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1. A Quick Tour of Modelica
This is a short tour of the Modelica computer language that helps you getting started writing Modelica
code quickly, as well as explaining the fundamentals of Modelica component-based modeling. Modelica
is primarily a modeling language, sometimes called hardware description language, that allows you to
specify mathematical models of complex physical systems, e.g. for the purpose of computer simulation of
dynamic systems where behavior evolves as a function of time. Modelica is also an object-oriented
equation based programming language, oriented towards computational applications with high
complexity requiring high performance. The four most important features of Modelica are:

?  Modelica is based on equations instead of assignment statements. This permits acausal modeling that
gives better reuse of classes since equations do not specify a certain data flow direction. Thus a
Modelica class can adapt to more than one data flow context.

?  Modelica has multi-domain modeling capability, meaning that model components corresponding to
physical objects from several different domains such as e.g. electrical, mechanical, thermodynamic,
hydraulic, biological and control applications can be described and connected.

?  Modelica is an object-oriented language with a general class concept that unifies classes, generics —
known as templates in C++, and general subtyping into a single language construct. This facilitates
reuse of components and evolution of models.

?  Modelica has a strong software component model, with constructs for creating and connecting
components. Thus the language is ideally suited as an architectural description language for complex
physical systems, and to some extent for software systems.

This chapter gives a brief overview of the main points of the language, without slowing the reader with
the full details. Subsequent chapters contain detailed discussions of specific Modelica features

1.1  Getting started

Modelica programs are built from classes, also called models. From a class definition, it is possible to
create any number of objects that are known as instances of that class. Think of a class as a collection of
blueprints and instructions used by a factory to create objects. In this case the Modelica compiler and run-
time system is the factory.

A Modelica class contains elements, the main kind being field declarations, and equation sections
containing equations. Fields are data belonging to instances of the class; they make up the data storage of
the instance. The equations of a class specify the behavior of instances of that class.

There is a long tradition that the first sample program in any computer language is a trivial program
printing the string "Hello World". Since Modelica is an equation based language, printing a string does
not make much sense. Instead, our Hello World Modelica program solves a trivial differential equation:

x’ = -a * x

The variable x in this equation is a state variable that can change value over time. The derivative x' is the
time derivative of x. Since all Modelica programs, usually called models, consist of class declarations,
our Hello World program is declared as a class:
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class HelloWorld
Real x(start = 1);
parameter Real a = 1;

equation
der(x) = -a*x;

end HelloWorld;

Use your favorite text editor or Modelica programming environment to type in this Modelica code1. Then
invoke the simulation command in your Modelica environment. This will compile the Modelica code to
some intermediate code, usually C code, which in turn will be compiled to machine code and executed
together with a numerical ordinary differential equation (ODE) solver or differential algebraic equation
(DAE) solver to produce a solution for x as a function of time. The following command in the
MathModelica environment produces a solution between time 0 and time 2:

Simulate [HelloWorld, {t, 0, 2}]

Since the solution for x is a function of time, it can be plotted by a plot command:

PlotSimulation[HelloWorld.x[t], {t, 0, 2}]

giving the curve below:
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Figure 1.1– Plot of a simple simulation

Now you have a small Modelica model that does something, but what does it actually mean? The
program contains a declaration of a class called HelloWorld with two fields and a single equation. The
first field is the variable x which is initialized to a start value of 1 at the time when the simulation starts.
All variables in Modelica have a start attribute with a default value which is normally set to 0. Having a
different start value is accomplished by providing a so-called modifier within parentheses after the

                                                  
1 For example, there is one Modelica environment called MathModelica from MathCore, and another called Dymola
from Dynasim.
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variable name, i.e. a modification equation setting the start attribute to 1 and replacing the original default
equation for the attribute.

The second field is the variable a which is a constant that is initialized to 1 at the beginning of the
simulation. Such a constant is prefixed by the keyword parameter in order to indicate that it is constant
during simulation but is a simulation parameter that can be changed between simulations, e.g. through a
command in the simulation environment. For example, we could rerun the simulation for a different value
of a.

Also note that each variable has a type that precedes its name when the variable is declared. In this case
both the variable x and the variable a have the type Real.

The single equation in this example specifies that the time derivative of x is equal to –a multiplied by x.
In Modelica the equal sign = always means equality, i.e. an equation, and not an assignment statement as
in many other languages. Time derivative of a variable is indicated by the pseudo-function der( ).

1.1.1 Variables

The next example shows a slightly more complicated model, which describes a Van der Pol oscillator.
The example also contains declarations of a few dummy variables to illustrate the primitive data types in
Modelica. Notice that here the keyword model is used instead of class with the same meaning.

model VanDerPol  "Van der Pol oscillator model"
  Real x(start = 1)  "Descriptive string for x";  // x starts at 1
  Real y(start = 1)  "y coordinate";              // y starts at 1
  parameter Real lambda = 0.3;
  Boolean bb;
  String dummy = "dummy string";
  Integer fooint = 0;
equation
  der(x) = y;                           // This is the first equation //
  der(y) = -x + lambda*(1 - x*x)*y;     /* This is the second
                                           differential equation */
end VanDerPol;

This example contains declarations of two state variables x and y, both of type Real and having the start
value 1 at the beginning of the simulation, which normally is at time 0. Then follows a declaration of the
parameter constant lambda, which is a so-called simulation parameter.

The keyword parameter specifies that the variable is constant during a simulation run, but can have its
value initialized before a run, or between runs. This means that parameter is a special kind of constant,
which is implemented as a static variable that is initialized once and never changes its value during a
specific execution. A parameter is a constant variable that makes it simple for a user to modify the
behavior of a model, e.g. changing the parameter lambda which strongly influences the behavior of the
Van der Pol oscillator. By contrast, a fixed Modelica constant declared with the prefix constant never
changes and can be substituted by its value wherever it occurs.

Finally we have declarations of three dummy variables which are not really needed in the model of the
oscillator: the Boolean variable bb which has a default initial value of false if nothing else is
specified, the string variable dummy, and the integer variable fooint.
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Modelica has built-in "primitive" data types to support floating-point, integer, boolean, and string values.
These primitive types contain data that Modelica understands directly, as opposed to class types defined
by programmers. The type of every variable must be declared explicitly. The primitive data types of
Modelica are:

Boolean either true or false
 Integer corresponding to the C int data type, usually 32-bit two’s complement

Real corresponding to the C double data type, usually 64-bit floating-point
String string of 8-bit characters

Finally, there is an equation section starting with the keyword equation, containing two mutually
dependent equations that define the dynamics of the model.

To illustrate the behavior of the model, we give a command to simulate the Van der Pol oscillator during
25 seconds starting at time 0:

Simulate2[VanDerPol, {t, 0, 25}]

A phase plane plot of the state variables for the Van der Pol oscillator model:

ParametricPlot[Evaluate[{x[t], y[t]}],{t, 0, 25}]
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Figure 1.2 – Plot of the Van der Pol oscillator model

1.1.2  Comments

Arbitrary descriptive text, e.g. in English, scattered throughout a computer program, are comments to that
code. Modelica has three styles of comments, all illustrated in the above example. Comments makes it
possible to write descriptive text together with the code which makes it easier to understand for
programmers who may read your code in the future. That programmer may very well be yourself months
or years later. You save yourself future effort by commenting your own code. Also, it is often the case

                                                  
2 Simulate is the MathModelica notebook command for simulation.
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that you find errors in your code when you write comments since when explaining your code you are
forced to think about it.

The first kind of comment is a string within string quotes, e.g. "a comment", optionally appearing after
variable declarations or at the beginning of class declarations. Those are “definition comments” that can
be present at Modelica class or variable definitions, and are processed to be used by the Modelica
programming environment, e.g. to appear in menus or as help texts. From a syntactic point of view they
are not really comments since they are part of the language syntax. In the previous example such
definition comments appear for the VanDerPol class and for the x and y variables.

The other two types of comments are ignored by the Modelica compiler, and are just present for the benefit of the
Modelica developer. Text following // up to the end of the line is skipped by the compiler, as is text between /*
and the next */. Hence the last type of comment can be used for large sections of text that occupies several lines.

1.1.3  Constants

Constant literals in Modelica can be integer values such as 4, 75, 3078; floating-point values like
3.14159, 0.5, 2.735E-10, 8.6835e+5; and string values such as "hello world", "red".

Named constants are preferred by programmers for two reasons. One reason is that the name of the
constant is a kind of documentation that can be used to describe what the particular value is used for. The
other, perhaps even more important reason, is that a named constant is defined at a single place in the
program. When the constant needs to be changed or corrected, it can be changed in only one place,
simplifying program maintenance.

Named constants in Modelica are created by using one of the prefixes constant or parameter in
declarations, and providing a declaration equation as part of the declaration. For example:

constant  Real    PI=3.141592653589793;
constant  String  redcolor = "red";
constant  Integer one = 1;
parameter Real    mass = 22.5;

Parameter constants can be declared without a declaration equation since their value can be defined, e.g.
by reading from a file, before simulation starts. For example:

parameter Real mass, gravity, length;

If a numeric variable lacks a specified definition value in its declaration, it is initialized to zero at the start
of the simulation. Boolean variables are initialized to false, and string variables to the empty string if
nothing else is specified. Exceptions to this rule are function results and local variables, where the default
value is undefined.

1.2  Object-Oriented Mathematical Modeling

Traditional object-oriented programming languages like Simula, C++, Java, and Smalltalk, as well as
procedural languages such as Fortran or C, support programming with operations on stored data. The
stored data of the program includes variable values and object data. The number of objects often changes
dynamically. The Smalltalk view of object-orientation emphasizes sending messages between
(dynamically) created objects.
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The Modelica view on object-orientation is different since the Modelica language emphasizes structured
mathematical modeling. Object-orientation is viewed as a structuring concept that is used to handle the
complexity of large system descriptions. A Modelica model is primarily a declarative mathematical
description, which simplifies further analysis. Dynamic system properties are expressed in a declarative
way through equations.

The concept of declarative programming is inspired by mathematics where it is common to state or declare what
holds, rather than giving a detailed stepwise algorithm on how to achieve the desired goal as is required when
using procedural languages. This relieves the programmer from the burden of keeping track of such details.
Furthermore, the code becomes more concise and easier to change without introducing errors.

Thus, the Modelica view of object-orientation, from the point of view of object-oriented mathematical
modeling, can be summarized as follows:

?  Object-orientation is primarily used as a structuring concept, emphasizing the declarative structure
and reuse of mathematical models.

?  Dynamic model properties are expressed in a declarative way through equations.

?  An object is a collection of instance variables and equations that share a set of stored data.

?  Object-orientation is not viewed as dynamic message passing.

The declarative object-oriented way of describing systems and their behavior offered by Modelica is at a
higher level of abstraction than the usual object-oriented programming since some implementation details
can be omitted. For example, you do not need to write code to explicitly transport data between objects
through assignment statements or message passing code. Such code is generated automatically by the
Modelica compiler based on the given equations.

Just as in ordinary object-oriented languages classes are blueprints for creating objects. Both variables
and equations can be inherited between classes. Function definitions can also be inherited. However,
specifying behavior is primarily done through equations instead of via methods. There are also facilities
for stating algorithmic code including functions in Modelica, but this is an exception rather than the rule.

1.3  Classes and Instances

Modelica, like any object-oriented computer language, provides the notions of classes and objects, also
called instances, as a tool for solving modeling and programming problems. Every object in Modelica has
a class that defines its data and behavior. A class has three kinds of members:

?  Fields are data variables associated with a class and its instances. Fields store results of computations
caused by solving the equations of a class together with equations from other classes. During solution
of time dependent problems, the fields store results of the solution process at the current time instant.

?  Equations specify the behavior of a class. The way in which the equations interact with equations
from other classes determines the solution process, i.e. program execution.

?  Classes can be members of other classes.

Here is the declaration of a simple class that might represent a point in a three-dimensional space:

class Point "point in a three-dimensional space"
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  public Real x;
  Real y, z;
end Point;

The Point class has three fields representing the x, y, and z coordinates of a point and has (as yet) no
equations. A class declaration like this one is like a blueprint that defines how instances created from that
class looks like, as well as instructions in the form of equations that define the behavior of those objects.

Members of a class can have two levels of visibility. The public declaration of x, y, and z, which is
default if nothing else is specified, means that any code with access to a Point instance can read or
update those values. The other possible level of visibility, specified by the keyword protected, means
that only code inside the class as well as code in classes that inherit this class, are allowed access.

Note that an occurrence of one of the keywords public or protected means that all member
declarations following that keyword assume the corresponding visibility until another occurrence of one
of those keywords.

1.3.1 Creating Instances

In Modelica, objects are created implicitly just by declaring instances of classes. This is in contrast to
object-oriented languages like Java or C++, where object creation is specified using the new keyword.
For example, to create three instances of our Point class we just declare three variables of type Point:

class mypoints
  Point  point1;
  Point  point2;
  Point  point3;
end mypoints;

There is one remaining problem, however. In what context should mypoints be instantiated, and when
should it just be interpreted as a library class not to be instantiated until actually used?

This problem is solved by regarding the “last” class in a Modelica program as a kind of “main” class that
is always instantiated, implying that its fields are instantiated, and that the fields of those fields are
instantiated, etc.Therefore, to instantiate mypoints, either make the class mypoints the last class or
declare an instance of mypoints in the last class. In the following example, both the class mypoints
and the class foo1 are instantiated. Strictly speaking, this “main” class actually does not need to be last
since Modelica allows using a class before it is declared; it just needs to be at the top of the instantiation
hierarchy in the Modelica program to be executed.

class foo1
...
end foo1;

class foo2
...
end foo2;
...

class mypoints
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  Point  point1;
  Point  point2;
  Point  point3;
end mypoints;

class main
  mypoints  pts;
  foo1      f1;
end main;

The fields of Modelica classes are instantiated per object, i.e. a field in one object is distinct from the
field with the same name in every other object instantiated from that class. The notion of class variables,
i.e. variables specific to the class as opposed to instances of the class, and shared among all objects of that
class, is not yet available in Modelica.

1.3.2 Initialization

Another problem is initialization of the fields. If nothing else is specified, the default start value of all
numerical variables is zero, apart from function results and local variables where it is unspecified. Other
start values can be specified by setting the start attribute of instance variables. For example, a start value
can be specified in the class mypoints:

class mypoints
  Point  point1(start={1,2,3});
  Point  point2;
  Point  point3;
end mypoints;

Alternatively, the start value of point1 can be specified when instantiating mypoints as below:

class main
  mypoints  pts(point1.start={1,2,3});
  foo1      f1;
end main;

1.3.3 Restricted Classes

The class concept is fundamental to Modelica, and is used for a number of different purposes. Almost
anything in Modelica is a class. However, in order to make Modelica code easier to read and maintain,
special keywords have been introduced for specific uses of the class concept. The keywords model,
connector, record, block, and type can be used instead of class under appropriate conditions.
For example, a record is a class used to declare a record data structure and may not contain
equations. A block is a class with fixed causality, i.e. each variable in its interface must have been
declared with causality equal to input or output. A connector class is used to declare the structure
of “ports” or interfacing points of a component and may not contain equations. A type is a class that can
be an alias or an extension to a predefined type, record or array. For example:

type vector3D = Real[3];
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record person
  Real age;
  String name;
end person;

Since restricted classes are just specialized versions of the general class concept, these keywords can be
replaced by the class keyword for a valid Modelica model without changing the model behavior.

The idea of restricted classes is beneficial since the modeler does not have to learn several different
concepts, except for one: the class concept. All properties of a class, such as the syntax and semantics of
definition, instantiation, inheritance, and generic properties are identical to all kinds of restricted classes.
Furthermore, the construction of Modelica translators is simplified because only the syntax and semantics
of the class concept has to be implemented along with some additional checks on restricted classes.

The package and function concepts in Modelica have much in common with the class concept but
are not really restricted classes since these concepts carry additional special semantics of their own.

1.3.4 Reuse of Modified Classes

The class concept is the key to reuse of modeling knowledge in Modelica. Provisions for expressing
adaptations or modifications of classes through so-called modifiers in Modelica make reuse easier. For
example, assume that we would like to connect two filter models in series. Instead of creating two
separate filter classes, it is better to define a common filter class and create two appropriately modified
instances of this class, which are connected. An example of connecting two modified low pass filters is
shown after the example low pass filter class below:

model LowPassFilter 
  parameter Real T=1;
  Real u, y(start=1);
equation
  T*der(y) + y = u;
end LowPassFilter;

The model class can be used to create two instances of the filter with different time constants and
“connecting” them together by the equation F2.u = F1.y as follows:

model FiltersInSeries 
  LowPassFilter F1(T=2), F2(T=3);
equation
  F1.u = sin(time);
  F2.u = F1.y;
end FiltersInSeries;

Here we have used modifiers, i.e. attribute equations such as T=2 and T=3, to modify the time constant of
the low pass filter when creating the instances F1 and F2. The independent time variable is denoted
time. If the FiltersInSeries model is used to declare variables at a higher hierarchical level, e.g.
F12, the time constants can still be adapted by using hierarchical modification, as for F1 and F2 below:

model ModifiedFiltersInSeries 
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  FiltersInSeries F12(F1(T=6), F2.T=11);
end ModifiedFiltersInSeries;

1.3.5 Built-in Classes

The built-in type classes of Modelica correspond to the primitive types Real, Integer, Boolean,
String, and have most of the properties of a class, e.g. can be inherited, modified, etc. Only the value
attribute can be changed at run-time, and is accessed through the variable name itself, and not through dot
notation, i.e. use x and not x.value to access the value. Other attributes are accessed through dot
notation, e.g. x.unit.

For example, a Real variable has a set of default attributes such as unit of measure, initial value,
minimum and maximum value. These default attributes can be changed when declaring a new class, for
example:

class Voltage = Real(unit= "V", min=-220.0, max=220.0);

1.4    Inheritance

One of the major benefits of object-orientation is the ability to extend the behavior and properties of an
existing class. The original class, known as the superclass or base class, is extended to create a more
specialized version of that class, known as the subclass or derived class. In this process, the behavior and
properties of the original class in the form of field declarations, equations, and other contents is reused, or
inherited, by the subclass.

Let us regard an example of extending a simple Modelica class, e.g. the class Point introduced
previously. First we introduce two classes named ColorData and Color, where Color inherits the
data fields to represent the color from class ColorData and adds an equation as a constraint. The new
class ColoredPoint inherits from multiple classes, i.e. uses multiple inheritance, to get the position
fields from class Point, and the color fields together with the equation from class Color.

record ColorData
  Real red;
  Real blue;
  Real green;
end ColorData;

class Color
  extends ColorData;
equation
  red + blue + green = 1;
end Color;

class Point
  public Real x;
  Real y, z;
end Point;

class ColoredPoint
  extends Point;
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  extends Color;
end ColoredPoint;

1.5   Generic Classes

In many situations it is advantageous to be able to express generic patterns for models or programs.
Instead of writing many similar pieces of code with essentially the same structure, a substantial amount of
coding and software maintenance can be avoided by directly expressing the general structure of the
problem and providing the special cases as parameters.

Such generic constructs are available in several programming languages, e.g. templates in C++, generics
in Ada, and type parameters in functional languages such as Haskell or Standard ML. In Modelica the
class construct is sufficiently general to handle generic modeling and programming in addition to the
usual class functionality.

There are essentially two cases of generic class parameterization in Modelica: instance parameters and
type parameters. Note that by class parameters in this context we do not usually mean simulation
parameter variables prefixed by the keyword parameter, even though such variables can also be class
parameters. Instead we mean formal parameters to the class. Such formal parameters are prefixed by the
keyword replaceable. The special case of replaceable local functions is roughly equivalent to virtual
methods in some object-oriented programming languages.

1.5.1 Class Parameters being Components

First we present the case when class parameters are components being instances or objects. The class C in
the example below has three class parameters marked by the keyword replaceable. These class
parameters which are components of class C are declared as having the default types GreenClass,
YellowClass, and GreenClass respectively.

class C
  replaceable GreenClass  obj1(p1=5);
  replaceable YellowClass obj2;
  replaceable GreenClass  obj3;
equation
  ...
end C;

Now a class C2 is defined by providing two actual arguments obj1 and obj2 to class C, being red and
green respectively, instead of the defaults green and yellow. The keyword redeclare must
precede an actual argument to a class formal parameter in order to avoid accidentally changing the type of
an object through a standard modifier. In general, the type of a class component cannot be changed if it is
not declared as replaceable and a redeclaration is provided.

class C2 =
  C(redeclare RedClass   obj1,
    redeclare GreenClass obj2);

Such a class C2 obtained through redeclaration of obj1 and obj2 is of course equivalent to directly
defining C2 without reusing class C, as below.
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class C2
  RedClass   obj1(p1=5);
  GreenClass obj2;
  GreenClass obj3;
equation
  ...
end C2;

1.5.2 Class Parameters being Types

A class parameter can also be a type, which is useful for changing the type of many objects. For example
by providing a type parameter ColouredClass in class C below, it is easy to change the color of all
objects of type ColouredClass.

class C
  replaceable class ColouredClass = GreenClass;
  ColouredClass           obj1(p1=5);
  replaceable YellowClass obj2;
  ColouredClass           obj3;
equation
  ...
end C;

We create a class C2 by giving the type parameter ColouredClass of class C the value BlueClass.

class C2 =
  C(redeclare class ColouredClass = BlueClass);

This is equivalent to the following definition of C2:

class C2
  BlueClass   obj1(p1=5);
  YellowClass obj2;
  BlueClass   obj3;
equation
    ...
end C2;

1.6   Equations

As we already stated, Modelica is primarily an equation-based language in contrast to ordinary
programming languages where assignment statements proliferate. Equations are more flexible than
assignments since they do not prescribe a certain data flow direction. This is the key to the physical
modeling capabilities and increased reuse potential of Modelica classes.

Thinking in equations is a bit unusual for most programmers. In Modelica the following holds:

?  Assignment statements in conventional languages are usually represented as equations in Modelica.
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?  Attribute assignments are represented as equations.

?  Connections between objects generate equations.

Equations are more powerful than assignment statements. For example, consider a resistor equation
where the resistance R multiplied by the current i is equal to the voltage v:

R*i = v;

This equation can be used in three ways corresponding to three possible assignment statements:
computing the current from the voltage and the resistance, computing the voltage from the resistance and
the current, or computing the resistance from the voltage and the current. This is expressed in the
following three assignment statements:

i := v/R;

v := R*i;

R := v/i;

Equations in Modelica can informally be classified into three different groups depending on the syntactic
context in which they occur:

?  Normal equations occurring in equation sections, including connect statements which is a special
form of equation.

?  Declaration equations, which are part of variable or constant declarations.

?  Modification equations, which are commonly used to modify attributes.

Concerning attribute assignments, we have already given several examples on how to modify the start
attribute of variables using equations, for example:

Real y(start = 1);

Declaration equations are usually given as part of declarations of fixed or parameter constants, for
example:

constant Integer one = 1;
parameter Real mass = 22.5;

An equation always holds, which means that the mass in the above example never changes value during
simulation. It is also possible to specify a declaration equation for a normal state variable, e.g.:

Real speed = 72.4;

However, this does not make much sense since it will constrain the variable to have the same value
throughout the computation, effectively behaving as a constant. Therefore a declaration equation is quite
different from a variable initializer in other languages.
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If you need to specify an initial value for a variable, meaning its value at the start of the computation,
then give an attribute equation for the start attribute of the variable, e.g.:

Real speed(start=72.4);

1.6.1 Repetitive Equation Structures

Sometimes there is a need to conveniently express sets of equations that have a regular, i.e. repetitive
structure. Often this can be expressed as array equations, often including references to array elements
denoted using square bracket notation – for more information regarding arrays see the section on arrays
on page 31. However, for the more general case of repetitive equation structures Modelica provides a
loop construct. Note that this is not a loop in the algorithmic sense of the word —  it is rather a short hand
notation for expressing a set of equations.

For example, consider an equation for a polynomial expression:

y = a[1]+a[2]*x + a[2]*x^1 + ... + a[n]*x^n

The polynomial equation can be expressed as a set of equations with regular structure in Modelica, with y
equal to the scalar product of the vectors a and xpowers:

xpowers[1] = 1;
xpowers[2] = xpowers[1]*x;
xpowers[3] = xpowers[2]*x;
...
xpowers[n+1] = xpowers[n]*x;
y = a * xpowers;

The regular set of equations involving xpowers can be expressed more conveniently using the for loop
notation:

for i in 1:n loop
  xpowers[i+1] = xpowers[i]*x;
end for;

In this particular case a vector equation provides an even more compact notation:

xpowers[2:n+1] = xpowers[1:n]*x;

1.7   Acausal Physical Modeling

Acausal modeling is a declarative modeling style meaning modeling based on equations instead of
assignment statements. Equations do not specify which variables are inputs and which are outputs,
whereas in assignment statements variables on the left-hand side are always outputs (results) and
variables on the right-hand side are always inputs. Thus, the causality of equation-based models is
unspecified and becomes fixed only when the corresponding equation systems are solved. This is called
acausal modeling. The term physical modeling reflects the fact that acausal modeling is very well suited
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for representing the physical structure of modeled systems.

The main advantage with acausal modeling is that the solution direction of equations will adapt to the
data flow context in which the solution is computed. The data flow context is defined by stating which
variables are needed as outputs, and which are external inputs to the simulated system.

The acausality of Modelica library classes makes these more reusable than traditional classes containing
assignment statements where the input-output causality is fixed.

1.7.1 Physical Modeling vs. Block Oriented Modeling

To illustrate the idea of acausal physical modeling we give an example of a simple electrical circuit, see
Figure 1.3. The connection  diagram3 of the electrical circuit shows how the components are connected
and roughly corresponds to the physical layout of the electrical circuit on a printed circuit board. The
physical connections in the real circuit correspond to the logical connections in the diagram. Therefore
the term physical modeling is quite appropriate.

R1=10

C=0.01 L=0.1

R2=100

G

AC=220

Figure 1.3 - Connection diagram of the acausal simple circuit model.

The Modelica SimpleCircuit model below directly corresponds to the circuit depicted in the connection
diagram of Figure 1.3. Each graphic object in the diagram corresponds to a declared instance in the
simple circuit model. The model is acausal since no signal flow, i.e cause-and-effect flow, is specified.
Connections between objects are specified using the connect statement, which is a special syntactic form
of equation that we will tell more about later.

model SimpleCircuit
  Resistor  R1(R=10);

                                                  
3 A connection diagram emphasizes the connections between components of a model, whereas a composition
diagram specifies which components a model is composed of, their subcomponents, etc. A class diagram usually
depicts inheritance and composition relations.
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  Capacitor C(C=0.01);
  Resistor  R2(R=100);
  Inductor  L(L=0.1);
  VsourceAC AC;
  Ground    G;
equation
  connect (AC.p, R1.p);    // Capacitor circuit
  connect (R1.n, C.p);
  connect (C.n, AC.n);
  connect (R1.p, R2.p);    // Inductor circuit
  connect (R2.n, L.p);
  connect (L.n,  C.n);
  connect (AC.n, G.p);     // Ground
end SimpleCircuit;

As a comparison we show the same circuit modeled using causal block oriented modeling depicted as a
diagram in Figure 1.4. Here the physical topology is lost – the structure of the diagram has no simple
correspondence to the structure of the physical circuit board. This model is causal since the signal flow
has been deduced and is clearly shown in the diagram. Even for this simple example the analysis to
convert the intuitive physical model to a causal block oriented model is non-trivial for the nonexpert.
Another disadvantage is that the resistor representations are context dependent. For example the resistors
R1 and R2 have different definitions, which makes reuse of model library components hard. Furthermore,
such system models are usually hard to maintain since even small changes in the physical structure may
result in large changes to the corresponding block oriented system model.
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sum3

+1
  -1

sum1
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+1
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1
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1/R1
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1/C
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1/L

Ind

R2

Res2

Figure 1.4 - The simple circuit model using causal block oriented modeling with explicit signal flow.

1.8 The Modelica Software Component Model

For a long time software developers have looked with envy on hardware system builders, regarding the
apparent ease with which reusable hardware components are used to construct complicated systems. With
software there seems too often to be a need or tendency to develop from scratch instead of reusing
components. Early attempts at software components include procedure libraries, which unfortunately
have too limited applicability and low flexibility. The advent of object-oriented programming has
stimulated the development of software component frameworks such as CORBA, the Microsoft
COM/DCOM component object model, and JavaBeans. These component models have considerable
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success in certain application areas, but there is still a long way to go to reach the level of reuse and
component standardization found in hardware industry.

The reader might wonder what all this has to do with Modelica. In fact, Modelica offers quite a powerful
software component model that is on par with hardware component systems in flexibility and potential
for reuse. The key to this increased flexibility is the fact that Modelica classes are based on equations.
What is then a software component model?  It should include the following three items:

?  Components

?  A connection mechanism

?  A component framework

Components are connected via the connection mechanism, which can be visualized in connection
diagrams. The component framework realizes components and connections, and insures that
communication works over the connections. For systems composed of acausal components the direction
of data flow, i.e. the causality, is automatically deduced by the compiler at composition time.

1.8.1 Components

Components are simply instances of Modelica classes. Those classes should have well-defined
communication interfaces, sometimes called ports, in Modelica called connectors, for communication
between a component and the outside world.

A component is modeled independently of the environment where it is used, which is essential for its
reusability. This means that in the definition of the component including its equations, only local
variables and connector variables can be used. No means of communication between a component and
the rest of the system, apart from going via a connector, is allowed. A component may internally consist
of other connected components, i.e. hierarchical modeling.

1.8.2 Connection Diagrams

Complex systems usually consist of large numbers of connected components, of which many components
can be hierarchically decomposed into other components through several levels. To grasp this
complexity, a pictorial representation of components and connections is quite important. Such graphic
representation is available as connection diagrams, of which a schematic example is shown in Figure 1.5.
We have earlier presented a connection diagram of a simple circuit in Figure 1.3.

Component2Component1

Component3

Figure 1.5 - Schematic picture of a connection diagram for components.

Each rectangle in the diagram example represents a physical component, e.g. a resistor, a capacitor, a
transistor, a mechanical gear, a valve, etc. The connections represented by lines in the diagram
correspond to real, physical connections. For example, connections can be realized by electrical wires, by
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the mechanical connections, by pipes for fluids, by heat exchange between components, etc. The
connectors, i.e. interface points, are shown as small square dots on the rectangle in the diagram. Variables
at such interface points define the interaction between the component represented by the rectangle and
other components.

Front Wheels

Controller

Chassis
Rear Wheels

Figure 1.6 - A connection diagram for simple a car model.

A simple car example of a connection diagram for an application in the mechanical domain is shown as
the car example in Figure 1.6.

The simple car model below includes variables for subcomponents such as wheels, chassis, and control
unit. The wheels are connected to both the chassis and the controller. Connect statements are present, but
are not shown in the partial example below.

class Car "A car class to combine car components"
  Wheel          w1,w2,w3,w4  "Four wheels";
  Chassis        chassis      "Chassis";
  CarController  controller   "Car controller";
  ...
end Car;

1.8.3 Connectors and Connector Classes

Modelica connectors are instances of connector classes, which define the variables that are part of the
communication interface that is specified by a connector. Thus, connectors specify external interfaces for
interaction.

For example, Pin is a connector class that can be used to specify the external interfaces for electrical
components that have pins. The types Voltage and Current used within Pin are the same as Real,
but with different associated units. From the Modelica language point of view the types Voltage and
Current are identical to Real. Checking unit compatibility within equations is optional and will usually
be done by special tools.

type Voltage = Real(Unit="V");
type Current = Real(Unit="A");
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v +

i

Figure 1.7 - A component with one electrical Pin connector.

connector Pin
    Voltage       v;
    flow Current  i;
end Pin;

1.8.4 Connections

Connections between components can be established between connectors of equivalent type. Modelica
supports equation-based acausal connections, which means that connections are realized as equations. For
acausal connections, the direction of data flow in the connection need not be known. Additionally, causal
connections can be established by connecting a connector with an input attribute to a connector
declared as output.

Two types of coupling can be established by connections depending on whether the variables in the
connected connectors are non-flow (default), or declared using the prefix flow:

?  Equality coupling, for non-flow variables, according to Kirchhoff's first law.

?  Sum-to-zero coupling, for flow variables, according to Kirchhoff's second law.

For example, the keyword flow for the variable i of type Current in the Pin connector class indicates
that all currents in connected pins are summed to zero, according to Kirchhoff’s 2:nd law.

Pin 1 Pin 2
++

ii

v v

Figure 1.8 - Connecting two components that have electrical pins.

Connection statements are used to connect instances of connection classes. A connection statement
connect(Pin1,Pin2) , with Pin1 and Pin2 of connector class Pin, connects the two pins so that
they form one node. This produces two equations, namely:

Pin1.v = Pin2.v
Pin1.i + Pin2.i = 0

The first equation says that the voltages of the connected wire ends are the same. The second equation
corresponds to Kirchhoff's second law saying that the currents sum to zero at a node (assuming positive
value while flowing into the component). The sum-to-zero equations are generated when the prefix flow
is used. Similar laws apply to flows in piping networks and to forces and torques in mechanical systems.
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1.9 Partial Classes Describe Common Properties

A common property of many electrical components is that they have two pins. This means that it is useful
to define a “blueprint” model class, e.g. called TwoPin, that captures this common property. This is a
partial class since it does not contain enough equations to completely specify its physical behavior, and is
therefore prefixed by the keyword partial. Partial classes are usually known as abstract classes in other
object-oriented languages.

partial class TwoPin
  "Superclass of elements with two electrical pins"
  Pin      p, n;
  Voltage  v;
  Current  i;
equation
  v = p.v - n.v;
  p.i + n.i = 0;
  i = p.i;
end TwoPin;

The TwoPin class has two pins, p and n, a quantity, v, that defines the voltage drop across the com-
ponent and a quantity, i, that defines the current into pin p, through the component, and out from pin n,
see Figure 1.9.

n.v+

p.i n.i

p.v

i

p n

v

Figure 1.9 - Generic TwoPin class that describes the general structure of simple electrical
components with two pins.

The equations define generic relations between quantities of simple electrical components. In order to be
useful a constitutive equation must be added that describes the specific physical characteristics of the
component.

1.9.1 Reuse of Partial Classes

Given the generic partial class TwoPin, it is now trivial to create the more specialized Resistor class
by adding a constitutive equation:
R*i = v;

This equation describes the specific physical characteristics of the relation between voltage and current
for resistors.

Rp n
+

vi

Figure 1.10 - A resistor component.
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class Resistor "Ideal electrical resistor"
  extends TwoPin;
  parameter Real R(Unit="Ohm") "Resistance";
equation
  R*i = v;
end Resistor;

A class for electrical capacitors can also reuse TwoPin in a similar way, adding the constitutive equation
for capacitors.

np

+

vi

C

Figure 1.11 - A capacitor component.

class Capacitor "Ideal electrical capacitor"
  extends TwoPin;
  parameter Real C(Unit="F") "Capacitance";
equation
  C*der(v) = i;
end Capacitor;

During system simulation the variables i and v specified in the above components evolve as functions of
time. The solver of differential equations compute the values of i(t) and v(t) (where t is time) so that
C v’(t)=i(t) for all values of t, fulfilling the constitutive equation for the capacitor.

1.10 Electrical Component Library

In a similar way as we created the resistor and capacitor components, additional electrical component
classes can be created, forming a simple electrical component library. Such component libraries of
reusable components are the key to effective modeling of complex systems. Below we show a small
library of electrical components needed for the simple circuit example, as well as the equations that can
be extracted from these components.

1.10.1 Resistor

p.i

p.v

n.i

n.v

+

u

Figure 1.12 - Resistor component

Four equations can be extracted from the resistor model. The first three originate from the inherited
TwoPin class whereas the last is the constitutive equation of the resistor.
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0 = p.i + n.i
v = p.v - n.v
i = p.i
v = R*i

1.10.2 Capacitor

p.i

p.v

n.i

n.v

+

u

Figure 1.13 - Capacitor component

The following four equations originate from the capacitor model, where the last is the constitutive
equation for the capacitor.

0 = p.i + n.i
v = p.v - n.v
i = p.i
i = C*der(v)

1.10.3 Inductor

p.i

p.v

n.i

n.v
u

+

Figure 1.14 - Inductor component

The inductor class shown below gives a model for ideal electrical inductors.

class Inductor "Ideal electrical inductor"
  extends TwoPin;
  parameter Real L(Unit="H") "Inductance";
equation
  v = L*der(i);
end Inductor;

These equations can be extracted from the inductor class, where the first three come from TwoPin as
usual and the last is the constitutive equation for the inductor.

0 = p.i + n.i
v = p.v - n.v
i  =  p.i
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v = L*der(i)

1.10.4 Voltage Source

p.i

p.v

n.i

n.v

u(t)

Figure 1.15 - Voltage source component VsourceAC , where u(t) = VA*sin(2*PI*f*time) .

A class VsourceAC for the sin-wave voltage source to be used in our circuit example can be defined as
below. This model as well as other Modelica models specify behavior that evolves as a function of time.
Note that a predefined variable time is used which steps forward during system simulation. In order to
keep the example simple the constant PI is explicitly declared even though it is usually imported from
the Modelica standard library.

class VsourceAC "Sin-wave voltage source"
  extends TwoPin;
  parameter Voltage  VA           = 220 "Amplitude";
  parameter Real     f(unit="Hz") = 50  "Frequency";
  constant  Real     PI           = 3.141592653589793;
  input     Voltage  u;
equation
  v = u;
  u = VA*sin(2*PI*f*time);
end VsourceAC;

In this TwoPin based model, five equations can be extracted from the model since we introduce a special
variable u for the voltage produced by the voltage source.

0 = p.i + n.i
v = p.v - n.v
i = p.i
v = u
u = VA*sin(2*PI*f*time)

1.10.5 Ground

p.ip.v

Figure 1.16 - Ground component.

Finally, we define a class for ground points that can be instantiated as a reference value for the voltage
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levels in electrical circuits. This class has only one pin.

class Ground "Ground"
  Pin p;
equation
  p.v = 0;
end Ground;

A single equation can be extracted from the Ground class.

p.v = 0

1.11 The Simple Circuit Model

R1

CL

R2

+

++

N1

N2

N3N4+ +

u(t)

G

14

2

36 7

5

Figure 1.17 - The simple circuit model.

Having collected a small library of simple electrical components we can now put together the simple
electrical circuit shown previously. The two resistor instances R1 and R2 are declared with modification
equations for their respective resistance parameter value. Similarly an instance C of the capacitor and an
instance L of the inductor are declared with modifiers for capacitance and inductance respectively. The
voltage source AC and the ground instance G have no modifiers. Connection statements are provided to
connect the components in the circuit.

class SimpleCircuit
  Resistor  R1(R=10);
  Capacitor C(C=0.01);
  Resistor  R2(R=100);
  Inductor  L(L=0.1);
  VsourceAC AC;
  Ground    G;
equation
  connect (AC.p, R1.p);    // 1, Capacitor circuit
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  connect (R1.n, C.p);     //     Wire 2
  connect (C.n, AC.n);     //     Wire 3
  connect (R1.p, R2.p);    // 2, Inductor circuit
  connect (R2.n, L.p);     //     Wire 5
  connect (L.n,  C.n);     //     Wire 6
  connect (AC.n, G.p);     // 7, Ground
end SimpleCircuit;

1.12 Arrays

An array is a collection of variables all of the same type. Elements of an array are accessed through
simple integer indexes, ranging from a lower bound of 1 to an upper bound being the size of the
respective dimension. An array variable can be declared by appending dimensions within square brackets
after a class name or after a variable name. For example:

Real[3]     positionvector = {1,2,3};
Real[3,3]   identitymatrix = {{1,0,0}, {0,1,0}, {0,0,1}};
Real[3,3,3] arr3d;

This declares a three-dimensional position vector, a transformation matrix, and a three-dimensional array.
Using the alternative syntax of attaching dimensions after the variable name,  the same declarations can
be expressed as:

Real  positionvector[3] = {1,2,3};
Real  identitymatrix[3,3] = {{1,0,0}, {0,1,0}, {0,0,1}};
Real  arr3d[3,3,3];

In the first two array declarations, declaration equations have been given, where the array constructor {}
is used to construct array values for defining positionvector and identitymatrix. Indexing of an array A is
written A[i,j,...], where 1 is the lower bound and size(A,k) is the upper bound of the index for the k:th
dimension. Submatrices can be formed by utilizing the : notation for index ranges, for example A[i1:i2,
j1:j2]. Array expressions can be formed using the arithmetic operators +, -,*, and /, since these can
operate on either scalars, vectors, matrices, or (when applicable) multi-dimensional arrays with elements
of type Real or Integer. The multiplication operator * is scalar product when used between vectors,
matrix multiplication when used between matrices, and element-wise multiplication when used between
an array and a scalar. As an example, multiplying positionvector by the scalar 2:

positionvector*2

which gives the result:

{2,4,6}

A number of built-in array functions are available, of which a few are shown in the table below.

transpose(A) Permutes the first two dimensions of array A
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zeros(n1,n2,n3,...) Returns an n1 x n2 x n3 x...  zero-filled integer array.

ones(n1,n2,n3,...) Returns an n1 x n2 x n3 x ... one-filled integer array.

fill(s,n1,n2,n3, ...) Returns the n1 x n2 x n3 x ... array with all elements filled with the value
of the scalar expression s.

min(A) Returns the smallest element of array expression A.

max(A) Returns the largest element of array expression A.

sum(A) Returns the sum of all the elements of array expression A.

A scalar function can be applied to arrays element-wise, e.g. if A is a vector of real numbers, then
cos(A) is a vector where each element is the result of applying the function cos to the corresponding
element in A. For example:

cos({1, 2, 3}]  =  {cos(1), cos(2), cos(3)}

General array concatenation can be done through the array concatenation operator cat(k,A,B,C,...) that
concatenates the arrays A,B,C,... along the k:th dimension.

The common special cases of concatenation along the first and second dimensions are supported through
the special syntax forms [A;B;C;...] and [A,B,C,...] respectively. Both of these forms can be mixed. In
order to achieve compatibility with Matlab array syntax, being a de facto standard, scalar and vector
arguments to these special operators are promoted to become matrices before performing the
concatenation. This gives the effect that a matrix can be constructed from scalar expressions by
separating rows by semicolon and columns by comma. The example below creates an m x n matrix:

[expr11, expr12, ... expr1n;
 expr21, expr22, ... expr2n;
 …
 exprm1, exprm2, ... exprmn]

It is instructive to follow the process of creating a matrix from scalar expressions using these operators.
For example:

[1,2;
 3,4]

First each scalar argument is promoted to become a matrix, giving:

[{{1}}, {{2}};
 {{3}}, {{4}}]

Since [... , ...] for concatenation along the second dimension has higher priority than [... ; ...] which
concatenates along the first dimension, the first concatenation step gives:
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[{{1, 2}};
 {{3, 4}}]

Finally, the row matrices are concatenated giving the desired 2 x 2 matrix:

 {{1, 2},
  {3, 4}}

The special case of just one scalar argument can be used to create a 1x 1 matrix. For example:

[1]

gives the matrix:

{{1}}

1.13 Algorithmic Constructs

Even though equations are eminently suitable for modeling physical systems, and for a number of other
tasks, there are situations where non-declarative algorithmic constructs are needed. This is typically case
for algorithms, i.e. stepwise procedural descriptions on how to carry out specific computations.

1.13.1 Algorithms

In Modelica, algorithmic statements can only occur within algorithm sections, starting with the keyword
algorithm. Algorithm sections may also be called algorithm equations, since an algorithm section can
be viewed as a group of equations involving one or more variables, and can appear among equation
sections. Algorithm sections are terminated by the appearance of one of the keywords equation,
public, protected, algorithm, or end.

algorithm
  ...
  <statements>
  ...
<some other keyword>

An algorithm section embedded among equation sections can appear as below, where the example
algorithm section contains three assignment statements.

equation
  x = y*2;
  z = w;
algorithm
  x1 := z+x;
  x2 := y-5;
  x1 := x2+y;
equation
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  u = x1+x2;
  ...

Note that the code in the algorithm section, sometimes denoted algorithm equation, uses the values of
certain variables from outside the algorithm. These variables are so called input variables to the algorithm
– in this example x,y and z. Analogously, variables assigned values by the algorithm define the outputs
of the algorithm – in this example x1 and x2. This makes the semantics of an algorithm section quite
similar to a function with the algorithm section as its body, and with input and output formal
parameters corresponding to inputs and outputs as described above.

1.13.2 Statements

In addition to assignment statements, which were used in the previous example, three other kinds of
"algorithmic" statements are available in Modelica: if-then-else statements, for loops, and while
loops. The summation below uses both a while loop and an if statement, where size(a,1) returns the
size of the first dimension of array a. The elseif and else parts of if statements are optional.

sum := 0;
n := size(a,1);
while n>0 loop
  if a[n]>0 then
    sum := sum + a[n];
  elseif a[n] > -1 then
    sum := sum - a[n] -1;
  else
    sum := sum - a[n];
  end if;
  n := n-1;
end while;

Consider once more the computation of the polynomial presented in the section on repetitive equation
structures on page 20.

y := a[1]+a[2]*x + a[2]*x^1 + ... + a[n]*x^n;

When using equations to model the computation of the polynomial it was necessary to introduce an
auxliliary vector xpowers for storing the different powers of x. Alternatively, the same computation can
be expressed as an algorithm including a for loop as below. This can be done without the need for an
extra vector – it is enough to use a scalar variable xpower for the most recently computed power of x.

algorithm
  y := 0;
  xpower := 1;  
  for i in 1:n+1 loop
    y := y + a[i]*xpower;
    xpower := xpower*x;
  end for;
  ...
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1.13.3 Functions

Functions are a natural part of any mathematical model. A number of mathematical functions like abs,
sqrt, mod, etc. are predefined in the Modelica language whereas others such as sin, cos, exp, etc. are
available in the Modelica standard math library Modelica.Math. The arithmetic operators +, -,*, / can
be regarded as functions that are used through a convenient operator syntax. Thus it is natural to have
user-defined mathematical functions in the Modelica language. The body of a Modelica function is an
algorithm section that contains procedural algorithmic code to be executed when the function is called.
Formal parameters are specified using the input keyword, whereas results are denoted using the
output keyword. This makes the syntax of function definitions quite close to Modelica block class
definitions.

Modelica functions are mathematical functions, i.e. without global side-effects and with no memory. A
Modelica function always returns the same results given the same arguments. Below we show the
algorithmic code for polynomial evaluation in a function named PolynomialEvaluator .

function PolynomialEvaluator
  input  Real a[:];       // array, size defined at function call time
  input  Real x := 1.0;   // default value 1.0 for x
  output Real y;
protected
  Real   xpower;
algorithm
  y := 0;
  xpower := 1;
  for i in 1:size(a,1) loop
    y := y + a[i]*xpower;
    xpower := xpower*x;
  end for;
end PolynomialEvaluator;

Functions are usually called with positional association of actual arguments to formal parameters. For
example, in the call below the actual argument {1,2,3,4} becomes the value of the coefficient vector
a, and 21 becomes the value of the formal parameter x. Modelica function parameters are read-only, i.e.
they may not be assigned values within the code of the function. When a function is called using
positional argument association, the number of actual arguments and formal parameters must be the
same. The types of the actual argument expressions must be compatible with the declared types of the
corresponding formal parameters.

p = PolynomialEvaluator({1, 2, 3, 4}, 21);

The same call to the function PolynomialEvaluator  can instead be made using named association of
actual arguments to formal parameters, as in the next example. This has the advantage that the code
becomes more self documenting as well as more flexible with respect to code updates.

For example, if all calls to the function PolynomialEvaluator  are made using named parameter
association, the order between the formal parameters a and x can be changed, and new formal parameters
with default values can be introduced in the function definitions without causing any compilation errors at
the call sites. Formal parameters with default values need not be specified as actual arguments unless
those parameters should be assigned values different from the defaults.
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p = PolynomialEvaluator(a={1, 2, 3, 4}, x=21);

Functions can have multiple results. For example, the function f below has three result parameters
declared as three formal output parameters r1, r2, and r3.

function f
  input Real x;
  input Real y;
  output Real r1;
  output Real r2;
  output Real r3;
  ...
end f;

Within algorithmic code multi-result functions may only be called in special assignment statements, as
the one below, where the variables on the left hand side are assigned the corresponding function results.

(a, b, c) := f(1.0, 2.0);

In equations a similar syntax is usend:

(a, b, c) = f(1.0, 2.0);

1.13.4 External functions

It is possible to call functions defined outside of the Modelica language, implemented in C or Fortran. If
no external language is specified the implementation language is assumed to be C. The body of an
external function is marked with the keyword external in the Modelica external function declaration.

function log
  input Real x;
  output Real y;
external 
end log;

The external function interface supports a number of advanced features such as in-out parameters, local
work arrays, external function argument order, explicit specification of row-major versus column-major
array memory layout, etc. For example the formal parameter Ares corresponds to an in-out parameter in
the external function LeastSquares below which has the value A as input default and a different value
as the result. It is possible to control the ordering and usage of parameters to the function external to
Modelica. This is used below to explicitly pass sizes of array dimensions to the Fortran routine called
dgels. Some old-style Fortran routines like dgels need work arrays, which is conveniently handled by
local variable declarations after the keyword protected.

function LeastSquares "Solves a linear least squares problem"
  input  Real A[:,:];
  input  Real B[:,:];
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  output Real Ares[size(A,1),size(A,2)] := A;
              //Factorization is returned in Ares for later use
  output Real x[size(A,2),size(B,2)];
protected
  Integer lwork = min(size(A,1),size(A,2))+
                max(max(size(A,1),size(A,2)),size(B,2))*32;
  Real    work[lwork];
  Integer info;
  String  transposed="NNNN"; // Workaround for passing CHARACTER data to
                          //  Fortran routine
  external "FORTRAN 77"
    dgels(transposed, 100, size(A,1), size(A,2), size(B,2), A res,
           size(A,1), B, size(B,1), work, lwork, info);
end LeastSquares;

1.13.5 Algorithms Viewed as Functions

The function concept is a basic building block when defining the semantics or meaning of programming
language constructs. Some programming languages are completely defined in terms of mathematical
functions. This makes it useful to try to understand and define the semantics of algorithm sections in
Modelica in terms of functions. For example, consider the algorithm section below which occurs in an
equation context:

algorithm
  y := x;
  z := 2*y;
  y := z+y;
...

This algorithm can be transformed into an equation and a function as below, without changing its
meaning. The equation equates the output variables of the previous algorithm section with the results of
the function f. The function f has the inputs to the algorithm section as its input formal parameters and
the outputs as its result parameters. The algorithmic code of the algorithm section has become the body of
the function f.

(y,z) = f(x);
...
function f
  input  Real x;
  output Real y,z;
algorithm
  y := x;
  z := 2*y;
  y := z+y;
end f;

1.14 Hybrid Modeling

Macroscopic physical systems in general evolve continuously as a function of time, obeying the laws of
physics. This includes the movements of parts in mechanical systems, current and voltage levels in
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electrical systems, chemical reactions, etc. Such systems are said to have continuous dynamics.

On the other hand, it is sometimes beneficial to make the approximation that certain system components
display discrete behavior, i.e. changes of values of system variables may occur instantaneously and
discontinuously. In the real physical system the change can be very fast, but not instantaneous. Examples
are collisions in mechanical systems, e.g. a bouncing ball that almost instantaneously changes direction,
switches in electrical circuits with quickly changing voltage levels, valves and pumps in chemical plants,
etc. We talk about system components with discrete dynamics. The reason to make the discrete
approximation is to simplify the mathematical model of the system, making the model more tractable and
usually speeding up the simulation of the model several orders of magnitude.

Since the discrete approximation only can be applied to certain subsystems, we often arrive at system
models consisting of interacting continuous and discrete components. Such a system is called a hybrid
system and the associated modeling techniques hybrid modeling. The introduction of hybrid
mathematical models creates new difficulties for their solution, but the disadvantages are far outweighed
by the advantages.

Modelica provides two kinds of constructs for expressing hybrid models: conditional expressions or
equations to describe discontinuous and conditional models, and when-clauses to express equations that
are only valid at discontinuities, e.g. when certain conditions become true. For example, if-then-else
conditional expressions allow modeling of phenomena with different expressions in different operating
regions, as for the equation describing a limiter below.

y = if u > limit then limit else u;

A more complete example of a conditional model is the model of an ideal diode. The characteristic of a
real physical diode is depicted in Figure 1.18 , and the ideal diode characteristic in parameterized form is
shown in Figure 1.19.

Figure 1.18 - Real diode characteristic.
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Figure 1.19 - Ideal diode characteristic.

Since the voltage level of the ideal diode would go to infinity in an ordinary voltage-current diagram, a
parameterized description is more appropriate, where both the voltage v and the current i are functions of
the parameter s. When the diode is off no current flows and the voltage is negative, whereas when it is on
there is no voltage drop over the diode and the current flows.

model Diode "Ideal diode"
  extends TwoPin;
  Real s;
  Boolean off;
equation
  off = s < 0;
  if off then v=s else v=0;   // conditional equations
  i = if off then 0 else s;   // conditional expression
end Diode;

When-clauses have been introduced in Modelica to express instantaneous equations, i.e. equations that
are valid only at certain points, e.g. at discontinuities, when specific conditions become true. The syntax
of when-clauses for the case of a vector of conditions is shown below. The equations in the when-clause
are activated when at least one of the conditions become true. A single condition is also possible.

when {condition1, condition2, …} then
  <equations>
end when;

A bouncing ball is a good example of a hybrid system for which the when-clause is appropriate when
modeled. The motion of the ball is characterized by the variable height above the ground and the
vertical velocity v. The ball moves continuously between bounces, whereas discrete changes occur at
bounce times, as depicted in Figure 1.20. When the ball bounces against the ground its velocity is
reversed. An ideal ball would have an elasticity coefficient of 1 and would not lose any energy at a
bounce. A more realistic ball, as the one modeled below, has an elasticity coefficient of 0.9, making it
keep 90 percent of its speed after the bounce.
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Figure 1.20 - A bouncing ball.

The bouncing ball model contains the two basic equations of motion relating height and velocity as well
as the acceleration caused by the gravitational force. At the bounce instant the velocity is suddenly
reversed and slightly decreased, i.e. v(after bounce) = -c*v(before bounce), which is accomplished by
the special syntactic form of instantaneous equation: reinit(v,-c*v).

model BouncingBall "The bouncing ball model"
  parameter Real g=9.81;   // gravitational acceleration
  parameter Real c=0.90;   // elasticity constant of ball
  Real height(start=0);    // height above ground
  Real v(start=10);        // velocity
equation
  der(height) = v;
  der(v)      = -g;
  when height<0 then
    reinit(v, -c*v);
  end when;
end BouncingBall;

1.15 Packages

Name conflicts is a major problem when developing reusable code, for example libraries of reusable
Modelica classes and functions for various application domains. No matter how carefully names are
chosen for classes and variables it is likely that someone else is using some name for a different purpose.
This problem gets worse if you are using short descriptive names since such names are easy to use and
therefore quite popular, making them quite likely to be used in another person’s code.

A common solution to avoid name collisions is to attach a short prefix to a set of related names, which are
grouped into a package. For example, all names in the X-Windows toolkit have the prefix Xt, and WIN32
is the prefix for the 32-bit Windows API. This works reasonably well for a small number of packages, but
the likelihood of name collisions increases as the number of packages grows.

Many programming languages, e.g. Java and Ada as well as Modelica provide a safer and more
systematic way of avoiding name collisions through the concept of package. A package is simply a
container or name space for names of classes, functions, constants, and other allowed definitions. The
package name is prefixed to all definitions in the package using standard dot notation. Definitions can be
imported into the name space of a package.

Modelica has defined the package concept as a restriction and enhancement of the class concept. Thus,
inheritance could be used for importing definitions into the name space of another package. However, this
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gives conceptual modeling problems since inheritance for import is not really package specialization.
Instead, an import language construct is provided for Modelica packages. The type name Voltage
together with all other definitions in Modelica.SIunits is imported in the example below, which
makes it possible to use it without prefix for declaration of the variable v. By contrast, the declaration of
the variable i uses the fully qualified name Modelica.SIunits.Ampere  of the type Ampere, even
though the short version also would have been possible. The fully qualified long name for Ampere can
be used since it is found using the standard nested lookup of the Modelica standard library placed in a
conceptual top level package.

package mypack
  import Modelica.SIunits.*;

class foo;
  Voltage  v;
  Modelica.SIunits.Ampere  i;
end foo;

end mypack;

Importing definitions from one package into another package as in the above example has the drawback
that the introduction of new definitions into a package may cause name clashes with definitions in
packages using that package. For example, if a definition named v is introduced into the package
Modelica.SIunits, a compilation error would arise in the package mypack.

An alternative solution to the short name problem that does not have the drawback of possible
compilation errors when new definitions are added to libraries, is introducing short convenient name
aliases for prefixes instead of long package prefixes. This is possible using the renaming form of import
statement as in the package mypack below, where the package name SI is introduced instead of the
much longer Modelica.SIUnits.

Another disadvantage with the above package is that the Ampere type is referred to using standard nested
lookup and not via an explicit import statement. Thus, in the worst case you may have to visually scan
the whole source code of a large package in order to find all such dependences. Instead, a well-designed
package should state all its dependences explicitly through import statements which are easy to find.
You can create such a package, e.g. the package mypack below, by adding the prefix encapsulated in
front of the package keyword. This prevents nested lookup outside the package boundary, insuring that
all dependences on other packages outside the current package have to be explicitly stated as import
statements. This kind of encapsulated package represents an independent unit of code and corresponds
more closely to the package concept found in many other programming languages, e.g. Java or Ada.

See Chapter Error! Reference source not found. for additional details concerning packages and import.

encapsulated package mypack
  import SI = Modelica.SIunits;
  import Modelica;

class foo;
  SI.Voltage v;
  Modelica.SIunits.Ampere i;
end foo;
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end mypack;

1.16 Implementation and Execution of Modelica

In order to gain a better understanding of how Modelica works it is useful to take a look at the process of
translation and execution of a Modelica model, which is sketched in Figure 1.21. First the Modelica
source code is parsed and converted into an internal representation, usually an abstract syntax tree. This
representation is analyzed, type checking is done, classes are inherited and expanded, modifications and
instantiations are performed, connect statements are converted to equations, etc. The result of this
analysis and translation process is a flat set of equations, constants, variables and function definitions. No
trace of the object-oriented structure remains apart from the dot notation within names.

After flattening, all of the equations are topologically sorted according to the data flow dependences
between the equations. In the case of general differential algebraic equations (DAEs), this is not just
sorting, but also manipulation of the equations to convert the coefficient matrix into block lower
triangular form, a so-called BLT transformation. Then an optimizer module containing algebraic
simplification algorithms, symbolic index reduction methods, etc., eliminates most equations, only
keeping a minimal set that eventually will be solved numerically. As a trivial example, if two
syntactically equivalent equations appear, only one copy of the equations is kept. Then independent
equations in explicit form are converted to assignment statements. This is possible since the equations
have been sorted and an execution order has been established for evaluation of the equations in
conjunction with the iteration steps of the numeric solver. If a strongly connected set of equations
appears, this set is transformed by a symbolic solver which performs a number of algebraic
transformations to simplify the dependencies between the variables. It can sometimes solve a system of
differential equations if it has a symbolic solution. Finally, C code is generated, and linked with a
numeric equation solver that solves the remaining, drastically reduced, equation system.

The approximations to initial values are taken from the model definition or are interactively specified by
the user. If necessary, the user also specifies the parameter values. A numeric solver for differential-
algebraic equations computes the values of the variables during the specified simulation interval [t0, t1].
The result of the dynamic system simulation is a set of functions of time, such as R2.v(t)in the simple
circuit model. Those functions can be displayed as a graphs and/or saved in a file.

In most cases (but not always) the performance of generated simulation code (including the solver) is
similar to hand-written C code. Often Modelica is more efficient than straightforwardly written C code,
because additional opportunities for symbolic optimization are used by the system, compared to what a
human programmer can manually handle.
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Figure 1.21 - The stages of translating and executing a Modelica model.

1.16.1 Hand Translation of the Simple Circuit Model

Let us return once more to the simple circuit model, previously depicted in Figure 1.3, but for the reader's
convenience also shown below in Figure 1.22. It is instructive to translate this model by hand, in order to
understand the process.
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Figure 1.22 - The SimpleCircuit  model once more.

Classes, instances and equations are translated into a flat set of equations, constants and variables (see the
equations in Table 1), according to the following rules:

?  For each class instance, add one copy of all equations of this instance to the total differential
algebraic equation (DAE) system or ordinary differential equation system (ODE) -- both alternatives
are possible, since a DAE normally can be transformed into an ODE.

?  For each connection between instances within the model, add connection equations to the DAE
system so that non-flow variables are set equal and flow variables are summed to zero.

The equation v=p.v-n.v is defined by the class TwoPin. The Resistor class inherits the TwoPin
class, including this equation. The SimpleCircuit class contains a variable R1 of type Resistor.
Therefore, we include this equation instantiated for R1 as R1.v=R1.p.v-R1.n.v  into the system of
equations.

The wire labelled 1 is represented in the model as connect(AC.p, R1.p) . The variables AC.p and
R1.p have type Pin. The variable v is a non-flow variable representing voltage potential. Therefore, the
equality equation R1.p.v=AC.p.v is generated. Equality equations are always generated when non-
flow variables are connected.

Notice that another wire (labelled 4) is attached to the same pin, R1.p. This is represented by an
additional connect statement: connect(R1.p.R2.p) . The variable i is declared as a flow variable.
Thus, the equation AC.p.i+R1.p.i+R2.p.i=0  is generated. Zero-sum equations are always generated
when connecting flow variables, corresponding to Kirchhoff’s second law.

The complete set of equations (see Table 1) generated from the SimpleCircuit class consists of 33
differential-algebraic equations. These include 33 variables, as well as time and several parameters and
constants.

AC 0    = AC.p.i+Ac.n.i
AC.v = Ac.p.v-AC.n.v

L 0   = L.p.i+L.n.i
L.v = L.p.v-L.n.v
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AC.i = AC.p.i
AC.v = AC.u
AC.u = AC.VA*sin(2*AC.PI*

AC.f*time);

L.i = L.p.i
L.v = L.L*der(L.i)

R1 0    = R1.p.i+R1.n.i
R1.v = R1.p.v-R1.n.v
R1.i = R1.p.i
R1.v = R1.R*R1.i

G G.p.v = 0

R2 0    = R2.p.i+R2.n.i
R2.v = R2.p.v-R2.n.v
R2.i = R2.p.i
R2.v = R2.R*R2.i

wires R1.p.v = AC.p.v  // wire 1
C.p.v  = R1.n.v  // wire 2
AC.n.v = C.n.v   // wire 3
R2.p.v = R1.p.v  // wire 4
L.p.v  = R2.n.v  // wire 5
L.n.v  = C.n.v   // wire 6
G.p.v  = AC.n.v  // wire 7

C 0   = C.p.i+C.n.i
C.v = C.p.v-C.n.v
C.i = C.p.i
C.i = C.C*der(C.v)

flow
at
node

0 = AC.p.i+R1.p.i+R2.p.i     // N1
0 = C.n.i+G.p.i+AC.n.i+L.n.i // N2
0 = R1.n.i + C.p.i           // N3
0 = R2.n.i + L.p.i           // N4

Table 1 - The equations extracted from the simple circuit model – an implicit DAE system.

Below are the 33 variables in the system of equations, of which 31 are algebraic variables. Two variables,
C.v and L.i, are state variables since their derivatives occur in the equations.

R1.p.i R1.n.i R1.p.v R1.n.v R1.v

R1.i R2.p.i R2.n.i R2.p.v R2.n.v

R2.v R2.i C.p.i C.n.i C.p.v

C.n.v C.v C.i L.p.i L.n.i

L.p.v L.n.v L.v L.i AC.p.i

AC.n.i AC.p.v AC.n.v AC.v AC.i

AC.u G.p.i G.p.v

Table 2 - The variables extracted from the simple circuit model.

1.16.2 Transformation to State Space Form

The implicit differential algebraic system of equations (DAE system) in Table 1 should be be further
transformed and simplified before applying a numerical solver. The next step is to identify the kind of
variables in the DAE system. We have the following four groups:

?  All constant variables which are simulation parameters, thus easily modified between simulation runs
and declared with the prefixed keyword parameter, are collected into a parameter vector p. All
other constants can be replaced by their values, thus disappearing as named constants.

?  Variables declared with the input attribute, i.e. prefixed by the input keyword, that appear in
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instances at the highest hierarchical level, are collected into an input vector u.

?  Variables whose derivatives appear in the model, i.e. the der() operator is applied to those variables,
are collected into a state vector x.

?  All other variables are collected into a vector y of algebraic variables, i.e. their derivatives do not
appear in the model.

For our simple circuit model these four groups of variables are the following:

p = {R1.R, R2.R, C.C, L.L, AC.VA, AC.f }

u = {AC.u}

x = {C.v,L.i}

y = {R1.p.i, R1.n.i, R1.p.v, R1.n.v, R1.v, R1.i, R2.p.i, R2.n.i, R2.p.v,
    R2.n.v, R2.v, R2.i, C.p.i, C.n.i, C.p.v, C.n.v, C.i, L.n.i, L.p.v,
    L.n.v, L.v, AC.p.i, AC.n.i, AC.p.v, AC.n.v, AC.i, AC.u, AC.v, G.p.i,
    G.p.v}

We would like to express the problem as the smallest possible ordinary differential equation (ODE)
system (in the general case a DAE system) and compute the values of all other variables from the solution
of this minimal problem. The system of equations should preferrably be in explicit state space form as
below.

x’ = f(x,t)

That is, the derivative x’ of the state vector x is equal to a function of the state vector x and time. Using an
iterative numerical solution method for this ordinary differential equation system, at each iteration step
the derivative of the state vector is computed from the state vector at the current point in time.

For the simple circuit model we have the following:

x  = {C.v,L.i}, u={AC.u}  (with constants: R1.R,R2.R,C.C,L.L,AC.VA,AC.f,AC.PI)

x´ = {der(C.v), der(L.i)}

1.16.3 Solution Method

We will use an iterative numerical solution method. First, assume that estimated values of the state vector
x ={C.v,L.i} is available at t=0 when the simulation starts. Use a numerical approximation for the
derivative x’ (i.e. der(x)) at time t, e.g.:

der(x) = (x(t+h)-x(t))/h

giving an approximation of x at time t+h:

x(t+h) = x(t)+der(x)*h

In this way the value of the state vector x is computed one step ahead in time for each iteration, provided
der(x) can be computed at the current point in simulated time. However, the derivative der(x) of the
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state vector can be computed from x’=f(x,t), i.e. by selecting the equations involving der(x), and
algebraically extracting the variables in the vector x in terms of other variables, as below:

der(C.v) = C.i/C.C
der(L.i) = L.v/L.L

Other equations in the DAE system are needed to calculate the unknowns C.i and L.v in the above
equations. Starting with C.i, using a number of different equations together with simple substitutions
and algebraic manipulations, we derive equations (1) through (3) below.

C.i     = R1.v/R1.R   (1)
using: C.i = C.p.i = -R1.n.i = R1.p.i = R1.i = R1.v/R1.R

R1.v    = R1.p.v - R1.n.v = R1.p.v – C.v   (2)
using: R1.n.v = C.p.v = C.v+C.n.v = C.v+AC.n.v= C.v+G.p.v = C.v+0 = C.v

R1.p.v  = AC.p.v = AC.VA*sin(2*AC.f*AC.PI*t) (3)
using: AC.p.v = AC.v+AC.n.v = AC.u+G.p.v = AC.VA*sin(2*AC.f*AC.PI*t)+0

In a similar fashion we derive equations (4) and (5) below:

L.v     = L.p.v-L.n.v = R1.p.v - R2.v   (4)
using: L.p.v = R2.n.v = R1.p.v-R2.v
and:  L.n.v = C.n.v = AC.n.v = G.p.v = 0

R2.v    = R2.R*L.p.i   (5)
using: R2.v = R2.R*R2.i = R2.R*R2.p.i = R2.R*(-R2.n.i) = R2.R*L.p.i
     = R2.R*L.i

Collecting the five equations together:

C.i     = R1.v/R1.R
R1.v    = R1.p.v - C.v
R1.p.v  = AC.VA*sin(2*AC.f*AC.PI*t)
L.v     = R1.p.v - R2.v
R2.v    = R2.R*L.i

By sorting the equations in data dependency order, and converting the equations to assignment statements
– this is possible since all variable values can now be computed in order – we arrive at the following set
of assignment statements to be computed at each iteration, given values of C.v, L.i, and t at the same
iteration:

R2.v       := R2.R*L.i
R1.p.v     := AC.VA*sin(2*AC.f*AC.PI*t)
L.v        := R1.p.v - R2.v
R1.v       := R1.p.v - C.v
C.i        := R1.v/R1.R
der(L.i)   := L.v/L.L
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der(C.u)   := C.i/C.C

These assignment statements can subsequently be converted to code in some programming language, e.g.
C, and executed together with an appropriate ODE solver, usually using better approximations to
derivatives and more sophisticated forward stepping schemes than the simple method described above,
which by the way is called the Euler integration method. The algebraic transformations and sorting
procedure that we somewhat painfully performed by hand on the simple circuit example can be
performed completely automatically, and is known as BLT-transformation, i.e. conversion of the equation
system coefficient matrix into block lower triangular form.

The remaining 26 algebraic variables in the equation system of the simple circuit model that are not part
of the minimal 7-variable kernel ODE system solved above, can be computed at leisure for those
iterations where their values are desired – this is not necessary for solving the kernel ODE system.

It should be emphasized that the simple circuit example is trivial. Realistic simulation models often
contain tens of thousands of equations, non-linear equations, hybrid models, etc. The symbolic
transformations and reductions of equation systems performed by a real Modelica compiler are much
more complicated than what has been shown in this example, e.g. including index reduction of equations
and tearing of subsystems of equations.

delay(expr,delayTime,
      delayMax)

delay(expr,delayTime)

Returns the value of expr at the time (time–delayTime) for
time > time.start + delayTime  and the value of expr at the
time time.start for time <= time.start+delayTime . The
arguments, i.e., expr, delayTime  and delayMax, need to be subtypes
of Real. The expression delayMax must be a parameter expression,
and is used to avoid excessive storage requirements and enhance
efficiency by storing the delayed expression for a maximum delay time
given by DelayMax.
The following relation must hold: 0 <= delayTime <= delayMax,
otherwise an error occurs. If delayMax is not supplied in the argument
list, delayTime  needs to be a parameter expression.

cardinality(c)

Returns the number of (internal and external) occurrences of connector
instance c in connect statements of the current model as an Integer
number.
For a detailed example on the use of cardinality, see the section on
connection dependent connection equations on Error! Bookmark not
defined. in Chapter 4.

direction(c)

The function direction(c) gives information about the direction of
the connection, provided that cardinality(c)== 1, i.e. the connector
c is involved in exactly one connection.
For a connection clause connect(c1,c2)fulfilling that constraint,
direction(c1) returns -1 and direction(c2) returns 1.
See also Section Error! Reference source not found. on page Error!
Bookmark not defined..
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1.16.4 Event Iteration and the Pre Function

Regarding event iteration, a new event is triggered automatically if at the time instant t of the current
event it is the case that for at least one variable v, “pre(v)<>v” after the active model equations have
been evaluated. Typically a discontinuity causes the value of a discontinuous variable v to be different
from its predecessor value pre(v). In this case the model equations are reevaluated, until for all
variables v used in pre-operators it is the case that “pre(v)==v”. This evaluation sequence is called
event iteration. After such an evaluation sequence the solution process for the continuous part of the
equation system is resumed, also known as ”continuous integration”. More detailed information regarding
this subject is available in Chapter ??.

                                                  


