
Software Performance
Estimation by Static Analysis

Presented by : Robert Nilsson

References are available at the hw/sw
co-design course web page

Outline

n Introduction and problem description
n Basic WCET estimation techniques
n Path Clustering and architecture classification

– SFP / MFP - analysis

n Instruction cache modeling
– direct memory mapped caches

n Pipelined architectures ?

Introduction

n Real-time systems need to guarantee
timeliness

n Scheduling analysis assume known wcet of
tasks
– to predict worst case response times
– also bcet (best-case execution times) relevant in

some systems

n Useful during hw/sw codesign decision to
map functions to resources

Introduction

n Worst case execution time analysis must be
conservative
– correctness (safety) vs. resource usage issue

n The execution time of a program depends on
– program path

• data dependent

– computer architecture properties
• e.g. caches, pipelines, etc

Problems

n Program path analysis is in general an undecidable
problem
– E.g. unbounded loops, recursive function calls
– Even if such constructs are prohibited the number of

program paths grows aggressively with
• nested loops
• branches in loops

n Difficult to model complex microarchitectures
– E.g. caches, branch prediction, superscalar processors
– Too expensive to neglect the impact of hardware properties

• very pessimistic estimations à large resource waste

Program path analysis techniques

n Program code is classified into basic blocks
– a program segment which is only entered at the first

statement and only left at the last statement

n The basic blocks represents nodes in the program
flow graph

n program paths are determined by traversing the flow
graph from start block to end block
– feasible paths can occur during execution
– false paths can never occur during execution

n We need clever ways to classify paths !

Program path classification
techniques
n loop annotation required for all loops

– puts a on bound the number of program paths

n manually identification of classes of “false
paths”

n implicit path enumeration
– linear equations are used to specify constraints

between blocks execution
• e.g. x1 ≤ x2 means block x1 is executed at most as often

as x2

à integer linear programming optimization problem
- e.g. simplex algorithm

Basic block timing analysis

n The actual execution times for a basic block
is acquired trough :

– Instruction timing addition (ITA)
• execution time of instructions are added

– number of processor cycles for each instruction

– Path segment simulation (PSS)
• a cycle true processor model is used to simulate the

execution of the basic block (or a path segment)

Architectural properties and time
analysis
n Data dependent instruction execution times

– hard for simulators to guarantee accurate timing
– ITA could be used (using worst-case)

n Pipelined architectures
– PSS must assume worst-case behavior on block boundaries
– ITA cannot anticipate pipeline hazards

n Superscalar architectures
– ITA is completely inappropriate if it does not model

instruction scheduling

Architectural properties and time
analysis, cnt.
n Program (instruction) caches

– PSS can be exact for program caches since the cache is
simulated

• worst case must be assumed at block boundaries
• Better estimations if the blocks are big

– ITA does not cover caches
• need a method to model cache-hits and cache misses

n Data caches
– PSS is precise if the same data variables always are

accessed in a block
– Same properties as program caches

Execution time models

n Simplest is sum-of-basic-blocks model
– each basic block has an associated constant

execution time

n In many architectures this is not realistic
– data dependent instruction execution times
– overlapped basic block execution
– ...
à Different sequences of basic blocks (path

segments) gives different execution times
• sequences-of-basic-blocks model needed

Program partitioning

n Analysis of sequences-of-basic-blocks model
require exhaustive path analysis in the worst case

àwe’re in trouble !

n Analysis is simplified if the program path is
independent of input data
– always get the same sequence of basic blocks
– common in e.g. signaling processing applications
– single feasible path (SFP) property

n However, most practical programs have at least
some parts where the program path depends on
input variables
– multiple feasible paths (MFP) property

Symbolic hybrid timing analysis
method
n R. Ernst, W.Ye (1997)

n Aim to partition the program in parts with the SFP
and MFP properties

n “Hierarchal flow graph clustering” can be used for the
partitioning
– control constructs are hierarchical nodes
– basic blocks are leaf nodes

• Basic blocks are SFP by definition
• A hierarchical node is SFP if

– it only contain SFP nodes
– its associated condition is independent of input data

Hierarchical flow graph
clustering example

i=0

i<14

j=i+1

j++

a[i]<a[j]

j<15

i++

tmp=a[i]
a[i]=a[j]
a[j]=tmp;

Global timing analysis

n For each SFP block, the execution time is
determined.
– using PSS or ITA as appropriate for the architecture
– assuming worst-case behaviors at “cut-points”

n The resulting execution times for the SFP blocks are
summarized

n For the remaining MFP parts, worst-case behavior is
acquired
– using for example a Integer Linear Programming approach
– a pessimistic constant cost for each basic block in the

reduced flow graphs

Experiments

n A tool was implemented for supporting the SYMTA
approach

n Set of example programs
was used

n Two architectures
– superscalar SPARC

with 4-stage pipelines
– Intel 8051

program

data flow analysis

SFP / MFP clustering

program PSS,
ITA+profiling

ILP analysis

user equations

time bounds

Experimental results

Experimental results

Instruction Cache modeling

n Y-T.S Li,S. Malik. A Wolfe (1993)
n A method for getting tighter time estimations of

programs running on architectures with instruction
caches

n Cache memories are difficult to model and impose a
lot of pessimism if neglected
– direct mapped-instruction caches

Program path analysis as ILP

n Program path analysis can be transformed into a ILP
problem using
– program structural constraints

• derived from program control flow graph (CFG)

– mprogram functionality constraints
• provided by the user
• e.g. specifies loop bounds

– Without cache modeling a constant instruction execution
time is assumed, hence;

i

N

i
ixctimeExecution ∑

=

=
1

_
c = execution time for basic block

x = execution count for basic block

Program path analysis example

n structural constraints
d1 = 1
x1 = d1 = d2
x2 = d2 + d8 = d3 +d9
x3 = d3 = d4+d5
x4 = d4 = d6
x5 = d5 = d7
x6 = d6 + d7 = d8
x7 =d9 = d10

Program path analysis example

n functional constraints

0 x1 ≤ x3 ≤ 10 x1

x5 ≤ 1 x1

...

n All these constraints
are passed to the ILP-
solver

Direct mapped Instruction caches

n the code in basic blocks are divided into a number of
line-blocks

n the line blocks are assigned to cache lines
– cache sets (cache lines) represent physical cache memory

Adding cache analysis to the ILP
model
n Now execution times of basic blocks differ if the line-

blocks are in the cache or not

n the execution count of
a basic block becomes

)(_
,,,

1
,

1
xcxc

miss

ji

miss

ji

hit

ji

N

i

hit

ji

n

j

i

timeExecution += ∑∑
= =

i = all basic blocks
j = all line blocks in block i

hitx = number of cache hits
= number of cache missesmissx

hitc = execution time for cache hit
= execution time of cache missmissc

miss
ji

hit
jii xxx ,, +=

j = 1,2... ni

Cache constraints

n There are three possible types of cache assignments
that can occur
– Only one line-block assigned to a cache line

• when a miss occurs, the line-block will be loaded and no more
cache misses will occur

– Two or more nonconflicting line-blocks are assigned to the
same cache line

• when a miss occurs in either block, the line-blocks will be
loaded and no more cache misses will occur

– a cache line contains two or more conflicting line-blocks

1. ≤miss
lkx

11.23.1 ≤+ missmiss xx

Cache conflict graphs

n s and e nodes represents the start and the end of the program respectively

n B – nodes represent conflicting line-blocks

n Edges represent
possible program
flow between blocks

– acquired from
program cfg

n p(node1, node2)
is a counter
associated with
each edge

Constraints on cache conflict
graphs
n The counters (p) are bound to the structural and

functional constraints trough the x variables
– the execution count of a line-block must be equal to the

execution count of the basic block
– the control flow to a line-block node must be equal to the

flow from the line-block node

∑∑ ==
vuvu

i vujipjivupx
..

).,.().,.(

Loops and cache constraints

5)1.4()1.7,(xpsp ≤+

Experiments

n Intel QT960
– 32 x 16 bytes direct-mapped instruction cache

n Execution times are assigned statically to line-blocks hits and misses

n tool, called “cinderella” was implemented
– generate CFG
– generates CCG
– output structural constraints
– ask user for loop bounds and other optimization constraints
– used in conjunction with public domain ILP-solver

n Evaluation programs chosen so that worst-case input data was
available for measurement and comparison

Experiments results

WCET analysis beyond direct
mapped instruction caches
n There are several variables which influence the complexity of

cache analysis
– number of competing line-blocks (m)
– cache associatity level (n)
– cache replacement method

n For LRU (least recently used), the complexity grows as

n By using a more detailed level of cache modeling better
estimations can be acquired, but the problem become
intractable if programs are large

∑
= −

n

i im
m

0)!(
!

Some measurements

Analysis of multi-issue Pipelines

n Previously we have assumed that no parallelism occur in the
processor

n If we can model the gain from instruction level parallelism we
can get a tighter WCET bound

n When introducing pipelines in our model, the execution time
depends on instruction scheduling
– the code provides data-dependencies and order between

instructions

– the “assignment” of instruction types to resource types needs to be
explicitly given

Modeling instruction level
schedules
n A processor is said to have a set of resource types

For each resource types there are a set of instances of this
resource type
– e.g 2 floating point units

n The program consist of a queue of instructions (in basic block or
line-block)
– The priority of the instruction is set according to the order of the

program and data-dependecies
– if two instruction have no data-depencencies they can have the

same priority

Pipelined architecture

Simplified scheduling algorithm

n For each time unit
– for each resource type

• Determine set of instructions which can be executed at
this time-unit without violating data dependencies

• Determine which resource instances that can execute
instructions of this type at this time

• assign highest priority instructions to free resources

– Continue until all instructions are scheduled

Prediction gain

n The schedule gives the number of time units that are
required for executing the block (or the line-block if
caches are used)

Summary

n Performance estimations neglecting processor
architectures are to pessimistic

n Avoid explicit enumeration of execution paths
– Program partitioning
– implicit path enumeration à ILP problem

n Cache modeling improve tightness considerable
– but for advanced cache models the complexity of analysis

explode

n Pipeline schedule modeling
– Improves bound slightly
– Knowledge about instruction scheduling policy required

