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Outline
Introduction: rather long!

NoC Evolution
Case for Application Specific NoC

A NoC Methodology
Specializing NoC for an Application

Processor Selection and Evaluation for NoC
Link Optimization  and QNoC

Mapping Applications to NoC
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A case for NoC
Driving Forces

Exponentially increasing Silicon Capacity
Demand of products requiring large capacity
Market: Competitive in price and short Time-to-Market

Techniques to handle large and complex system 
design

Reuse
Higher Level of abstraction
CAD tools

NoC paradigm offers all the above features
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Design Productivity and Level of Abstraction

Time

Productivity (num
ber of 

gates/num
ber of m

odules)

Gates

Modules



Linköping University
13th Jan. 2005

8
Shashi Kumar

Properties for REUSE
Well defined external interfaces

Easy composability in different contexts
Reuse means generalization which leads to under-
utilization

Static Cost : More area
Dynamic cost: Consumes more power

How to make Reuse efficient ?
Specialization: 

Trim out the unnecessary resources
Higher utilization through programmability
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Evolution of ASIC and Programmable Devices
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Evolution: ASIC Vs. PLD Architectures
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Abstraction levels of programming: FPGA

•Program logic blocks and interconnections

•Bit file

ARM 
core

•ARM core is programmable at higher 
level of programming
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Chip Multi-processor Road
Question: New computer architecture which can use such a 

high available capacity?

Options:
Super-computer on a chip: Powerful instruction set; 
Higher accuracy, On-chip main memory, On-chip 
interfaces; ……
Super-scalar Architecture
Multi-threaded super-scalar architectures
MultiMulti--processor on a chipprocessor on a chip
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Multiprocessor SoC vs. NoC
Multiprocessor SoC is a special NoC

All the cores are processors
Homogenous vs. Heterogeneous

Functionality of the system fully software programmable

Other extreme : ASIC built using special function 
hardware IP cores 

Functionality of the system quite fixed at the time of fabrication

NoC covers the complete range between these extremes
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NoC Architecture Space

Reuse/Flexibility/Programmability

Perform
ance/cost/

design tim
e
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Why Application Specific NOC ?
Performance

Use of application specific cores
Specialize Size, Topology, Routers, Links, Protocols 
for the application

Power Consumption
Optimal utilization of computing and communication 
resources
Optimal voltage and clock selection for computing and 
communication resources
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Degrees of Freedom in Mixed NoC design
Topology and Size
Core Selection and Core Positioning
Core operating Voltage and Clock Speed
Link specialization
Router Design 
Protocol Specialization
OS specialization
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ASNOC Design Methodology[1]

Generic backbone

NoC system

Optimised Virtual ComponentsDefinition of 
NOC platform  

Optimised Intellectual Property

Features

Applications

Algorithms

Cores

Memories
Accelerators

Instantiation 
of NoC
platform

Code and 
configuration

“Application area specific IPR”

Product area specific platform

“Product specific IPR”

Communication
structure

Processors 
and hardware



Linköping University
13th Jan. 2005

18
Shashi Kumar

Development of NOC based systems

BACKBONE

PLATFORMS

SYSTEMS

Baseband platform

Database platform

Multimedia platform

High-perforrmance 
communication systems

High-capacity 
communication 
systems

Virtual reality games

Entertainment 
devices

Personal 
assistant

Data 
collection
systems
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Backbone-Platform-System Methodology
Backbone Design

Topology
Switches, Channels and Network Interfaces (with generic parameters)
Protocols

Platform Design
Scaling
Selection and placement of resources
Specialization of Switches, Channels,  Network Interfaces and Protocols
Basic communication services

Application Mapping
Programming functionality into resources
OS
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Development of ASNoC System

Resource development
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hardware

Product differentiation

Product area specialisation
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Earlier Approaches
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Algorithm-Core Mappability Analysis[2,3]

Based on Juha-Pekka’s papers
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Specialization of Mesh Topology NoC Architecture

1,1 1,2

2,1 2,2

3,1 3,2

Available Cores

Specialize Back-Bone

Specialize Resources
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Core Selection
Task is similar to ”Processor Selection” in 
Embedded Systems 
Generalization of Processor Selection Problem

A core may be used for more than one algorithm/task
An algorithm may use more than one core
Set of Cores for a set of algorithms

Cluster/Region of cores
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Overview of the approach
Algorithms

Available Cores
C1, C2, C3,....,Cn

Mappability
Analysis

A1, A2, A3,....,Am

.,.

.,.

.,.

.,.

.,.

Cn

.,.

-

-

-

-

...

---

.,..,..,.Am

0,40,50A3

0,60,20,9A2

0,30,10,5A1

C3C2C1

Algorithm-Core Suitability Index

C1, C2, C3,....,Cn

...
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Core-Algorithm Mappability Analysis
The goodness of a processor architecture-algorithm pair

Computational Capacity of architecture
Performance Requirement of algorithm
Optimal mapping implies that architecture does not constrain 
execution and does not have underutilization
CAMALA: Core Algorithm Mappability Analysis Approach 
Tool
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Mappability Analysis Goals
Compare and Select the best core for a given 
algorithm

Select a set of cores for a set of algorithms

Specialize a configurable core architecture for a 
given algorithm

Specialize the core for a set of algorithms
Architecture parameters

Number of registers
Number of functional units
Instruction set
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Mappability Parameters 
Instruction Set Suitability
External Data Availability 
Internal Data Availability
Control Flow Continuity
Data Flow Continuity
Execution Unit Availability
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Characterization of Algorithm and processor cores

Number of functional 
units

Parallelism in algorithmExecution Unit Availability

Handling of data hazardsPossibility of data hazardsData Flow Continuity

Branch penalty
Branch prediction

Number of branchesControl Flow Continuity

Number of registersAmount of temporary data to 
be stored

Internal Data Availability

Bus capacity of coreNumber of memory accessesExternal Data Availability

Cost of instruction 
execution

Effectiveness of instructions 
w.r.t. operations in algorithm

Instruction Set Suitability

Processor Core 
characterization

Algorithm 
Characterization
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Instruction Set Co-relation
Effectiveness of instruction usage

Availability of instructions for operations used in the 
algorithm

If not available they have to be replaced by procedures
– If floating point operation not available will lead to extra cost 

factor

Handling of operands of various data widths

Methods used in compilers and High Level 
Synthesis used for this analysis
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Internal Data Availability Co-relation
Effectiveness of register usage
Algorithmic Requirement

Number of intermediate results in one scheduled step 
during execution
ASAP and ALAP on the data flow graph used to get 
this value 

No constraint on resources: Maximum parallelism

e(a): Maximum number of intermediate results
e(c) = number of registers 
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Control Flow Continuity Co-relation
For the algorithm it depends on the branch instruction ratio

Ratio of branch instruction w.r.t. the total number of instructions

For Core architecture it depends on
Branch prediction technique ( Pe)
Branch penality (D)

Degree of pipelining and super-pipeling
e(c ) ~ (1- Pe)D

Good Matches
Small pipelines for algorithms with more branches
Long pipelines for algorithms with less branches
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Execution Unit Availability
Operation level parallelism in algorithm vs. 
Number of functional units in the processor core
e(a) ~ number of instructions / number of steps in ASAP
e(c) ~ number of functional units
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Viewpoint-specific characterization
The algorithm is compiled into a graph 
representation where each node is a block of code

For each computation node j in the algorithm
For each view-point i

ei(aj): Algorithm characterization
ei(c): Core characterization
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Mappability of each view-point
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Total Mappability of a view point
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Total Mappability
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wi : relative importance of different view points
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CAMALA Implementation

Application in C

SUIF Compiler

SUIF Format CAMALA

Core Information

Mappability
Figures
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Verification of Mappability Analysis
Higher the total mappability between an algorithm 
and a core more suitable it is for the job
Mappability analysis was verified using 
instruction set simulator Simplescalar

Goodness : Utilization x Speed-up
Example : Processor with 2 functional units 
Utilization = 60% and Speed-up = 1.5 

Goodness =  0.60 x 1.5/2 = 0.45
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Experimental Results[
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Experimental Results: WLAN Modem
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Architectures for WLAN Modem Algorithms

D: Super-pipeling Degree

(1..20)

E: Number of Execution 
paths (1..6)

R: Number of registers 
(1..64)

B: Number of Data Buses

(1..6)
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Multiprocessor for WLAN Modem
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Summary
Mappability Analysis technique provides 
possibility of fast selection/specialization of cores 
for an application or application set.
Effect of memory organization on mappability are 
not considered
Effect of inter-core communication organization 
on mappability not considered
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Quality of Service NoC (QNoC) [4,5]

Based on Evegeny Bolotin’s papers and presentations
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Goals of QNoC
Design an Application Specific NoC which 
provides required communication performance 
(QoS) at minimum cost

Communication QoS: Required throughput and end to 
end delay guarantee between communicating cores

Specialize links in NoC

Cost
Area: links, buffers and routers are trimmed
Power Consumption: shortest path routing
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Quality of Service NoC (QNoC) Architecture
Irregular Mesh Topology

Module

Module Module

Module Module

Module Module

Module

Module

Module

Module

Module

Figurestaken from
 Evegeny

B
olotin’s

Presentation
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Specializion of Links

Module

Module Module

Module Module

Module Module

Module

Module

Module

Module

Module

Adapt Links

Module

Module Module

Module Module

Module Module

Module

Module

Module

Module

Module

Link bandwidth is adjusted according to expected traffic

Bandwidth is adjusted by either number of wires or the data 
frequency

Figurestaken from
 Evegeny

B
olotin’s

Presentation
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QNoC Service Levels
Four different service levels with different priorities

Signaling
Short urgent packets
Suitable for control signals and Interrupts

Real-Time
Guaranteed bandwidth and latency
Useful for streamed audio or video processing

Read/Write ( RD/WR)
Provides Bus Semantics

Block Transfer
Large blocks of data
DMA transfers

Priority
Signaling >Real Time > Read/Write > Block Transfer
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QNoC: Routing Algorithm
Static shortest X-Y coordinate based routing

Avoids deadlocks
No reordering at end points

Wormhole packet forwarding with credit based 
flow control
Packets of various priorities are forwarded in an 
interleaved manner according to packet priorities
A high priority packet can pre-empt a low priority 
long packet
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QNoC: Router Architecture [4]

C
R

O
S

S
-B

A
R

Scheduler
Control
Routing CREDIT

Buffers
SIGNAL

RT

RD/WR

BLOCK

SIGNAL

RT

RD/WR

BLOCK

CREDIT

Scheduler
Control
Routing CREDIT

SIGNAL

RT

RD/WR

BLOCK

SIGNAL

RT

RD/WR

BLOCK

CREDIT

Output portsInput ports Slide taken from
 Evegeny

B
olotin’s

Presentation
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QNoC Packet Format

Arbitrary Sized Packets

Flit
Flit
Flit
Flit

Command
TRA TRA: Target Routing Address

Command: Info. about payload

Payload: Arbitrary Length

Flit Types:

FP (full packet): a one-flit packet

EP (end of packet): last flit

BDY (body): a non-last flit
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QNoC Design Flow

Characterize
Traffic

Map Traffic
to Grid

QNoC
Architecture

Optimize

Estimate cost

Modules with
Ideal Network

Place
modules

Figurestaken from
 Evegeny

B
olotin’s

Presentation
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Design Example
Figurestaken from

 Evegeny
B

olotin’s
Presentation
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Design Example[4]

Representative Design Example, each module contains 4 traffic sources:

~150 ns
(tens of 
cycles)

2.56 Gbps254
Random target RD/WR 
transaction every ~25 

cycles.
RD/WR

50 µs
(Several tx. 

delays on typ. 
bus)

2.56 Gbps12 5002 000
Random target Block-
Transfer transaction 

every ~12 500 cycles .

Block-
Transfer

125 µs
(Voice-8 KHz 

frame)
320 Mbps2 00040

Periodic connection from 
each module: 320 voice 

channels of 64 Kb/s
Real-Time

20 ns
(several 
cycles)

320 Mbps1002
Every 100 cycles each 

module sends interrupt to  
a random target

Signaling

ETE
requirements
For 99.9% of 

packets

Total 
Load per 
Module

Average Inter-
arrival time [ns]

Average 
Packet

Length [flits]

Traffic 
interpretation

Traffic 
Source

Table taken from Evegeny Bolotin’s Presentation
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Uniform Scenario - Observations
Calculated Link Load Relations:

Figurestaken from
 Evegeny

B
olotin’s

Presentation
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Uniform Scenario - Observations
Various Link BW allocations:

300 0001 0004503544512Gbps

50 000802502030.4850Gbps

4 0002080610.32560Gbps

Block-
Transfer

(99%)

RD/WR
(99%)

Real-Time
(99.9%)

Signaling 
(99.9%)

Packet ETE delay of packets [ns or cycles]Average 
Link 

Utilizatio
n

[%]

Allocated 
Link BW

[Gbps]

Desired QoS

Figurestaken from
 Evegeny

B
olotin’s

Presentation
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Uniform Scenario - Observations

Fixed Network Configuration -Uniform Traffic
Network behavior under different traffic loads?

BLOCK

ETE
Delay

Traffic Load

Real-Time

RD/WR
Signaling

Figurestaken from
 Evegeny

B
olotin’s

Presentation



Linköping University
13th Jan. 2005

60
Shashi Kumar

Alternatives for connecting n cores[4,5]

Arch Total Area Power Dissipation Operating Frequency 
N

S-
B

us
 

( )3O n n  ( )O n n  2

1O
n
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

S-
B

us
 

( )2O n n  ( )O n n  
1O
n
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

N
oC

 

( )O n  ( )O n  ( )1O  

PT
P ( )2O n n  ( )O n n  

1O
n
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

For achieving the same Communication Bandwidth

Table
taken from

 Evegeny
B

olotin’s
Presentation
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QNoC vs. Alternative Solutions
(4x4 mesh, uniform traffic)

Uniform scenario (Same QoS):

45.0

3.8

1.0 1.0

2.9

0.8

0.1

1.0

10.0

100.0

BUS NoC PTP

 Wire-Length(Area) and Power

Wire Length

Power

680%100MH
zPTP

3 70050%50 
MHz

Bus

2830%1GHzQNo
C

Av. Link 
WidthUtilizationFrequen

cyArch.

BUS QNoC PTP

C
os

t

Figurestaken from
 Evegeny

B
olotin’s

Presentation
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Summary about QNoC Approach
Lower cost and higher performance are the driving 
forces behind Application Specific NoC
approaches like QNoC

Reuse/Flexibility/Programmabi
lity

Perform
ance/c

ost/design tim
e General

MPSoC
(Homog.)

Hard-
NoC

MPSoC
(Hetero)

Mixed-
NoC Application

Specific
MPSoC

QNOC
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Mapping Applications to NoC Platforms
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Various Options
Architecture-Application Co-development

Optimized in terms of performance and cost
High Development Time
Less Flexible

Mapping sequential code to a Fixed Platforms
Low development time and cheap
Medium Performance
Low utilization of resources

Mapping parallel code through emulation of one 
network on another network
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Application Mapping

Resource development

Fu
nc

ti o
n 

de
ve

l o
pm

en
t

NOC System

System
does
not exist

Platform
Backbone

Architecture
design

Application
mapping

System Services

Operation principles

Communication
channels

Non-configurable 
hardware

Product differentiation

Product area specialisation
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Task Graph as an Application Model
Most common graph model used for representing 
applications for multi-processor systems 

Application is partitioned into smaller units called tasks
Similar in properties to Data Flow graph used for high 
level synthesis of ASICs
It can represent

Concurrency among computations
Data Dependencies among computations
Communication among computations
Control Dependencies among Computations
Temporal Dependencies among computations
Non-determinism among computation
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Task Graph
Task Graph is a weighted directed acyclic graph 
(DAG)

Nodes represents computational tasks
Weight on a node may represent different features of  the 
computation : Number of instructions, Execution Time etc.

Edges between tasks represent dependencies
Weight on an edge may represent size of data to be 
communicated between tasks or some temporal information 
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Task Graph Example

T1

T2 T3

T4

T5

50

300100

400

100

1KB2KB

3KB

1KB

Parameters
Granularity of nodes
Period and deadlines

Granularity of Nodes
High Granularity

Less available parallelism
Less communication cost

Low Granularity
Higher available parallelism
More communication cost

Hierarchical Task Graphs
Task node itself is a task graph at lower level

4B

Deadline: 20ms

Period : 20 ms
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Task Graph Extraction from Sequential Code
Job similar to compiler design

Task Graph ExtractorC-Program

T1

T2 T3

T4

T5

1KB2KB

3KB

1KB

4B

Task Graph

Profiler/Simulator
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Concurrent Applications as Multi-Task Graph (MTG)
NoC is expected to integrate more than 50 processor size 
resources in a few years

Can concurrently run many applications

Each application can be represented by a task graph called 
Single Task Graph (STG)
We call aggregation of many  STGs as a Multi-Task Graph 
(MTG).

There is no data or temporal dependencies among various STGs
Relative importance of STGs may be specified in some form
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Fixed NoC Platforms
A NoC Platform is fixed if

Topology and Size of NoC is decided
Communication Protocols are decided
Resources for all the slots have been selected

1,1

Video
Receiver

RNI

1,2

Processor

1,3

Audio
Receiver

2,1

DSP

RNI

2,2

Memory

2,3

DSP

3,1

Video
Transmitter

3,2

I/O-
Interface

3,3

Audio
Transmitter

RNI

RNI

RNI

RNI

RNIRNIRNI
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Mapping and Scheduling Problem
Mapping: For every task decide the core in NoC where it will 

be executed
Scheduling: For every task decide the starting time of its 

execution

STG1 STG2

Multi-Task Graph

1,1

Video
Receiver

R
NI

1,2

Processor

1,3

Audio
Receiver

2,1

DSP

R
NI

2,2

Memory

2,3

DSP

3,1

Video
Transmitt
er

3,2

I/O-
Interface

3,3

Audio
Transmitt
er

R
NI

R
NI

R
NI

R
NI

R
NI

R
NI

R
NI
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Issues : Static Vs. Dynamic Mapping & Scheduling
Static or Off-line Mapping and Scheduling

The  resource on which the task will be run decided before run-
time
Starting time for execution of each task on the resource is also
decided
Normally based on worst case estimates of task execution time

Dynamic or On-line Mapping and Scheduling
Task assignment to resources as well ordering of their execution is 
done at run time

Non-preemptive or Preemptive scheduling
Based on actual execution time of tasks
Which resource runs mapping and scheduling algorithm?

Dynamic mapping and scheduling can lead to better 
performance
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Objective Functions
Primary Objective for real-time application is to 
meet all hard deadline

Find a mapping and scheduling of tasks on the 
computing platform such that the performance 
requirements are met

Secondary Objectives
Power consumption minimization
Soft deadline are met as much as possible 
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Tang’s Lei’s 2-step genetic Algorithm [6]
Solves mapping and scheduling as a single 
integrated problem

Static mapping and static and non-preemptive 
scheduling
Fixed NoC architecture

Objective
Each task graph can meet its individual execution 
deadline
Maximize the overall execution performance
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Inputs to the Mapping Algorithm
Weighted Task Graph

Weight on each edge corresponds to amount of data 
communicated from source node to destination node

Deadline for execution of each STG
Task Execution Time Table 

Worst case execution Time on each core

40∞50TN

∞--------

15050200T2

75∞100T1

CM-----------C2C1Task/Core
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Mapping Issues and Assumption

A task graph node has different execution time on different 
resources

There may be many copies of the same resource in the network
Every task can be executed by at least one resource
A task is executed without pre-emption

The execution time of an STG depends on:
The type and the position of resources on which its tasks are 
executed.
Execution of tasks of various STGs may be interleaved

There is enough local memory with every core to store  all 
the required data for all the tasks executing on them
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Estimation of STG delay

Delay of STG corresponds to the delay of critical 
path in the task graph

Sum of execution time of tasks and edges on the critical 
path

∑∑
−∈−∈

− +==
kjki pathcriticalE

j
pathcriticalV

ikpathcriticalk TeTvTT ,
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Edge delay 

Two communicating vertices of MTG  may get 
mapped on two different NoC resources.
An edge delay in MTG depends on:

Mapping of task nodes to resources 
Data size 
Router Design including protocols
Network traffic situation at that time 
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Edge delay (assumption)
In mesh based network using a dynamic routing 
algorithm, delay of Ei going from node (x1, y1) to 
(x2, y2) can be coarsely estimated as

)( 2121 yyxxwkTe iei −+−⋅⋅=

where wi is the size of data to be communicated

Ke absorbs all architectural parameters
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MTG effective delay: Objective Function

Since the main optimizing goal is to meet every STG’s
deadline constraint 
we define a normalization, called MTG Effective 
Delay, to reflect every STG’s contribution to the 
overall Objective Function and then combine them all 
as: 

},,max{
)1(

)1(

0

0
max

−

−×=
c

c
MTG D

T
D
TDT L

Where Ti and Di are execution delay in a mapping and 
deadline for STGi. Dmax is the largest deadline.
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Mapping Algorithm: Basic Idea
Two Steps

STG1 STG2

1

2

3

4

5 6

7 8

9
{1, 3, 5}

{2, 4, 6, 7}
{8, 9}

1,3

5

2,4

6,7

8,9

Step 1

Step 2
MTG

Fixed NoC
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The First Step: Partition nodes according to types
We assume that there are a few types of NoC resources 
For each task in MTG find the type of resource it should be 
executed on

Non-trivial problem,  since we want to use maximum parallelism ( 
maximum utilization of resources)

Insisting on use of fastest resource for a task can delay start time of 
the task or other tasks
To avoid communication delay it may be better to execute connected 
tasks in the same resource/neighboring resources 

This step is implemented as a genetic algorithm and 
generates many candidate solutions

This is used as the initial population for the second step
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The Second step: Binding of Position
In each of the candidate solution

For each task node decide the exact resource of the type 
decided in first step

If the number of resources of a type is exactly one then the 
choice is trivial.
Choice will affect the execution time of individual STG 

This binding problem is also hard!
This step is also implemented using a separate 
genetic algorithm
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Task Graph Mapping Tool
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Input Generation Tool
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Conclusions
NoC research is in its infancy. Many tools will be required 
for ASNoC Design

Simulators for evaluation of design choices
Performance and power estimators
Tools for mapping and scheduling applications on the NoC
Communication libraries for coding applications

There is a lack of availability of real large applications 
which can be used you evaluate current research proposals

Researchers still use random traffic and random task graphs
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