Software Performance
Esti matlon by Statlc AnaIyS|s

Presented by : Robert Nilsson

References are available at the hw/sw
co-design course web page

Outline

Introduction and problem description
Basic WCET estimation technigues

Path Clustering and architecture classification
— SFP / MFP - analysis

Instruction cache modeling

— direct memory mapped caches

Pipelined architectures ?

| ntroduction

m Real-time systems need to guarantee
timeliness

m Scheduling analysis assume known wcet of
tasks
— to predict worst case response times

— also bcet (best-case execution times) relevant in
some systems

m Useful during hw/sw codesign decision to
map functions to resources

| ntroduction

m Worst case execution time analysis must be
conservative

— correctness (safety) vs. resource usage issue

m The execution time of a program depends on
— program path
« data dependent

— computer architecture properties
* e.g. caches, pipelines, etc

- Problems

= Program path analysis is in general an undecidable
problem
— E.g. unbounded loops, recursive function calls

— Even if such constructs are prohibited the number of
program paths grows aggressively with

* nested loops
* branches in loops

= Difficult to model complex microarchitectures
— E.g. caches, branch prediction, superscalar processors

— Too expensive to neglect the impact of hardware properties
e very pessimistic estimations - large resource waste

Program path analysis techniques

Program code is classified into basic blocks

— a program segment which is only entered at the first
statement and only left at the last statement

The basic blocks represents nodes in the program
flow graph

program paths are determined by traversing the flow
graph from start block to end block

— feasible paths can occur during execution

— false paths can never occur during execution

We need clever ways to classify paths !

Program path classification
- techniques

= loop annotation required for all loops
— puts a on bound the number of program paths

= manually identification of classes of “false
paths”

= implicit path enumeration
— linear equations are used to specify constraints
between blocks execution

e e.g. X1 £ x2 means block x1 is executed at most as often
as x2

— —> Integer linear programming optimization problem
- e.g. simplex algorithm

Basic block timing analysis

m The actual execution times for a basic block
IS acquired trough :

— Instruction timing addition (ITA)

« execution time of instructions are added
— number of processor cycles for each instruction

— Path segment simulation (PSS)

» a cycle true processor model is used to simulate the
execution of the basic block (or a path segment)

Architectural properties and time
analysis

m Data dependent instruction execution times

— hard for simulators to guarantee accurate timing
— ITA could be used (using worst-case)

m Pipelined architectures

— PSS must assume worst-case behavior on block boundaries
— ITA cannot anticipate pipeline hazards

m Superscalar architectures

— ITA is completely inappropriate if it does not model
Instruction scheduling

Architectural properties and time
analysis, cnt.

m Program (instruction) caches

— PSS can be exact for program caches since the cache is
simulated

» Wworst case must be assumed at block boundaries
« Better estimations if the blocks are big

— |ITA does not cover caches
 need a method to model cache-hits and cache misses
m Data caches

— PSS is precise if the same data variables always are
accessed in a block

— Same properties as program caches

- Execution time models

m Simplest is sum-of-basic-blocks model

— each basic block has an associated constant
execution time

= In many architectures this is not realistic

— data dependent instruction execution times
— overlapped basic block execution

R - Different sequences of basic blocks (path
segments) gives different execution times
e sequences-of-basic-blocks model needed

Program partitioning

= Analysis of sequences-of-basic-blocks model
require exhaustive path analysis in the worst case
—>we're in trouble !

m Analysis is simplified if the program path is
iIndependent of input data
— always get the same sequence of basic blocks
— common in e.g. signaling processing applications
— single feasible path (SFP) property

= However, most practical programs have at least
some parts where the program path depends on
Input variables
— multiple feasible paths (MFP) property

Symbolic hybrid timing analysis
method

m R. Ernst, W.Ye (1997)

= Aim to partition the program in parts with the SFP
and MFP properties

m “Hierarchal flow graph clustering” can be used for the
partitioning
— control constructs are hierarchical nodes
— basic blocks are leaf nodes

» Basic blocks are SFP by definition

* A hierarchical node is SFP if
— it only contain SFP nodes
— its associated condition is independent of input data

’
B

Hierarchical flow graph
clustering example

for (i=0;i<14;i++)
for (j=i+1;j<15;j++)
i{f (alil<a[i])

tmp=a[i};
a[i]=a[j];
a[j]=tmp;

Cut Point

- Global timing analysis

m For each SFP block, the execution time is
determined.
— using PSS or ITA as appropriate for the architecture
— assuming worst-case behaviors at “cut-points”

m The resulting execution times for the SFP blocks are
summarized

m For the remaining MFP parts, worst-case behavior is
o acquired
— using for example a Integer Linear Programming approach

— a pessimistic constant cost for each basic block in the
reduced flow graphs

= A tool was implemented for supporting the SYMTA

approach
= Set of example programs
was used

= Two architectures

— superscalar SPARC

with 4-stage pipelines SFP / MFP clustering
— Intel 8051
user equations program PSS,
I TA+profiling

time bounds

Experimental results

Programs Total [Nodes " Nodes } Source l
| [nodes in SFP in MFP lines
'_Eﬁ-ima.ge 94 85 90%) lﬂ;f_l 164
diesel 656 1 65 | 100% | © 0 160

K 78 | 78 | 100% | O 0% 145 |
" bsort 14 8 57% 6 43% 25
smooth 48 | 39 | 81% 9 19% 86
blue 80 53 66% | 27 | 34% 127
check-data 18 | 0 ﬂ% [18 Iﬂﬂgn | 44
whetstone 122 | 122 100 0 ﬂ_?_ 251
ine 101 19 | 19% | 82 | 8i% 250

key3 100 (100 [100% | O | 0% | 151 |

Table 1: Experimental results for the Clustering

- Experimental results

Measured bounds{cycles] | Analyzed bounds{cycles) | Analysis time*
Programs m BCET | WE]E_T ! (sec)
SPARC
| 30-Tmage 34908 37848 33874 38037 0.79 |
diesel 62044 B2a9q BL445 GRERK] G.84
[t 1498817 1499176 14594650 14989290 13569
ort, 4423 5038 4423 82038 0.34
smooth 3635651 4846511 | 3570227 | 4881135 304,90
lue 3564938 16865761 3345041 346641760 4325.23
check-data 50 431 65 435 0.23
whetstone || 2028450 | 3360450 | 2880240 | 3378008 208.19 |
line B4 1619 381 2035 0.3
~ 8061
fit 26421460 26421460 | 26419338 264858288 0.23
Bsort 15045 T804 18167 0.12
smooth 09737378 | 0737516 | 0737469 O737622 0.23
key3 1218229 1223314 | 1164883 | 1265227 0.39 |
check-data o8 43 kK] “EAR 0.17 |

* The example programs have been analyzed on the SPARC 10 workstation.
** WCET: The worst case execution time; BOET: The best case execulion time.

Table 2: Experimental results of the example programs in SYMTA

 Instruction Cache modeling

= Y-T.S Li,S. Malik. A Wolfe (1993)

= A method for getting tighter time estimations of
programs running on architectures with instruction
caches

m Cache memories are difficult to model and impose a
lot of pessimism If neglected

— direct mapped-instruction caches

. Program path analysisas ILP

m Program path analysis can be transformed into a ILP
problem using
— program structural constraints
» derived from program control flow graph (CFG)

— mprogram functionality constraints
e provided by the user
e e.g. specifies loop bounds

— Without cache modeling a constant instruction execution
time is assumed, hence;

N c = execution time for basic block

Execution_time= g ¢ x | _
o X = execution count for basic block

i=1
| H

y
. xi|B s - ki

structural constraints Y PR
§ d1=1 . | B2 while(k<10)
HH 1= r_____:,_ii_.

X2 = d2 + d8 = d3 +d9 By if(ok) |

X3 = _ 46 | {iy Ej _] -l |
X4 = :g : 47 x| Ba 3 bk +3 ck=true; |

zz _ d6 + d7 = d8 | ﬂ’ﬁ___ __x i

2 Y

O

ol r - i |
B T
“ {

Program path analysis example
IR o

m functional constraints xi|Bi g = k;
Y4 s
0x1 £ x3 £ 10 x1 2| B2 while(k<10) [+
,___:_r_m_
e
iy 5
Xo| Ba quu; | x5 bl
| ‘ ok=true;
= All these constraints | "’ﬁl__ X i
are passed to the ILP- g e Be yis:
solver \ 2 <

- :

i :HT’__I" =
{d“]

Direct mapped Instruction caches

m the code in basic blocks are divided into a number of
line-blocks

m the line blocks are assigned to cache lines
— cache sets (cache lines) represent physical cache memory

|
DAY oo
Ty S
L /’% “ [TT] 2 -CacheSet Basic Block
_________________ ey B 3 0 8, B3] 5.,
o I 5[] [B4] 5.,
k 2 8.[B] [B) 5.,

=7 3 By,
(i) CFG (ii) Cache table

m Now execution times of basic blocks differ if the line-
blocks are Iin the cache or not

N N
) . _ o0 o hit hit miss mi
Execution_time= al al(Q’j Xii+GC X’f)
=1 j=
| = dl basic blocks
a basic block becomes x™ = number of cache hits
hit miss X™* = number of cache misses

miss

C = execution time of cache miss

= Mt ™ |
NN ¢ = execution time for cache hit
m j=12..n

. Cache constraints

m There are three possible types of cache assignments
that can occur

— Only one line-block assigned to a cache line
 when a miss occurs, the line-block will be loaded and no more

cache misses will occur Xk Mmiss £ 1

— Two or more nonconflicting line-blocks are assigned to the
same cache line

 when a miss occurs in either block, the line-blocks will be
loaded and no more cache misses will occur

)<1m3ISS m| SS £ 1

— a cache line contains two or more conflicting line-blocks

Cache conflict graphs

m s and e nodes represents the start and the end of the program respectively
m B — nodes represent conflicting line-blocks

m Edges represent
possible program
flow between blocks

— acquired from
program cfg

fjl,'s.m.u}
F[m.n Jina)

m p(nodel, node?2)
IS a counter
associated with
each edge

Constraints on cache conflict
graphs

m The counters (p) are bound to the structural and
functional constraints trough the x variables

— the execution count of a line-block must be equal to the
execution count of the basic block

— the control flow to a line-block node must be equal to the
flow from the line-block node

X =& p(uv,i.j)=a p(i.j,uv)

L oops and cache constraints

I
ﬂﬂ’h.l.l) Pty
[i
Prai 4.y P

S

& {} ’
‘ ‘ Bikia P
) Xy

i o

p(s,7.0) + p(4.1) £ x

Experiments

m Intel QT960
— 32 x 16 bytes direct-mapped instruction cache

m Execution times are assigned statically to line-blocks hits and misses

m tool, called “cinderella” was implemented
— generate CFG
— generates CCG
— output structural constraints
— ask user for loop bounds and other optimization constraints
— used in conjunction with public domain ILP-solver

m Evaluation programs chosen so that worst-case input data was
available for measurement and comparison

-~ Experiments results
Table II. Estimated WCETSs of Benchmark Programs. Estimated WCETs and Measured
WCETSs In Units of Clock Cycles
Program Measured WCET Estimated WCET Ratio
H ‘ check data 4.30 x 10% 4.91 x 10? 1.14
circle 1.45 x 10* 1.564 x 10¢ 1.06
des 2.44 x 108] 108 1,62
dhry 76 x 10° i 108 1.31
dipeg 56 x 107 : 107 1.98
fdct
line
matccnt
matcnt2
piksrt

.70 %
5 787 x
a.6 7.04 X
9.05 x 10° 9.11 % 10° 1.01
2.20 % 10° 2.63 % 10° 1.20
4.84 x 10° 6.09 x 10° 1.26
2.20 x 10° 5.46 x 10°% 2.48
1.86 x 10° 2.11 x 10*° 1.13
1.71 x 102 1.74 % 10° 1.02
9.99 x 10° 27.8 x 10° 2.78
sort2 6.76 x 10° 7.09 x 10°% 1.05
stats 1.16 x 10° 2.21 x 10° 1.91
1.06 x 10° 1.24 % 109 1.17
6.94 % 10° 10.5 % 109 1.51

t 2
m :h:::tnne
H

WCET analysis beyond direct
mapped Instruction caches

There are several variables which influence the complexity of
cache analysis

— number of competing line-blocks (m)
— cache associatity level (n)
— cache replacement method

For LRU (least recently used), the complexity grows as

By using a more detailed level of cache modeling better
estimations can be acquired, but the problem become
Intractable if programs are large

;oA
FE— === * g
SE——— —

100 100 200 480

5,00

prediction srror

- Some measurements

——| [ways cache - typa B

R e S P e
| i

| [direct mapped cache - typs A
| B direct mappoed cacha - tyjrs B

'

-

o
=

5 :-'._::::.?ii'; ... ::3'.;'&.-:::::" =

Fieaer 87

Anaysis of multi-issue Pipelines

m Previously we have assumed that no parallelism occur in the
processor

= If we can model the gain from instruction level parallelism we
can get a tighter WCET bound

= When introducing pipelines in our model, the execution time
depends on instruction scheduling

— the code provides data-dependencies and order between
instructions

— the “assignment” of instruction types to resource types needs to be
explicitly given

Modeling instruction level
schedules

m A processor Is said to have a set of resource types

For each resource types there are a set of instances of this
resource type

— e.g 2 floating point units

m The program consist of a queue of instructions (in basic block or
line-block)

— The priority of the instruction is set according to the order of the
program and data-dependecies

— if two instruction have no data-depencencies they can have the
same priority

.~ Pipdined architecture

instruction queue (in program order)

[e

= ¥ I ¥
wi] [w2]| |[Lsu FPU| |SRU
| [FPU |

BESE S S ey +

complation queue (in pmga'rﬁ order)
) - In unit
LSU - lo unit

FPU - fioating point unit
SRU - syslem resource unit

Simplified scheduling algorithm

m For each time unit

— for each resource type

 Determine set of instructions which can be executed at
this time-unit without violating data dependencies

 Determine which resource instances that can execute
instructions of this type at this time

 assign highest priority instructions to free resources
— Continue until all instructions are scheduled

Prediction gan

m The schedule gives the number of time units that are
required for executing the block (or the line-block if
caches are used)

25.-= r_1 - - - U i T T T e e ey e -~ |
i HE e i mskreoiinm cachee

2 ||_-|l.-||-ltl1 Imsirection ceache

0% Ji

prediction gain

I h
P “‘P*‘”"*‘?f s

Summary

Performance estimations neglecting processor
architectures are to pessimistic

Avoid explicit enumeration of execution paths
— Program partitioning
— implicit path enumeration - ILP problem

Cache modeling improve tightness considerable

— but for advanced cache models the complexity of analysis
explode

Pipeline schedule modeling
— Improves bound slightly
— Knowledge about instruction scheduling policy required

