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Application requirements

n Very challenging!

Signal processing

hard real time
very regular load

high quality

worst case
typically on DSPs

Media processing

hard real time
irregular load

high quality

average case
SoC/media processors

Multi-media

soft real time
irregular load

limited quality

average case
PC/desktop
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Systems on chip
n Moore’s law provides exponential growth 

of resources
n But design does not become easier

è Deep submicron problems (DSM)
n Wire vs. transistor speed, power, signal integrity

è Design productivity gap
n IP re-use, platforms, NoCs
n Verification technologies
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The challenge of  unpredictability

n We still need to build predictable systems!

unpredictability Architectures

Physical effects

Applications
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The differentiation challenge
n Wireless terminal platforms

n Micro + DSP
n Digital video platforms

n Micro + VLIW + Coprocessors
n Why?

n IP components are similar (often the same!)
n Developing new cores is expensive, and software…

n But: a big “?” on how communication is 
performed
n Opportunity for differentiation!



4

L. Benini 2004 7

Outline

n Introduction and motivation
n Physical limitations of on-chip interconnect
n Communication-centric design

n On-chip networks and protocols
n Software aspects of on-chip networks

L. Benini 2004 8

Qualitative roadmap trends
n Continued gate downscaling
n Increased transistor density and frequency

n Power and thermal management

n Lower supply voltage
n Reduced noise immunity

n Increased spread of physical parameters
n Inaccurate modeling of physical behavior
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Interconnect delay trend

Relative delay is growing even 
for optimized interconnects
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Wire delay vs. logic delay

Taken from W.J. Dally presentation: Computer architecture is all about 
interconnect (it is now and it will be more so in 2010) HPCA Panel 
February 4, 2002 



6

L. Benini 2004 11

Communication Reliability

n Information transfer is inherently 
unreliable at the electrical level, due to:
n Timing errors
n Cross-talk
n Electro-magnetic interference (EMI)
n Soft errors

n The problem will get increasingly more 
acute as technology scales down

0.2 um1.0 um
Cc

Cc
Cs Cs
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Noise and transient errors
n SoC will operate in presence of noise

n Data may be delayed or corrupted
n Malfunctions modeled as single/multiple upsets

n Present design methods reduce noise
n Physical design (e.g., sizing, routing) 

n Future methods must tolerate noise
n Push solution to higher abstraction levels
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Network design objectives

n Low communication latency
n Streamlined control protocols

n High communication bandwidth
n To support demanding SW applications

n Low energy consumption
n Wiring switched capacitance dominates

n High system-level reliability
n Correct communication errors, data loss 
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Theme 1: QoS or Best effort?
n Essential to recover global predictability

n NOTE: pplications require it
n It fits well with protocol stack concept

n What is QoS?
– Requester poses the service request (negotiation)
n Provider either commit to or reject your request
– renegotiate when requirements change

n After negotiation. steady states that are predictable

(re)negotiate
steady states
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The cost of QoS
n Best-effort services have better average resource
 utilisation at the cost of unpredictable/unbounded
 worst-case behaviour
n The combination of best-effort & guaranteed services (c)
 is useful!
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Theme 2: Modularity vs. 
efficiency

n Bus-Centric Protocol Interface:
n Forces core interface to the specs of a particular bus

n Core-Centric Protocol Interface:
n Provides an abstract communication channel for the core
n Enables unconstrained interface bridge to any 

interconnect structure

IP Core

Bus Interface
Bus Bridge

IP Core

Bus Bridge

Core Interface

[[SonicsIncSonicsInc]]
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Basic OCP Concepts
n Point-to-point, unidirectional, synchronous

n Easy physical implementation
n Master/slave, request/response

n Well-defined, simple roles
n Extensions

n Added functionality to support cores with more 
complex interface requirements

n Configurability
n Match a core’s requirements exactly
n Tailor design to required features only

Reference: [Reference: [SonicsIncSonicsInc]]
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Basic OCP protocol

M
as

te
r

Sl
av

e

Clk
MCmd [3]
MAddr [N]
MData [N]
SCmdAccept
SReap [3]
SData [N]

MCmd, MAddr

SCmdAccept

Sresp, SData

MCmd, Maddr, MData
SCmdAccept

Read:
Command, Address
Command Accept
Response, Data

Write:
Command, Address, Data
Command Accept

Reference: [Reference: [SonicsIncSonicsInc]]
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Theme 3: Communication 
Architectures

Do we need a network?
Can we do with dedicated wiring?

n NETWORK on CHIP (point-to-point)
n Scalability;
n Low energy consumption;
n High area.

Network on Chip

n SHARED BUS (broadcast);
n Low area 
n Poor scalability
n.High energy consumption

SHARED BUS

MASTER MASTER

SLAVE SLAVE SLAVE

MASTER
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Dedicated wires vs. Network

Dedicated Wiring On-Chip Network
Spaghetti wiring Ordered wiring

Variation makes it hard to model
crosstalk, returns, length, R & C.

No variation, so easy to exactly
model XT, returns, R and C.

Drivers sized for ‘wire model’ –
99% too large, 1% too small

Driver sized exactly for wire

Hard to use advanced signaling Easy to use advanced signaling

Low duty factor High duty factor

No protocol overhead Small protocol overhead
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Networks on chip: advantages
n differentiated services

n offer different kinds of communication with one network

n scalable
n add routers and network interfaces for extra bandwidth

(at the cost of additional latency)

n compositional
n add routers/NIs without changing existing components

e.g. timing, buffers

n efficient use of wires
n statistical multiplexing/sharing (average vs. worst-case)

⇒ fewer wires ⇒ less wire congestion
n point to point wires at high speed

n communication becomes re-usable, configurable IP
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Physical layer

Physical design:
n Voltage levels
n Driver design
n Sizing
n Physical routing

applicationapplication
systemsystem

SoftwareSoftware

ArchitectureArchitecture
and controland control

transporttransport
networknetwork
data linkdata link

wiringwiring
PhysicalPhysical
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Physical layer: the channel

n Channel characteristics
n Global wires: lumped → distributed models

n Time of flight is non-negligible

n Inductance effects
n Refelections, matching issues

n Designing around the channel’s transfer function
n Current mode vs. voltage mode 
n Low swing vs. rail-to-rail
n Repeater insertion
n Wire sizing
n Pre-emphasis / post-filtering
n Modulation

FCFT FR
+

n

11 11

00
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Low Swing signalling circuit

n Pseudodifferential interconnect [Zhang et al., 
JSSC00] (x6 energy reduction vs. CMOS Vdd=2V)

Static FF

Clocked SA

Low Vdd 
reference (0.5V)
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Physical layer: synchronization

n Single, global timing reference is not 
realistic
n Direct consequence of non-negligible tof
n Isochronous regions are shrinking

n How and when to sample the channel?
n Avoid a clock: asyncronous communication
n The clock travels with the data
n The clock can be reconstructed from the data

n Synchronization recovery has a cost
n Cannot be abstracted away
n Can cause errors (e.g., metastability)

B1…Bn

CLK

D Q

CK

0

1
2
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Case study: Asyncronous Bus
n MARBLE SoC Bus 

n 1-of-4 encoding (4 wires for 2 bits)
n Delay insensitive - No bus clock - Wire pipelining
n High crosstalk immunity
n Four-phase ACK protocol

00 01 10 11

L1

L2

L3

L4
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Architecture and control

applicationapplication
systemsystem

SoftwareSoftware

ArchitectureArchitecture
and controland control

transporttransport
networknetwork
data linkdata link

wiringwiring
PhysicalPhysical
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Data link layer

n Provide reliable data transfer on an 
unreliable physical channel

n Access to the communication medium
n Dealing with contention and arbitration

n Issues
n Fairness and safe communication
n Achieve high throughput
n Error resiliency
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ICACHE MEM.CTRL.
AMBA BUS
INTERFACE

FROM  EXT.

MEMORY

HRDATA AMBA BUS

• Compare original AMBA bus to
extended bus with error detection 
and correction or retransmission
– SEC coding
– SEC-DED coding
– ED coding

• Explore energy efficiency

Data-link protocol example:
error-resilient coding

H DECODER H ENCODER

MTTF
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Network layer: topology

n Buses:
n Pro: simple, existing standards
n Contra: performance, energy-efficiency, arbitration

n Other network topologies:
n Pro: higher performance, experience with MP
n Contra: physical routing, need for network and transport

layers

Challenge: exploit appropriate network 
architecture and corresponding protocols
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Multiple Busses
n Simple way to increase bandwidth

n use more than one bus
n Can be static or dynamic assignment to busses

n static
n A->B always uses bus 0
n C-> always uses bus 1

n dynamic
n arbitrate for a bus, like instruction dispatch to k identical CPU resources

SC RS SC RS

MM MMPC PC

P P

PC PC

P P

Global bus

Local busLocal bus

Shared
cache

Main
Memory

Routing
switch

processor

private
cache
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Crossbar

n No bandwidth reduction 
n (except receiver at endoint)

n Easy routing (on or offline)
n Scales poorly

n N2  area and delay

n No locality
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Hypercube (direct)
n Arrange 2n nodes in n-dimensional cube
n At most n hops from source to sink

n log(number of nodes)
n High bisection bandwidth

n good for traffic (but can you use it?)
n bad for cost [O(n2)]

n Exploit locality
n Node size grows

n as log(N) [IO]
n Maybe  log2(N) [xbar between dimensions]

0-D 1-D 2-D 3-D 4-D
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Multistage (indirect)
n Unroll hypercube vertices so log(N), constant size 

switches per hypercube node
n solve node growth problem
n lose locality
n can be blocking, but it can be made non-blocking with more 

stages
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K-ary N-cube
n Alternate reduction from hypercube

n restrict to N<log(N) dimensional structure
n allow more than 2 ordinates in each dimension

n E.g. mesh (2-cube), 3D-mesh (3-cube)
n Matches with physical world structure
n Bounds degree at node
n Has Locality
n Even more bottleneck potentials

2D Mesh
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Torus

n Wrap around n-cube ends
n 2-cube → cylinder
n 3-cube → donut

n Cuts worst-case distances in half
n Can be laid-out reasonable efficiently

n maybe 2x cost in channel width? 
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Fat-Trees

n Fatter links (really more of them) as you go 
up, so bisection BW scales with N

Fat Tree
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Network layer: control
n Switching

n Connection-oriented switching
n A path from source to destination is reserved prior to communication
n Useful for traffic with infrequent and long messages
n Circuit switching, virtual circuits

n Connection-less switching
n The communication path is determined dynamically
n Datagram

n Routing
n Unicast, multicast
n Source routing, distributed routing
n Deterministic, adaptive

Challenge: which models and what parameter values
are effective for on-chip communication?
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Connection-oriented schemes
n Communication path is fixed before data transmission starts
n Network types: circuit switched, virtual circuit

n Basic operations
n Connection setup
n Data transfer
n Connection teardown

n Advantages
n QoS (e.g. bandwidth, delay, jitter) guarantee through resource 

reservation over the fixed path
n Suited to real-time, constant BW communication

n Disadvantages
n Resource utilization is worse than connection-less communication (i.e. 

datagram).
n Connection setup overhead
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Connection-less schemes
n Communication path is determined dynamically 

during data (packet) transmission

n Network type: datagram
n Advantages

n Better adaptation to the varying network traffic
n Better utilization of network resource
n Suited to variable bit rate communication 

n (e.g. encoded voice, MPEG2,4, etc.)

n Disadvantage
n Poor QoS support (ß no resource reservation)

Time
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Packet-based communication:
Virtual circuit

n Fixed end-to-end communication path
n Packets are transferred over the VC

n QoS guarantee:
n Through resource reservation when the 

connection is set up

VC1

VC2

Each link can be shared 
by several VC’s

* Multiplexing on each link
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Packet-based communication:                                   
Datagram

n Connection-less
n Routers route packets independently.

n Packets can take any paths to the destination.

n Routers manage routing tables to find paths to destinations
n Non-deterministic communication delay due to 

communication resource (buffer and link) contention
n No QoS guarantee!
n Flow and congestion control is needed

Dest

Src

Packet #1
Packet #2
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Packet Forwarding Schemes
n Store-and-forward

n Virtual-cut-through

(1) After A finishes receiving the entire packet,
A asks B if B is ready for the entire packet.

(2) B à A, ack
(3) A sends the packet to B.

A B

(1) While A receives a part of the packet, 
A asks B if B is ready for the entire packet.

(2) B à A, ack
(3) A starts to send the packet to B 

even when A has not yet received the entire packet.

A B Pipelining!

The same
buffer space
is needed
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Packet Forwarding Schemes II

(1) After A receives a flit of the packet, 
A asks B if B is ready to receive a flit

(2) B à A, ack
(3) A sends a flit to B.

A B
Pipelining
on a flit (flow control unit)
basis

flit size < packet size
Smaller data space
is needed than
store-and-forward

A B C

D Head-of-line
blocking problem

Packets cannot pass from D to E
due to the blocked link between A and B

E

X
C cannot send it
and has no enough 
space for a new flit

Blocked!BlockedBlocked

n Wormhole
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A
B

Virtual Channels

n Performance improvement using virtual channels

Node 1 Node 2 Node 3 Node 4 Node 5
Destination of B

Block

Node 1 Node 2 Node 3 Node 4 Node 5
Destination of B
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Transport layer

n Decompose and reconstruct information 
n Important choices

n Packet granularity
n Admission/congestion control
n Packet retransmission parameters

n All these factors affect heavily energy and 
performance

n Application-specific schemes vs. standards
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Benefits of packets

n Reliable error-control mechanism 
n With small overhead

n Exploit different routing paths
n Spread information to avoid congestion

n Several user-controllable parameters
n Size, retransmission schemes, …

n Use retransmission rate for calibrating 
parameters



26

L. Benini 2004 51

Software layers

n System software
n OS, RTOS, run-time 

scheduler
n Component and 

network dependent

n Application software
n User and standard 

applications

applicationapplication
systemsystem

SoftwareSoftware

ArchitectureArchitecture
and controland control

transporttransport
networknetwork
data linkdata link

wiringwiring
PhysicalPhysical
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System view of communication

OS API

Operating
System

HAL API
Hardware Abstraction Layer

(HAL, HdS, Transaction Level)

MicroMicro--networknetwork

COM API

Communication
Middleware

e.g. MPI

HW Network Interface HW Network Interface

Proc #1 Proc #2

OS API

Operating
System

HAL API

HAL

COM API

Communication
Middleware

e.g. MPI

send(data) recv(data)
Application SW Application SW

Programming
Model

Network
Interface
in HW/SW
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System software

n Programming paradigms
n Shared memory 
n Message passing

n Middleware:
n Layered system software

n Should provide low communication latency
n Modular, scaleable, robust …. 
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Application software 
development tools

n Software synthesis
n Source-code generation
n Source-level optimizing transformations

n Application-specific compilation
n Choice of instructions, registers, schedule

n Software design tools need network 
awareness to be effective
n Balance computation, storage and 

communication
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Standard “Bus” Architecture
n Large semiconductor firms

n CoreConnect (IBM)
n STBUS (STMicroelectronics)

n Core vendors
n AMBA (ARM Ltd.)

n Interconnect IP vendors
n CoreFrame (Palmchip)
n WishBone (Silicore)
n SiliconBackPlane (Sonics)

n Many others!
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Amba is a bridged bus

AMBA bus

AHB: high-speed high-bandwidth 
multi-master bus

APB: Simplified processor for
general purpose peripherals

System-
Peripheral
Bridge
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Bus Components: terminology
n Initiator

n The FU  that initiates transactions
n Target

n Responds to incoming transaction
n Master/Slave

n The initiator/target side of the bus interface
n Arbiter

n Controls the access to the bus
n Bridge

n Connects two buses 
n It acts as an initiator on one side and a target on the other

Bus actors
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AHB Bus architecture

Different wires
⇒No bidirectional wires
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AMBA basic transfer

For a write

For a read
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Transfer with WAIT states

2 wait cycles
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Bus Arbitration

n Buses can support multiple initiators
n Need  a protocol for allocating bus 

resources and resolving conflicts 
n Bus arbitration

n Need a decision procedure to choose
n Arbitration policy

NOTE: Do not confuse Arbitration Protocol with arbitration policy
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Granting bus access

Waiting for access
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Burst transfers

n Arbitration has a significant cost
n Burst transfers amortize arbitration cost

n Grant bus control for a number of cycles
n Help with DMA and block transfers

n Requires safeguards against starvation
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Critical analysis: bottlenecks

n Protocol
n Lacks parallelism

n In order completion
n No multiple outstanding transactions: cannot hide slave wait states

n High arbitration overhead (on single-transfers)
n Bus-centric vs. transaction-centric

n Initiators and targets are exposed to bus architecture (e.g. arbiter)

n Topology
n Scalability limitation of shared bus solution!
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STBUS

n On-chip interconnect solution by ST
n Level 1-3: increasing complexity (and performance)

n Features
n Higher parallelism: 2 channels (M-S and S-M)
n Multiple outstanding transactions with out-of order completion
n Supports deep pipelining
n Supports Packets (request and response) for multiple data transfers
n Support for protection, caches, locking

n Deployed in a number of large-scale SoCs in STM
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STBUS Protocol (Type 3)

Target
Initiator port Target port

Initiator

Request channel

Response channel

Transaction

Req Packet Resp Packet

Cell level

Packet level

Transaction level

Signal level
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STBUS bottlenecks

n Protocol is not fully transaction-centric
n Cannot connect initiator to target (e.g. initiator does not have control 

flow on the response channel)

n Packets are atomic on the interconnect
n Cannot initiate nor receive multiple packets at the same time
n Large data transfers may starve other initiators
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AMBA AXI 

n Latest (2003) evolution of AMBA
n Advanced eXtensible Interface

n Features
n Fully transaction centric: can connect M to S with nothing in between
n Higher parallelism: multiple channels
n Supports bus-based power management
n Support for protection, caches, locking

n Deployment: ??
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Multi-channel M-S interface

M
aster

Slave

Address Channel

Write channel

Read channel

Write response ch.

VALID

DATA

READY

Channel hanshaking

4 parallel channels are 
available!
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Multiple outstanding transactions

n A transaction implies activity on multiple channels
n E.g Read uses the Address and Read channel

n Channels are fully decoupled in time
n Each transaction is labeled when it is started (Address channel)
n Labels, not signals, are used to track transaction opening and closing
n Out of order completion is supported (tracking logic in master),

but master can request in order delivery

n Burst support
n Single-address burst transactions (multiple data channel slots)
n Bursts are not atomic!

n Atomicity is tricky
n Exclusive access better than locked access
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Scalability: Execution Time

n Highly parallel benchmark (no slave bottlenecks)

AHB AXI STBus STBus (B)
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§ 1 kB cache (low bus 
traffic)

§ 256 B cache (high 
bus traffic)
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Scalability: Protocol Efficiency

AHB AXI STBus STBus (B)
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n Increasing contention: AXI, STBus show 80%+ 
efficiency, AHB < 50%
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Scalability: latency

2 Cores 4 Cores 6 Cores 8 Cores

0

1

2

3

4

5

6

7

8

9
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STBus (B) write avg
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STBus (B) read min
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§ STBus management has less arbitration latency overhead, 
especially noticeable in low-contention conditions
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Topology

n Single shared bus is
clearly non-scalable

n Evolutionary path
n “Patch” bus topology

n Two approaches
n Clustering & Bridging
n Multi-layer/Multibus

B

M

M
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AMBA Multi-layer AHB
n Enables parallel access paths between 

multiple masters and slaves
n Fully compatible with AHB wrappers

Master1

Master2

Slave1
Interconnect

Matrix

Slave1

Slave1

AHB1

AHB2

Slave Port
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Multi-Layer AHB implementation
n The matrix is made of slave ports

n No explicit arbitration of slaves
n Variable latency in case of destination conflicts

Master1

Master2

Slave1

Slave4

M
ux

M
ux

Decode

Decode

Crossbar arbitration
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Topology speedup (AMBA AHB)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

Semaphore No semaphore

Shared

Bridging

MultiLayer

§ Independent tasks (matrix 
multiply)
§ With & without semaphore

synchronization
§ 8 processors (small cache)
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Lee’s Star network [ISSCC’03]

n Two n×m crossbar-based networks
n Forward: master to slave (m masters)
n Backward: slave to master (n slaves)

n Reduce area by serializing packets
n Up-sampling @ transmitter
n Down-sampling @ receiver

n Plesiochronous clocking of NoC regions
n Synchronizers compensate for phase 

differences @ clock region boundaries
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Network architecture

Backward
Forward

Interface to off-chip 
synchronous bus
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Packet flow

CLK(IP) 200MHz CLK (UP) 800MHz

32b Data
32b Addr

32b Data
32b Addr
16b Nadr

21b

8b Data
8b Addr
4b Nadr

CLK(Bus) 200MHz

CLK (SW) 800 MHz

BUS
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Implementation
n Area 

n 64.8mm2 (.16µm DRAM tech)
n Power 

n 264mW at 2.3V
n savings of 40% w.r.t. bus for 16M, 16S

n Serialization reduces area by 57% 
(crossbar becomes 1/16!)

n Performance
n Max end-to-end latency 24.5ns (20 CLKs)
n Each crossbar switch port sustains 1.6GB/s
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NoCs

§ More radical solutions in the long term

Ø Nostrum
Ø HiNoC
Ø Linkoeping SoCBUS
Ø SPIN
Ø Star-connected on-chip network
Ø Aethereal
Ø Proteo
ØXpipes
Ø… (at least 15 groups)

CPU

Memory

DSP

Memory

link
switch

network 
interface

CPU
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NOCs vs. Busses
n Packet-based

n No distinction address/data, only packets (but of 
many types)

n Complete separation between end-to-end 
transactions and data delivery protocols

n Distributed vs. centralized
n No global control bottleneck
n Better link with placement and routing

n Bandwidth scalability, of course!

ST
BU

S 
an

d 
AX

I 
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The “power of NoCs”

Design methodology
Clean separation at the session layer:

1. Define end-to-end transactions
2. Define quality of service requirements
3. Design transport, network, link, physical 

Modularity at the HW level: only 2 building blocks
1. Network interface
2. Switch (router)

Scalability is supported from the ground up
(not as an afterthought)
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Building blocks: NI

n Session-layer interface with nodes
n Back-end manages interface with switches

Front end

Backend

Standardized node interface @ session layer. 
Initiator vs. target distinction is blurred

1. Supported transactions (e.g. QoSread…)
2. Degree of parallelism
3. Session prot. control flow & negotiation

NoC specific backend (layers 1-4)
1. Physical channel interface
2. Link-level protocol
3. Network-layer (packetization)
4. Transport layer (routing)

Node Switches
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Building blocks: Switch
n Router: receives and forwards packets

n NOTE: Packet-based does not mean datagram!

n Level 3 or Level 4 routing
n No consensus, but generally L4 support is limited (e.g. simple routing)

Crossbar

Allocator
Arbiter

Output buffers
& control flow

Input buffers
& control flow

QoS &
Routing

Data ports
with control flow
wires
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The SPIN Network  
16 ports  SPIN network

n Packet switching network

n Wormhole routing

n Multi-level Fat-Tree topology

n Point-to-point bidirectional links

n Credit-based flow control

n Adaptative routing

16  VCI / SPIN wrappers
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VCI / SPIN Wrappers

VCI master  wrapper
n 16 concurrent requests
n 1- 3 cycles latency
n unconstrained packet length
n fully asynchronous mode

VCI target wrapper
n only one request
n 1- 3 cycles latency
n fully asynchronous mode

VCI
target

VCI
master

router

router

router

SPIN Network IP cores

VCI 

interface

Target

wrapper

Initiator

wrapper
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The bidirectional link

n 2 * 32-bits data links @ 200 MHz

ðpeak link Bandwidth = 12.8 Gbit/s

n Asynchronous, credit based flow control

ðeasy floorplan routing & timing in DSM process

36 bits

36 bits S
P

IN
 li

nk

324

Tags
Data
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n Packet Switching
n No circuit reservation
n Atomic transaction = packet

n Wormhole routing 
n routers forward packets ASAP
n packets span several routers
n contention is a problem

Multistage Packet Switched Network

target

source

router

router

router
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n Pipelined routing logic
n 2.5 cycles per routing hop

n Randomized, adaptive 
routing

n Elementary output 
queuing,

n tuned for 64-byte payloads

The RSPIN router
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Output Queues
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Example : 32 ports SPIN
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Performance evaluation

 50% of peak  bandwidth

 3+3 Gbit/s  per port

n Bit-true, cycle-true simulation for multi-million cycles
 for a 32 ports «raw» SPIN network:
n Worst-case workload (random, non-local)
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The SPIN hard macrocells

n 10 x 10 partial crossbar of  36-bit busses

n 2 kbits of memory

n Peak bandwidth = 50 Gbit/s

n Latency = 2.5 cycles

n Router area = 0.25 mm2 (for STMicro 0.13µ)

Router floorplan
n 32 ports SPIN network :  16 routers

n 1  *  4 mm2 (for  STMicro 0.13µ)

n All routing wires on top of the 16 routers

n Symbolic layout technology ⇒ fully portable
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The aSoC network
n High throughput

n Fast and predictable interconnect
n Very simple and fast routing

n Guaranteed QoS: deterministic scheduling, no contention
n Flexible

n Runtime reconfiguration of cores and interconnect

n Power consumption
n Implement power saving features in both cores and interconnect
n Use reconfiguration to dynamically control power consumption
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aSoC: adaptive System on a Chip
n Tiled SoC architecture
n More than one tile can be 

allocated to a single core
n Direct network

n Near neighbor 
communication

n Routing logic in corners

DCT

VLE

MemoryViterbiFIR

EncryptControl

Motion Estimation
and Compensation
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Example: Stream
Stream A-D

CBA

West to Core

1

3

2

Core to East

West to East
Loop
Back
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Critical analysis
n Tile-based architecture not well-suited 

to heterogeneous platforms
n Static scheduling implies very rigid 

communication patterns
n Underutilization of resources
n Sporadic traffic is hard

n Not really for general purpose 
computation & communication
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Æthereal: context
n Consumer electronics

n reliability & predictability are essential
n low cost is crucial
n time to market must be reduced

n NoC offer differentiated services
n to manage (and hence reduce) resources
n to ease integration (and hence decrease TTM)
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Æthereal: features
n Conceptually, two disjoint networks

n a network with throughput+latency guarantees (GT)
n a network without those guarantees (best-effort, BE)

n Several types of commitment in the network
n combine guaranteed worst-case behaviour

with good average resource usage

priority/arbitration

best-effort
router

guaranteed
router

programming
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Router architecture
n Best-effort router

n Worm-hole routing
n Input queueing
n Source routing

n Guaranteed throughput router
n Contention-free routing

n synchronous, using slot tables
n time-division multiplexed circuits

n Store-and-forward routing
n Headerless packets

n information is present in slot table
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Contention-free routing

n Latency guarantees are easy in circuit 
switching

n Emulate circuits with packet switching
n Schedule packet injection in network

such that they never contend for same 
link at same time
n in space: disjoint paths
n in time: time-division multiplexing
n or a combination
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router 1

router 3

router 2network
interface
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CFR setup
n Use best-effort packets to set up connections

n set-up & tear-down packets like in ATM (asynchronous transfer mode)

n Distributed, concurrent, pipelined
n Safe: always consistent
n Compute slot assignment compile time, run time,

or combination
n Connection opening is guaranteed to complete

(but without a latency guarantee)
with commitment or rejection
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Router implementation

n Memories (for packet storage)
n Register-based FIFOs are expensive
n RAM-based FIFOs are as expensive

n 80% of router is memory

n Special hardware FIFOs are very useful
n 20% of router is memory

n Speed of memories
n registers are fast enough
n RAMs may be too slow
n Hardware FIFOs are fast enough

iqu iqu

iquiqu

switch

iqu

iqu

msu

stu

routers based on
register-file and hardware fifos

drawn to approximately
same scale (1mm2, 0.26mm2)
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Layout

…

X

BQ

GQ

…

slot table arbiter

reconfiguration logic

programming
packets

BQ

GQ flow
control

data
packets

BQ

GQ
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Results
n 5 input and 5 output ports (arity 5)
n 0.25 mm2 CMOS12
n 500 MHz data path, 166 MHz control path
n flit size of 3 words of 32 bits
n 500x32 = 16 Gb/s throughput per link, in each direction
n 256 slots & 5x1 flit fifos for guaranteed-throughput traffic
n 6x8 flit fifos for best-effort traffic
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Xpipes: context
n Typical applications targeted by SoCs

n Complex
n Highly heterogeneous (component specialization)
n Communication intensive

n Xpipes is a synthesizable, high performance, 
heterogeneous NoC infrastructure

Task1 Task2 Task4

Task3

SB

Task5

P1(T1) P4(T4)

P3(T3) P5(T5)

NI

NINI

NI

L1

Application mapping
(custom, domain-specific)
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Heterogeneous topology

SoC component specialization leads to the integration of 
heterogeneous cores

Ex. MPEG4 Decoder

§ Non-uniform block sizes
§ SDRAM: communication  

bottleneck
§ Many neighboring cores     

do not communicate

§ Risk of under-utilizing many tiles and links
§ Risk of localized congestion

On a homogeneous fabric:
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Example: MPEG4 decoder 
n Core graph representation with annotated 

average communication requirements
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NoC Floorplans

General purpose: mesh

Application Specific 
NoC1 (centralized)

Application Specific 
NoC2 (distributed)
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Performance, area and power

n Relative link utilization
(customNoC/meshNoC):
1.5, 1.55

n Relative area
(meshNoC/customNoC):
1.52, 1.85

n Relative power
(meshNoC/customNoC):
1.03, 1.22

Less latency and better
Scalability of custom NoCs
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Xpipes: features
n Source based routing

n Very high performance switch design
n Wormhole switching

n Minimize buffering area while reducing latency
n Pipelined links 

nLink data introduction interval is not bound by wire delay
nLink-latency (# of repeater stages) insensitive operation

n Parameterizable network building blocks 
nPlug-and-play composable for arbitrary network topology
nDesign time tunable buffer size, link width, virtual channels, 
 # of switch I/Os

n Standard OCP interface
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Link delay bottleneck

n Wire delay is serious concern for NoC Links
n If NoC “beat” is determined by worst case link 

delay, performance can be severely limited

ð Pipeline links
n Delay is transformed in Latency
n Data introduction speed is not bound by link delay 

any longer!
L
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Xpipes Switch soft IP

Crossbar

Allocator
Arbiter

§ Output Buffering
ü Dual ported memory bank, purposes:

1. Buffering for performance (tunable area/speed tradeoff)
2. Error recovery on NACK

§ Tuned for pipelined unreliable links

§ ACK/NACK flow control
§ 2-stages pipeline
§ High speed (1GHz @ 130nm)
§ Wormhole switching
§ Arbitration: fixed priority, RR
§ Source-routing
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nACK and buffering

nACK/NACK propagation
nMemory deallocation

nNACK

nRetransmission
nGo-back-N

nTransmission

Flow control
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Xpipes Network Interface Soft IP
Transaction centric Network protocol

Open Core Protocol (OCP):
§ End-to-end communication protocol 
§ Independence of request/response phases
§ Can be tailored to core features
§ Support for sideband signals (e.g., interrupts)
§ Efficient burst handling
§ Supports threading extensions
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Xpipes packeting mechanism
Header register (about 50 bits): one for every transaction

OCP
from MAddr, after LUT

Flit decomposition 

OCP

Payload register: one for every burst beat

1st beat
of a burst read

Flit decomposition 
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Xpipes design challenges

n The fight against latency: multi-hop topologies are 
at a disadvantage
n Low number of stages per hop
n Overclock the network

n Minimize the price for flexibility
n Synthesis-aware design
n Use specialized leaf cells
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NoCs at work: cross-
benchmarking

AMBA Topologies

P0 P1 P2 P8

M0 M1 M2 M8

Shared bus Multilayer (crossbar)

A B C

Processors

Private memories Shared slaves
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Topologies under test
Xpipes topologies

Crossbar-like Mesh

P0

P1

P2

P8

M0

M1

M2

M8

A B C

19x19 single switch

P0

M0

P1

M1 M2 M3

M4 M5 M6 M7

A B C

P2 P3

P4 P5 P6 P7
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Benchmark execution time

n AHB Shared: 
saturated with 8P

n AHB ML: best case 
(full crossbar, no 
arbitration latency)

n Xpipes: good
performance due to 
available bandwidth,
despite packeting 
latency penalty
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xpipes crossbar

xpipes mesh
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Scalability results
Paralle l Bench Scalability
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n Xpipes crossbar scales as AHB ML
n Xpipes mesh scales almost as well (yet, distributed topology!)
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Latency analysis

n Burst reads: to 
private memories

n Xpipes latency is 
the target for
performance   
optimization!!
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Latency analysis

n Single reads: to
shared memory
n Xpipes mesh
scales worse than
the crossbar due
to link congestion
and more hops

Contention Bench Single  Read Late ncy
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Xpipes area/frequency

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

16 32 64 128

Flit width

A
re

a 
(m

m
2) Initiator NI

Target NI

4x4 switch

6x4 switch

A 3x4 Xpipes mesh with 8 processors and 11 slaves
consumes ~2,6 mm2

0.13 um technology, 4-flit output buffers
§ Initiator NI:

1 GHz

§ Target NI:
1 GHz

§ 4x4 switch:
1 GHz

§ 6x4 switch:
875-980 MHz
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NoC synthesis flow

In cooperation with Stanford Univ.

SUNMAP

Power  Lib

Area Lib

Floor-
planner

xpipes
Library

xpipes
Compiler

SystemC
Design

Simu-
lation

Mapping
Onto

Topologies
Topology
Selection

Topology
Library

Routing
Function

Co-Design

Appln
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Topology mapping (SUNMAP)

Heuristic approach with several phases

Initial mapping using a greedy algorithm (from communication graph)

1. Compute optimal routing (using flow formulation)

2. Floorplan solution

3. Check area and bandwidth constraints

4. Compute mapping cost

Iterative improvement loop (Tabu search)

Allows manual and interactive topology creation

L. Benini 2004 130

Topology instantiation
(XpipesCompiler)

XpipesCompiler

NoC specification Routing tables Xpipes components

§ Parsing specification (tree structure)
§ Create a class template for each type of network component
§ Components optimizations (I/O ports, buffer sizing)
§ Hierarchical instantiation of the system (sc_main)
§Synthesis view
§Simulation view
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Synthesis back-end
n Fully synthesizable soft IPs

n Compatible with state-of-the art design 
implementation flows

Switch layout
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Area vs. 
frequency
tradeoff
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Outline
n Introduction and motivation

n Physical limitations of on-chip interconnect
n Communication-centric design

n On-chip networks and protocols
n Designing NoCs
n NoCs case studies

n Software aspects of on-chip networks
n Programming abstractions, OS, software 

development toolkits
n Quantitative analysis
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Programming for NoCs

n The programmer model
n Sequential: no parallelism is exposed to the 

programmer
n Parallel: multiple threads/tasks 

n Shared memory: communication is “implied” by shared 
memory access

n Message passing: communication is explicit in messages

n Parallelism extraction vs. parallelism support
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Sequential Programming Model
n Naming:  Can name any variable ( in virtual address 

space)
n Hardware (and perhaps compilers) does translation to physical 

addresses

n Operations: Loads, Stores, Arithmetic, Control
n Ordering:  Sequential program order
n Performance Optimizations

n Compilers and hardware violate program order without 
getting caught
n Compiler: reordering and register allocation
n Hardware: out of order, pipeline bypassing, write buffers

n Retain dependence order on each “location”
n Transparent replication in caches
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SM Programming Model
n Naming: Any process can name any variable in 

shared space
n Operations: loads and stores, plus those needed for 

ordering
n Simplest Ordering Model: 

n Within a process/thread: sequential program order
n Across threads: some interleaving (as in time-sharing)
n Additional ordering through explicit synchronization

n Can compilers/hardware weaken order without 
getting caught?
n Different, more subtle ordering models also possible
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MP Programming Model
n Naming: Processes can name private data directly.  

n No shared address space
n Operations: Explicit communication through send and receive

n Send transfers data from private address space to another process
n Receive copies data from process to private address space

n Must be able to name processes
n Ordering: 

n Program order within a process
n Send and receive can provide pt to pt synch between processes

n Mutual exclusion inherent + conventional optimizations legal
n Can construct global address space:

n Process number + address within process address space
n But no direct operations on these names
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The Case for Message Passing
n MP exposes communication

n Eases taking into account communication costs at 
the application level

n Better control and predictability

n MP is scalable
n Current specification styles (e.g., DSP) match 

MP abstraction
n Achieves higher performance
n Programming/porting harder  starting from

single-thread computation
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NoC Message Passing
Applications

Abstract Parallel architecture

T1T1

T2T2 T3T3

BB

EE

PEPE

PEPE

NoC

PEPE

MM

MM

IOIO

n How much HW detail?
n E.g. exposing network latency?

n How much control?
n E.g. Guaranteed QoS of Best 

effort?

n Implicit vs. explicit traffic
n E.g. Instruction cache misses
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Middleware
n Traditional RTOSes

n Single-processor master
n Limited support for complex memory hierarchies
n Focused on performance

n The NoC Middleware
n Natively parallel & scalable
n Supports heterogeneous memory, computation, 

communication
n Energy/power aware
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Middleware Architecture
Applications

Application Libraries
Communication (MP), IO, Synch,

Domain specific computation

APIs

Kernel services
process, communication, power 

management

System Calls

Device drivers
Network interface, Coprocessor 
& Local Memory Management

HAL Calls

Hardware
Memory accesses Special instructions
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NoC API design
n Supporting explicit message passing
n High degree of control on performance

n Real-time requirements RT/MPI
n QoS, resource reservation

n Tailored for the target application & hardware
platform (generality vs. performance)
n Low memory usage
n High level of hardware support (software

emulation is slow)
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Kernel Design

n Task management (static and dynamic)
n Allocation 
n Scheduling
n Context switches

n Resource management
n Synchronization
n Fair allocation
n Power management

n Automatic application specific kernel generation
n Lightweight (low memory & resource usage)
n Fast & predictable
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Development Environment
n Software development environment

n Development tools
n Debug tools

n Target platform
n Simulation
n Emulation

n Access to middleware libraries
n Flexible for many  hardware platforms
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Architecture of DD tools

Software optimizers (S2S)
parallelization, DTSE, Stat-Schedule

Specification and development
graphical environments, CASE tools

Executable generation
(cross) compiler, linker, assembler

Simulation, Debug, Tuning
mpsimulator, debugger, profiler

Source code

Source code

Binary code
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Example: Daytona SDE 

 [Kalawade DAC99] 

Algorithm design environment
Ptolemy/SPW/Matlab

Dynamic Scheduling Environment
Run-time kernel (low-overhead

preemptive, multiprocessor,
guarantees performance)

Static Scheduling Environment
Parallelizing tools

Performance estimation
Evaluate schedulers

Select scheduling policy
Set application priorities

Module design environment
Compiler & Assembler

Simulation and Debugging
Simulagtor
Debugger

Profiling tools

Static ApplicationsModule lib.Dynamic application set
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Outline

n Introduction and motivation
n Physical limitations of on-chip interconnect
n Communication-centric design

n On-chip networks and protocols
n Designing NoCs
n NoCs case studies

n Software aspects of on-chip networks
n Programming abstractions, OS, software 

development toolkits
n Quantitative analysis
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Traffic Modeling

n Stochastic traffic models
n Analytical distributions
n Easily parameterizable

n Trace-based models
n Higher accuracy
n Does not consider dynamic traffic-dependent effects
 (e.g. inter-processor communication)

n Functional traffic
n Traffic directly generated by running applications 
n Requires OS support Complexity

Accuracy

Traditionally used traffic models trade-off accuracy with complexity:
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MPARM Architecture

INTERCONNECTION

ARM ARM INTERRUPT
CONTROLLER

PRI MEM 4 SHARED 
MEM SEMAPHORES

ARM ARM

PRI MEM 3PRI MEM 2PRI MEM 1

STbusor   AMBA or Xpipes
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Approach to 
design space analysis

§ Exploring of meaningful points in the design space
Ø Modelling accuracy emphasized

§ Power and performance analysis for different:
Ø Classes of applications (computation vs communication dominated)
Ø Software architectures (stand-alone vs OS supported appln)
Ø System configurations (cache size, memory latency, ..)

Communication Architecture Design Space

Shared bus
(AMBA) Evolutionary arch.

(STBUS)

Advanced NoC arch.
(Xpipes)
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Latency breakdown

Sender

Receiver

Sender
Overhead

Transmission time
(size ÷ bandwidth)

Transmission time
(size ÷ bandwidth)

Time of
Flight

Receiver
Overhead

Transport Latency

Total Latency = Sender Overhead + Time of Flight + 
Message Size ÷ BW + Receiver Overhead

Total Latency

(processor
busy)

(processor
busy)
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Basic architecture

MMU
I/D Cache

IN
T

E
R

C
O

N
N

E
C

T
IO

N

ARM 
Core

S
H

A
R

E
D

 
M

E
M

Processor tile
#1

S
E

M
A

P
H

O
R

E
S

MMU
I/D Cache

ARM 
Core

Processor tile
#N

Producer

Consumer

L. Benini 2004 152

Support for message passing

MMU

I/D Cache

SPM
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HW support for MP: results
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Send+Receive cost: 35KCycles (basic architecture) vs. 4KCycles (MP support)
Configuration: 4 Processors, Shared bus

L. Benini 2004 154

ARM CoreARM CORE

Support for UMA

CACHE

BUS*

SNOOP
DEVICE

Invalidate/Update

Address and Data

Processor tile
#1

*cannot be a generic interconnect!
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Summary

n Paradigm shift towards NoCs
n Designing NoCs

n Huge design space
n Unclear if there is a winner
n Research will solidify soon

n Hardware/software interfaces is 
currently the main bottleneck


