network Interfaces and Protocols
Basic communication services

Application Mapping
Programming functionality into resources
OS

Linköping University
13th Jan. 2005

20
Shashi Kumar

Development of ASNoC System

Resource development

Fu
nc

ti o
n

de
ve

l o
pm

en
t

NOC System

System
does
not exist

Platform
Backbone

Architecture
design

Application
mapping

System Services

Operation principles

Communication
channels

Non-configurable
hardware

Product differentiation

Product area specialisation

Linköping University
13th Jan. 2005

21
Shashi Kumar

Earlier Approaches

Resource development

F
un

ct
io

n
de

ve
lo

pm
en

t

System does
not exist

System exists

ASIC Design

Software
Design

HW/SW Codesig
n

Linköping University
13th Jan. 2005

22Shashi Kumar

Algorithm-Core Mappability Analysis[2,3]

Based on Juha-Pekka’s papers

Linköping University
13th Jan. 2005

23
Shashi Kumar

Development of ASNoC System

Resource development

Fu
nc

ti o
n

de
ve

l o
pm

en
t

NOC System

System
does
not exist

Platform
Backbone

Architecture
design

Application
mapping

System Services

Operation principles

Communication
channels

Non-configurable
hardware

Product differentiation

Product area specialisation

Linköping University
13th Jan. 2005

24
Shashi Kumar

Specialization of Mesh Topology NoC Architecture

1,1 1,2

2,1 2,2

3,1 3,2

Available Cores

Specialize Back-Bone

Specialize Resources

Linköping University
13th Jan. 2005

25
Shashi Kumar

Core Selection
Task is similar to ”Processor Selection” in
Embedded Systems
Generalization of Processor Selection Problem

A core may be used for more than one algorithm/task
An algorithm may use more than one core
Set of Cores for a set of algorithms

Cluster/Region of cores

Linköping University
13th Jan. 2005

26
Shashi Kumar

Overview of the approach
Algorithms

Available Cores
C1, C2, C3,....,Cn

Mappability
Analysis

A1, A2, A3,....,Am

.,.

.,.

.,.

.,.

.,.

Cn

.,.

-

-

-

-

...

.,..,..,.Am

0,40,50A3

0,60,20,9A2

0,30,10,5A1

C3C2C1

Algorithm-Core Suitability Index

C1, C2, C3,....,Cn

...

Linköping University
13th Jan. 2005

27
Shashi Kumar

Core-Algorithm Mappability Analysis
The goodness of a processor architecture-algorithm pair

Computational Capacity of architecture
Performance Requirement of algorithm
Optimal mapping implies that architecture does not constrain
execution and does not have underutilization
CAMALA: Core Algorithm Mappability Analysis Approach
Tool

Linköping University
13th Jan. 2005

28
Shashi Kumar

Mappability Analysis Goals
Compare and Select the best core for a given
algorithm

Select a set of cores for a set of algorithms

Specialize a configurable core architecture for a
given algorithm

Specialize the core for a set of algorithms
Architecture parameters

Number of registers
Number of functional units
Instruction set

Linköping University
13th Jan. 2005

29
Shashi Kumar

Mappability Parameters
Instruction Set Suitability
External Data Availability
Internal Data Availability
Control Flow Continuity
Data Flow Continuity
Execution Unit Availability

Linköping University
13th Jan. 2005

30
Shashi Kumar

Characterization of Algorithm and processor cores

Number of functional
units

Parallelism in algorithmExecution Unit Availability

Handling of data hazardsPossibility of data hazardsData Flow Continuity

Branch penalty
Branch prediction

Number of branchesControl Flow Continuity

Number of registersAmount of temporary data to
be stored

Internal Data Availability

Bus capacity of coreNumber of memory accessesExternal Data Availability

Cost of instruction
execution

Effectiveness of instructions
w.r.t. operations in algorithm

Instruction Set Suitability

Processor Core
characterization

Algorithm
Characterization

Linköping University
13th Jan. 2005

31
Shashi Kumar

Instruction Set Co-relation
Effectiveness of instruction usage

Availability of instructions for operations used in the
algorithm

If not available they have to be replaced by procedures
– If floating point operation not available will lead to extra cost

factor

Handling of operands of various data widths

Methods used in compilers and High Level
Synthesis used for this analysis

Linköping University
13th Jan. 2005

32
Shashi Kumar

Internal Data Availability Co-relation
Effectiveness of register usage
Algorithmic Requirement

Number of intermediate results in one scheduled step
during execution
ASAP and ALAP on the data flow graph used to get
this value

No constraint on resources: Maximum parallelism

e(a): Maximum number of intermediate results
e(c) = number of registers

Linköping University
13th Jan. 2005

33
Shashi Kumar

Control Flow Continuity Co-relation
For the algorithm it depends on the branch instruction ratio

Ratio of branch instruction w.r.t. the total number of instructions

For Core architecture it depends on
Branch prediction technique (Pe)
Branch penality (D)

Degree of pipelining and super-pipeling
e(c) ~ (1- Pe)D

Good Matches
Small pipelines for algorithms with more branches
Long pipelines for algorithms with less branches

Linköping University
13th Jan. 2005

34
Shashi Kumar

Execution Unit Availability
Operation level parallelism in algorithm vs.
Number of functional units in the processor core
e(a) ~ number of instructions / number of steps in ASAP
e(c) ~ number of functional units

Linköping University
13th Jan. 2005

35
Shashi Kumar

Viewpoint-specific characterization
The algorithm is compiled into a graph
representation where each node is a block of code

For each computation node j in the algorithm
For each view-point i

ei(aj): Algorithm characterization
ei(c): Core characterization

Linköping University
13th Jan. 2005

36
Shashi Kumar

Mappability of each view-point

)()(,
)(
)(

)()(,
)(
)(

),(,

jii
i

ji

jii
ji

i

jji

aece
ce
ae

aece
ae
ce

acm
≥

≤
=

Linköping University
13th Jan. 2005

37
Shashi Kumar

Total Mappability of a view point

∑
∑

⎮⎮=

⎮⎮=

⋅
=

Vj

j

Vj

jjij

i
w

acmw
acM

...1

...1

,)),((
),(

wj : number of times the block j is executed

Linköping University
13th Jan. 2005

38
Shashi Kumar

Total Mappability

∑ ⋅=
i

ii acMwacM),(),(

wi : relative importance of different view points

Linköping University
13th Jan. 2005

39
Shashi Kumar

CAMALA Implementation

Application in C

SUIF Compiler

SUIF Format CAMALA

Core Information

Mappability
Figures

Linköping University
13th Jan. 2005

40
Shashi Kumar

Verification of Mappability Analysis
Higher the total mappability between an algorithm
and a core more suitable it is for the job
Mappability analysis was verified using
instruction set simulator Simplescalar

Goodness : Utilization x Speed-up
Example : Processor with 2 functional units
Utilization = 60% and Speed-up = 1.5

Goodness = 0.60 x 1.5/2 = 0.45

Linköping University
13th Jan. 2005

41
Shashi Kumar

Experimental Results[

Linköping University
13th Jan. 2005

42
Shashi Kumar

Experimental Results: WLAN Modem

Linköping University
13th Jan. 2005

43
Shashi Kumar

Architectures for WLAN Modem Algorithms

D: Super-pipeling Degree

(1..20)

E: Number of Execution
paths (1..6)

R: Number of registers
(1..64)

B: Number of Data Buses

(1..6)

Linköping University
13th Jan. 2005

44
Shashi Kumar

Multiprocessor for WLAN Modem

Linköping University
13th Jan. 2005

45
Shashi Kumar

Summary
Mappability Analysis technique provides
possibility of fast selection/specialization of cores
for an application or application set.
Effect of memory organization on mappability are
not considered
Effect of inter-core communication organization
on mappability not considered

Linköping University
13th Jan. 2005

46Shashi Kumar

Quality of Service NoC (QNoC) [4,5]

Based on Evegeny Bolotin’s papers and presentations

Linköping University
13th Jan. 2005

47
Shashi Kumar

Goals of QNoC
Design an Application Specific NoC which
provides required communication performance
(QoS) at minimum cost

Communication QoS: Required throughput and end to
end delay guarantee between communicating cores

Specialize links in NoC

Cost
Area: links, buffers and routers are trimmed
Power Consumption: shortest path routing

Linköping University
13th Jan. 2005

48
Shashi Kumar

Quality of Service NoC (QNoC) Architecture
Irregular Mesh Topology

Module

Module Module

Module Module

Module Module

Module

Module

Module

Module

Module

Figurestaken from
 Evegeny

B
olotin’s

Presentation

Linköping University
13th Jan. 2005

49
Shashi Kumar

Specializion of Links

Module

Module Module

Module Module

Module Module

Module

Module

Module

Module

Module

Adapt Links

Module

Module Module

Module Module

Module Module

Module

Module

Module

Module

Module

Link bandwidth is adjusted according to expected traffic

Bandwidth is adjusted by either number of wires or the data
frequency

Figurestaken from
 Evegeny

B
olotin’s

Presentation

Linköping University
13th Jan. 2005

50
Shashi Kumar

QNoC Service Levels
Four different service levels with different priorities

Signaling
Short urgent packets
Suitable for control signals and Interrupts

Real-Time
Guaranteed bandwidth and latency
Useful for streamed audio or video processing

Read/Write (RD/WR)
Provides Bus Semantics

Block Transfer
Large blocks of data
DMA transfers

Priority
Signaling >Real Time > Read/Write > Block Transfer

Linköping University
13th Jan. 2005

51
Shashi Kumar

QNoC: Routing Algorithm
Static shortest X-Y coordinate based routing

Avoids deadlocks
No reordering at end points

Wormhole packet forwarding with credit based
flow control
Packets of various priorities are forwarded in an
interleaved manner according to packet priorities
A high priority packet can pre-empt a low priority
long packet

Linköping University
13th Jan. 2005

52
Shashi Kumar

QNoC: Router Architecture [4]

C
R

O
S

S
-B

A
R

Scheduler
Control
Routing CREDIT

Buffers
SIGNAL

RT

RD/WR

BLOCK

SIGNAL

RT

RD/WR

BLOCK

CREDIT

Scheduler
Control
Routing CREDIT

SIGNAL

RT

RD/WR

BLOCK

SIGNAL

RT

RD/WR

BLOCK

CREDIT

Output portsInput ports Slide taken from
 Evegeny

B
olotin’s

Presentation

Linköping University
13th Jan. 2005

53
Shashi Kumar

QNoC Packet Format

Arbitrary Sized Packets

Flit
Flit
Flit
Flit

Command
TRA TRA: Target Routing Address

Command: Info. about payload

Payload: Arbitrary Length

Flit Types:

FP (full packet): a one-flit packet

EP (end of packet): last flit

BDY (body): a non-last flit

Linköping University
13th Jan. 2005

54
Shashi Kumar

QNoC Design Flow

Characterize
Traffic

Map Traffic
to Grid

QNoC
Architecture

Optimize

Estimate cost

Modules with
Ideal Network

Place
modules

Figurestaken from
 Evegeny

B
olotin’s

Presentation

Linköping University
13th Jan. 2005

55
Shashi Kumar

Design Example
Figurestaken from

 Evegeny
B

olotin’s
Presentation

Linköping University
13th Jan. 2005

56
Shashi Kumar

Design Example[4]

Representative Design Example, each module contains 4 traffic sources:

~150 ns
(tens of
cycles)

2.56 Gbps254
Random target RD/WR
transaction every ~25

cycles.
RD/WR

50 µs
(Several tx.

delays on typ.
bus)

2.56 Gbps12 5002 000
Random target Block-
Transfer transaction

every ~12 500 cycles .

Block-
Transfer

125 µs
(Voice-8 KHz

frame)
320 Mbps2 00040

Periodic connection from
each module: 320 voice

channels of 64 Kb/s
Real-Time

20 ns
(several
cycles)

320 Mbps1002
Every 100 cycles each

module sends interrupt to
a random target

Signaling

ETE
requirements
For 99.9% of

packets

Total
Load per
Module

Average Inter-
arrival time [ns]

Average
Packet

Length [flits]

Traffic
interpretation

Traffic
Source

Table taken from Evegeny Bolotin’s Presentation

Linköping University
13th Jan. 2005

57
Shashi Kumar

Uniform Scenario - Observations
Calculated Link Load Relations:

Figurestaken from
 Evegeny

B
olotin’s

Presentation

Linköping University
13th Jan. 2005

58
Shashi Kumar

Uniform Scenario - Observations
Various Link BW allocations:

300 0001 0004503544512Gbps

50 000802502030.4850Gbps

4 0002080610.32560Gbps

Block-
Transfer

(99%)

RD/WR
(99%)

Real-Time
(99.9%)

Signaling
(99.9%)

Packet ETE delay of packets [ns or cycles]Average
Link

Utilizatio
n

[%]

Allocated
Link BW

[Gbps]

Desired QoS

Figurestaken from
 Evegeny

B
olotin’s

Presentation

Linköping University
13th Jan. 2005

59
Shashi Kumar

Uniform Scenario - Observations

Fixed Network Configuration -Uniform Traffic
Network behavior under different traffic loads?

BLOCK

ETE
Delay

Traffic Load

Real-Time

RD/WR
Signaling

Figurestaken from
 Evegeny

B
olotin’s

Presentation

Linköping University
13th Jan. 2005

60
Shashi Kumar

Alternatives for connecting n cores[4,5]

Arch Total Area Power Dissipation Operating Frequency
N

S-
B

us

()3O n n ()O n n 2

1O
n
⎛ ⎞
⎜ ⎟
⎝ ⎠

S-
B

us

()2O n n ()O n n
1O
n
⎛ ⎞
⎜ ⎟
⎝ ⎠

N
oC

()O n ()O n ()1O

PT
P ()2O n n ()O n n

1O
n
⎛ ⎞
⎜ ⎟
⎝ ⎠

For achieving the same Communication Bandwidth

Table
taken from

 Evegeny
B

olotin’s
Presentation

Linköping University
13th Jan. 2005

61
Shashi Kumar

QNoC vs. Alternative Solutions
(4x4 mesh, uniform traffic)

Uniform scenario (Same QoS):

45.0

3.8

1.0 1.0

2.9

0.8

0.1

1.0

10.0

100.0

BUS NoC PTP

 Wire-Length(Area) and Power

Wire Length

Power

680%100MH
zPTP

3 70050%50
MHz

Bus

2830%1GHzQNo
C

Av. Link
WidthUtilizationFrequen

cyArch.

BUS QNoC PTP

C
os

t

Figurestaken from
 Evegeny

B
olotin’s

Presentation

Linköping University
13th Jan. 2005

62
Shashi Kumar

Summary about QNoC Approach
Lower cost and higher performance are the driving
forces behind Application Specific NoC
approaches like QNoC

Reuse/Flexibility/Programmabi
lity

Perform
ance/c

ost/design tim
e General

MPSoC
(Homog.)

Hard-
NoC

MPSoC
(Hetero)

Mixed-
NoC Application

Specific
MPSoC

QNOC

Linköping University
13th Jan. 2005

63Shashi Kumar

Mapping Applications to NoC Platforms

Linköping University
13th Jan. 2005

64
Shashi Kumar

Various Options
Architecture-Application Co-development

Optimized in terms of performance and cost
High Development Time
Less Flexible

Mapping sequential code to a Fixed Platforms
Low development time and cheap
Medium Performance
Low utilization of resources

Mapping parallel code through emulation of one
network on another network

Linköping University
13th Jan. 2005

65
Shashi Kumar

Application Mapping

Resource development

Fu
nc

ti o
n

de
ve

l o
pm

en
t

NOC System

System
does
not exist

Platform
Backbone

Architecture
design

Application
mapping

System Services

Operation principles

Communication
channels

Non-configurable
hardware

Product differentiation

Product area specialisation

Linköping University
13th Jan. 2005

66
Shashi Kumar

Task Graph as an Application Model
Most common graph model used for representing
applications for multi-processor systems

Application is partitioned into smaller units called tasks
Similar in properties to Data Flow graph used for high
level synthesis of ASICs
It can represent

Concurrency among computations
Data Dependencies among computations
Communication among computations
Control Dependencies among Computations
Temporal Dependencies among computations
Non-determinism among computation

Linköping University
13th Jan. 2005

67
Shashi Kumar

Task Graph
Task Graph is a weighted directed acyclic graph
(DAG)

Nodes represents computational tasks
Weight on a node may represent different features of the
computation : Number of instructions, Execution Time etc.

Edges between tasks represent dependencies
Weight on an edge may represent size of data to be
communicated between tasks or some temporal information

Linköping University
13th Jan. 2005

68
Shashi Kumar

Task Graph Example

T1

T2 T3

T4

T5

50

300100

400

100

1KB2KB

3KB

1KB

Parameters
Granularity of nodes
Period and deadlines

Granularity of Nodes
High Granularity

Less available parallelism
Less communication cost

Low Granularity
Higher available parallelism
More communication cost

Hierarchical Task Graphs
Task node itself is a task graph at lower level

4B

Deadline: 20ms

Period : 20 ms

Linköping University
13th Jan. 2005

69
Shashi Kumar

Task Graph Extraction from Sequential Code
Job similar to compiler design

Task Graph ExtractorC-Program

T1

T2 T3

T4

T5

1KB2KB

3KB

1KB

4B

Task Graph

Profiler/Simulator

Linköping University
13th Jan. 2005

70
Shashi Kumar

Concurrent Applications as Multi-Task Graph (MTG)
NoC is expected to integrate more than 50 processor size
resources in a few years

Can concurrently run many applications

Each application can be represented by a task graph called
Single Task Graph (STG)
We call aggregation of many STGs as a Multi-Task Graph
(MTG).

There is no data or temporal dependencies among various STGs
Relative importance of STGs may be specified in some form

Linköping University
13th Jan. 2005

71
Shashi Kumar

Fixed NoC Platforms
A NoC Platform is fixed if

Topology and Size of NoC is decided
Communication Protocols are decided
Resources for all the slots have been selected

1,1

Video
Receiver

RNI

1,2

Processor

1,3

Audio
Receiver

2,1

DSP

RNI

2,2

Memory

2,3

DSP

3,1

Video
Transmitter

3,2

I/O-
Interface

3,3

Audio
Transmitter

RNI

RNI

RNI

RNI

RNIRNIRNI

Linköping University
13th Jan. 2005

72
Shashi Kumar

Mapping and Scheduling Problem
Mapping: For every task decide the core in NoC where it will

be executed
Scheduling: For every task decide the starting time of its

execution

STG1 STG2

Multi-Task Graph

1,1

Video
Receiver

R
NI

1,2

Processor

1,3

Audio
Receiver

2,1

DSP

R
NI

2,2

Memory

2,3

DSP

3,1

Video
Transmitt
er

3,2

I/O-
Interface

3,3

Audio
Transmitt
er

R
NI

R
NI

R
NI

R
NI

R
NI

R
NI

R
NI

Linköping University
13th Jan. 2005

73
Shashi Kumar

Issues : Static Vs. Dynamic Mapping & Scheduling
Static or Off-line Mapping and Scheduling

The resource on which the task will be run decided before run-
time
Starting time for execution of each task on the resource is also
decided
Normally based on worst case estimates of task execution time

Dynamic or On-line Mapping and Scheduling
Task assignment to resources as well ordering of their execution is
done at run time

Non-preemptive or Preemptive scheduling
Based on actual execution time of tasks
Which resource runs mapping and scheduling algorithm?

Dynamic mapping and scheduling can lead to better
performance

Linköping University
13th Jan. 2005

74
Shashi Kumar

Objective Functions
Primary Objective for real-time application is to
meet all hard deadline

Find a mapping and scheduling of tasks on the
computing platform such that the performance
requirements are met

Secondary Objectives
Power consumption minimization
Soft deadline are met as much as possible

Linköping University
13th Jan. 2005

75
Shashi Kumar

Tang’s Lei’s 2-step genetic Algorithm [6]
Solves mapping and scheduling as a single
integrated problem

Static mapping and static and non-preemptive
scheduling
Fixed NoC architecture

Objective
Each task graph can meet its individual execution
deadline
Maximize the overall execution performance

Linköping University
13th Jan. 2005

76
Shashi Kumar

Inputs to the Mapping Algorithm
Weighted Task Graph

Weight on each edge corresponds to amount of data
communicated from source node to destination node

Deadline for execution of each STG
Task Execution Time Table

Worst case execution Time on each core

40∞50TN

∞--------

15050200T2

75∞100T1

CM-----------C2C1Task/Core

Linköping University
13th Jan. 2005

77
Shashi Kumar

Mapping Issues and Assumption

A task graph node has different execution time on different
resources

There may be many copies of the same resource in the network
Every task can be executed by at least one resource
A task is executed without pre-emption

The execution time of an STG depends on:
The type and the position of resources on which its tasks are
executed.
Execution of tasks of various STGs may be interleaved

There is enough local memory with every core to store all
the required data for all the tasks executing on them

Linköping University
13th Jan. 2005

78
Shashi Kumar

Estimation of STG delay

Delay of STG corresponds to the delay of critical
path in the task graph

Sum of execution time of tasks and edges on the critical
path

∑∑
−∈−∈

− +==
kjki pathcriticalE

j
pathcriticalV

ikpathcriticalk TeTvTT ,

Linköping University
13th Jan. 2005

79
Shashi Kumar

Edge delay

Two communicating vertices of MTG may get
mapped on two different NoC resources.
An edge delay in MTG depends on:

Mapping of task nodes to resources
Data size
Router Design including protocols
Network traffic situation at that time

Linköping University
13th Jan. 2005

80
Shashi Kumar

Edge delay (assumption)
In mesh based network using a dynamic routing
algorithm, delay of Ei going from node (x1, y1) to
(x2, y2) can be coarsely estimated as

)(2121 yyxxwkTe iei −+−⋅⋅=

where wi is the size of data to be communicated

Ke absorbs all architectural parameters

Linköping University
13th Jan. 2005

81
Shashi Kumar

MTG effective delay: Objective Function

Since the main optimizing goal is to meet every STG’s
deadline constraint
we define a normalization, called MTG Effective
Delay, to reflect every STG’s contribution to the
overall Objective Function and then combine them all
as:

},,max{
)1(

)1(

0

0
max

−

−×=
c

c
MTG D

T
D
TDT L

Where Ti and Di are execution delay in a mapping and
deadline for STGi. Dmax is the largest deadline.

Linköping University
13th Jan. 2005

82
Shashi Kumar

Mapping Algorithm: Basic Idea
Two Steps

STG1 STG2

1

2

3

4

5 6

7 8

9
{1, 3, 5}

{2, 4, 6, 7}
{8, 9}

1,3

5

2,4

6,7

8,9

Step 1

Step 2
MTG

Fixed NoC

Linköping University
13th Jan. 2005

83
Shashi Kumar

The First Step: Partition nodes according to types
We assume that there are a few types of NoC resources
For each task in MTG find the type of resource it should be
executed on

Non-trivial problem, since we want to use maximum parallelism (
maximum utilization of resources)

Insisting on use of fastest resource for a task can delay start time of
the task or other tasks
To avoid communication delay it may be better to execute connected
tasks in the same resource/neighboring resources

This step is implemented as a genetic algorithm and
generates many candidate solutions

This is used as the initial population for the second step

Linköping University
13th Jan. 2005

84
Shashi Kumar

The Second step: Binding of Position
In each of the candidate solution

For each task node decide the exact resource of the type
decided in first step

If the number of resources of a type is exactly one then the
choice is trivial.
Choice will affect the execution time of individual STG

This binding problem is also hard!
This step is also implemented using a separate
genetic algorithm

Linköping University
13th Jan. 2005

85
Shashi Kumar

Task Graph Mapping Tool

Linköping University
13th Jan. 2005

86
Shashi Kumar

Input Generation Tool

Linköping University
13th Jan. 2005

87
Shashi Kumar

450

650

850

1050

1250

1450

1650

1850 MTG Effective Delay

NoC Size

3 STGs' MTG

2 STGs' MTG

1 STG482
770

1098

2 3 4 5 6 7 8 9 10 11

MTG performance variations with NoC size changing

MTG performance variations with NoC size

Linköping University
13th Jan. 2005

88
Shashi Kumar

Conclusions
NoC research is in its infancy. Many tools will be required
for ASNoC Design

Simulators for evaluation of design choices
Performance and power estimators
Tools for mapping and scheduling applications on the NoC
Communication libraries for coding applications

There is a lack of availability of real large applications
which can be used you evaluate current research proposals

Researchers still use random traffic and random task graphs

Linköping University
13th Jan. 2005

89
Shashi Kumar

Important References
1. Shashi Kumar et. al., ”A Network on Chip Architecture and Design Methodology”,

SVLSI 2002, Pittsburgh, 2002.
2. Juha-Pekka Soininen et. al. ,” Extending Platform based design to Network on Chip

Systems”, Proceedings of the 16th International Conference on VLSI Design 2003,
India, Jan. 2003.

3. Juha-Peka Soininen et. al. ”Mappability Estimation Approach for processor
Architecture Evaluation”, Proceedings of the 20th NORCHIP 2002, Nov. 2002,
Copenhagen, Denmark.

4. Evegeny Bolotin et. al., ”QNoC: QoS Architecture and Design Process for Network
on Chip”, Journal of System Architecture 50 (2004), 105-128.

5. Evegeny Bolotin et. al., ”Cost considerations in Network on Chip”, Integration – The
VLSI Journal, special issue on Network on Chip, Volume 38, Issue 1, October 2004,
pp. 19-42.

6. Tang Lei, Shashi Kumar, “ A two step genetic algorithm for mapping task graphs to a
NoC Architecture”, Proceedings DSD 2003, Turkey, Sept. 2003.

7. Ruxandra Pop and Shashi Kumar, “A survey of techniques for mapping and
scheduling applications to Network on Chip Systems”, Research Report 04:4, School
of Engineering, Jönköping University, Dec. 2004, ISSN 1404-0018.

