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Abstract. In recent years heterogeneous multi-core systems have been
given much attention. However, performance optimization on these plat-
forms remains a big challenge. Optimizations performed by compilers
are often limited due to lack of dynamic information and run time en-
vironment, which makes applications often not performance portable.
One current approach is to provide multiple implementations for the
same interface that could be used interchangeably depending on the call
context, and expose the composition choices to a compiler, deployment-
time composition tool and/or run-time system. Using off-line machine-
learning techniques allows to improve the precision and reduce the run-
time overhead of run-time composition and leads to an improvement of
performance portability. In this work we extend the run-time composition
mechanism in the PEPPHER composition tool by off-line composition
and present an adaptive machine learning algorithm for generating com-
pact and efficient dispatch data structures with low training time. As
dispatch data structure we propose an adaptive decision tree structure,
which implies an adaptive training algorithm that allows to control the
trade-off between training time, dispatch precision and run-time dispatch
overhead.

We have evaluated our optimization strategy with simple kernels (matrix-
multiplication and sorting) as well as applications from RODINIA bench-
mark on two GPU-based heterogeneous systems. On average, the preci-
sion for composition choices reaches 83.6 percent with approximately 34
minutes off-line training time.

Keywords: Autotuning, Heterogeneous architecture, GPU

1 Introduction

Recently GPU-based heterogeneous multi-core system have been given much
attention, because GPUs have shown remarkable performance advantage over
CPUs for suitable computations with sufficiently large problem size. However,
effective utilization of those systems often requires much programming effort



(programmability problem), and moreover, we often observe a performance de-
crease when porting the code to a new platform without re-optimization (per-
formance portability problem).

For building performance portable applications, one solution is to provide
multiple implementation variants of the same functionality that may execute
on different platforms, internally use different programming models, different
algorithms and/or different compilation settings, or encapsulate library calls or
accelerator-specific code. The execution time of such variants will generally de-
pend on the resources available for execution (e.g., cores or accelerator) and other
call context properties such as problem sizes, but also on tunable parameters of
the implementation variants themselves such as buffer sizes or tiling factors.

The PEPPHER [6,4] component model provides a XML-based metadata lan-
guage that allows to specify descriptors that externally annotate PEPPHER
components and interfaces. A component is an annotated software module adher-
ing to an PEPPHER interface for which multiple implementation variants may
be available. Beyond the traditional functional interface properties such as pa-
rameter types and direction, component metadata of an implementation variant
includes the implemented interface (functionality), dependences on other PEP-
PHER components or third-party software packages, compilation commands,
tunable parameters, platform and resource requirements, and possibly also stat-
ically provided performance models that allow to predict average-case execution
time as a function of values taken from a call context instance. Hence, PEP-
PHER allows to delay and expose the selection decisions to later stages (e.g.,
at runtime) when more information about the invocation context and resource
availability (e.g. from the run-time environment) is available. In this way, the
selection of an implementation variant for an interface function call is completely
automatized and not hardcoded in the application, allowing for automated re-
optimizing of the selection mechanism when porting a PEPPHER application
to a new platform.

In order to better utilize different kinds of processing units by appropriate
automatic selection, a reasonably good performance model for predicting the
fastest implementation variant for a given context instance is required. The two
trends for building such performance models are towards an analytical model
and an empirical model. It is normally considered that modern computer systems
(including heterogeneous ones) are too complex for a reasonably good analytical
performance model, thus empirical models constructed from measurements of
test code on the target system have become more practical nowadays. Machine-
learning techniques have shown potential for building such empirical performance
models. In essence, machine learning constructs from results of example runs a
surrogate function that approximates an unknown selection function for a (new)
target architecture.

Empirical automated performance tuning (or autotuning for short) of best-
variant selection by measurements and learning can be performed on-line or off-
line. On-line learning is done at runtime, after first instrumented invocations of
components have been executed with random selection decisions, and represents



the selection function in an internal data structure, such as a hash table as
applied in StarPU [3].

On-line machine learning performs selection decisions purely based on recorded
performance history data and thus does not require any additional performance
modeling information by the component provider, but can not offer good pre-
diction results until enough representative example measurements are collected,
and incurs additional runtime overhead for that. Off-line tuning can ease the
problem by actively invoking those representative training examples manually
or automatically; however, the number of training examples generated with a
straightforward strided scanning of context property values (e.g., problem sizes)
grows very large if suitable precision of performance prediction and best-variant
selection shall be achieved.

In this work we suggest a new approach to off-line tuning with a novel adap-
tive generation of training data and representation of the constructed selection
(dispatch) function. In our approach, the training time can be reduced remark-
ably while a reasonable prediction precision can still be achieved. It can also
be integrated with compile time tools such as composition tools, thus enhance
static composition by better precision. Furthermore, it can be integrated with
run-time systems such as StarPU by dynamically exposing only the best imple-
mentations of the different kinds of processing units to reduce run-time selection
overhead.

The remainder of this paper is organized as follows: Section 2 introduces the
PEPPHER component model and composition tool. In section 3 we discuss our
adaptive offline tuning approach in detail. In section 4 we show and discuss ex-
perimental results. Section 5 lists related work; section 6 concludes and discusses
future work.

2 PEPPHER Components and Composition

A PEPPHER component is an annotated software module that implements a
specific functionality declared in a PEPPHER interface. A PEPPHER interface
is defined by an interface descriptor, an XML document that specifies the name,
parameter types and the access types (read, write or both) of a function to be
implemented, and in addition specifies which performance metrics (e.g. average
case execution time) the prediction functions of component implementations
must provide. Interfaces can be generic in static entities such as element types
or code; genericity is resolved statically by expansion, as with C++ templates.

Applications for PEPPHER are currently assumed to be written in C/C++.
Several component variants may implement the same functionality (as defined
by a PEPPHER interface), e.g. by different algorithms or for different execu-
tion platforms. These implementation variants can exist already as part of some
standard library (e.g. CUBLAS components for CUDA) or can be provided by
the programmer. The PEPPHER framework provides support for implementa-
tion repository to manage evolution of implementation variants to increase the
re-use potential in the long run. Also, more component implementation variants



may be generated automatically from a common source module, e.g. by spe-
cial compiler transformations or by instantiating or binding tunable parameters.
These variants differ by their resource requirements and performance behavior,
and thereby become alternative choices for composition whenever the (interface)
function is called.

In order to prepare and guide variant selection, component implementations
need to expose their relevant properties explicitly to the composition tool. Each
PEPPHER component implementation variant thus provides its own compo-
nent descriptor, an XML document that contains information (meta-data) about
properties such as the provided and required interface(s), source files, compi-
lation commands and resource requirements, tunable parameters, further con-
straints on composition, and a reference to a performance prediction function.

The main module of a PEPPHER application is also annotated by its own
XML descriptor, which states e.g. the target execution platform and the overall
optimization goal.

The PEPPHER framework automatically keeps track of the different imple-
mentation variants for the identified components, technically by storing their
descriptors in repositories that can be explored by the composition tool. The
composition tool reads the metadata of interfaces and components used in the
application and generates, for each call to a PEPPHER interface, the necessary
code for pre-selecting (dispatching) a suitable implementation variant and creat-
ing a task for the PEPPHER runtime system that will execute that call. Compo-
sition points of PEPPHER components are restricted to calls on general-purpose
execution units only. Consequently, all component implementations using hard-
ware accelerators such as GPUs must be wrapped in CPU code containing a
platform-specific call to the accelerator.

Component invocations result in tasks that are managed by the PEPPHER
run-time system and executed non-preemptively. PEPPHER components and
tasks are stateless. However, the parameter data that they operate on do have
state. For this reason, parameters passed in and out of PEPPHER components
may be wrapped in special portable, generic, STL-like container data structures
such as Vector and Matrix with platform-specific implementations that inter-
nally keep track of, e.g., in which memory modules of the target system which
parts of the data are currently located or mirrored (smart containers). The con-
tainer state becomes part of the call context information as it is relevant for
performance prediction.

Composition tool Composition is the selection of a specific implementation vari-
ant (i.e., callee) for a call to component-provided functionality and the allocation
of resources for its execution. Composition is made context-aware for perfor-
mance optimization if it depends on the current call context, which consists of
selected input parameter properties (such as size) and currently available re-
sources (such as cores or accelerators). The context parameters to be considered
and optionally their ranges (e.g., minimum and maximum value) are declared
in the PEPPHER interface descriptor. We refer to this considered subset of a
call context instance’s parameter and resource values shortly as a context in-



stance, which is thus a tuple of concrete values for context properties that might
influence callee selection. Hence, composition maps context instances to imple-
mentation variants [12].

Composition can be done either statically or dynamically. Static composi-
tion constructs off-line a dispatch function that is evaluated at runtime for a
context instance to return a function pointer to the expected best implementa-
tion variant [12]. Dynamic composition generates code that delegates the actual
composition to a context-aware runtime system that records performance his-
tory and construct a dispatch mechanism on-line to be used and updated as the
application proceeds.

Composition can even be done in multiple stages: First, static composition
can narrow the set of candidates for the best implementation variant per context
instance to a few ones that are registered with the context-aware runtime system
that takes the final choice among these at runtime.

Dynamic composition is the default composition mechanism in PEPPHER.
In the special case where sufficient meta-data for performance prediction is avail-
able for all selectable component variants, composition can be prepared com-
pletely statically and co-optimized with resource allocation and scheduling, thus
bypassing the runtime system; see e.g. [11,12].

The PEPPHER composition tool [6] deploys the components and builds an
executable PEPPHER application. It recursively explores all interfaces and com-
ponents that (may) occur in the given PEPPHER application by browsing the
interfaces and components repository.

The composition tool processes the set of interfaces (descriptors) bottom-up
in reverse order of their components’ required interfaces relation (lifted to the
interface level) [12]. For each interface (descriptor) and its component imple-
mentations, the composition tool performs the following tasks:

1. It reads the descriptors and internally represents the metadata of all com-
ponent implementations that match the target platform, expands generic
interfaces and components, and generates platform-specific header files from
the interface descriptor.

2. It looks up prediction data from the performance data repository or runs
microbenchmarking code on the target platform, as specified in the compo-
nents’ performance meta-data.

3. It generates composition code in the form of stubs (proxy or wrapper func-
tions) that will perform context-aware composition at runtime. If sufficient
performance prediction metadata is available, it constructs performance data
and dispatch tables for static composition by evaluating the performance
prediction functions for selected context scenarios [11,12], which could be
compacted by machine learning techniques [5]. Otherwise, the generated
composition code contains calls to the PEPPHER run-time system to del-
egate variant selection to runtime, where the runtime system can access its
recorded performance history to guide variant selection, in addition to other
criteria such as operand data locality.



4. It calls the native compilers, as specified for each component, to produce a
binary of every patched component source.

Finally, it links the application’s main program and its compiled components
together with the generated and compiled stubs, the PEPPHER library and the
PEPPHER runtime system to obtain an executable program.

3 Adaptive off-line tuning

3.1 Motivation

Consider a typical example where a component’s implementation variants for
execution on different kinds of processors show performance advantages for dif-
ferent variants with respect to different input sizes, as shown in Figure 1. In a
subrange of call context instance values (here, of the number of array elements to
sort) where one implementation variant runs fastest among all implementations
variants we call that implementation variant the winner for that range of input
sizes.

We can map a n-dimensional range to a n-dimensional space. A specific
context instance can also be considered as a point in a n-dimensional space.
Some points or hyperplanes divide winning ranges of different implementations,
we call those the transition points or hyperplanes. Ideally if all those points or
hyperplanes can be found effectively, we can construct a compact representation
which requires small overhead for both store and look-up, and it will provide
100 percent precision of winner prediction.

One may argue that the characteristics shown in Figure 1 may not apply
for other problems. In this paper, we test three other benchmark applications,
and these applications surprisingly conform to the characteristics of Figure 1,
which shows an interesting property: The winning range for each implementa-
tion variant is convex, i.e., if two points on a one-dimensional space have the
same winner, then it wins on all points between these. Our pruning strategy
in this paper is based on this convexity assumption: for n-dimensional space, if
all vertices of a space have the same winner, then it wins on all points in the
space. Based on this assumption, we construct an algorithm and data structure
to approximate and represent these transition points.

3.2 Hybrid static/dynamic composition with off-line training

Unlike static composition, dynamic composition can be guided by access to the
run-time context for each invocation, and thus owns prerequisites for better
selection precision at the cost of some run-time overheads. The hope is that the
time saved by invoking the fastest implementation variant is larger than the
overhead of the dynamic selection process, and thus portable performance is
increased.

Dynamic composition with on-line training by the runtime system shows
some disadvantages: it requires a certain number of representative executions



Fig. 1. Performance for matrix-matrix
multiplication variants

before it can offer acceptable selection precision for dynamic composition; how-
ever, it is often not guaranteed that those representative executions will happen
during a sufficiently long period of time. As an alternative, we consider off-line
training and dynamic composition. In off-line training, measuring performance
for every possible runtime context instance (which would offer perfect selection
and precise representation of this information) is often not feasible, thus a dy-
namic composer is forced to make predictions based on a limited set of training
examples.

The space C = I1 × ...ID of context instances for a component with D at-
tributes in the context instances is spanned by the D context attribute axes
with considered (user-specified or default) finite intervals Ii of discrete values,
for i = 1, ..., D. A continuous subinterval of an Ii is called a range, and any cross
product of such subintervals on the D axes is called a subspace of C. Hence,
subspaces are ”rectangular”, i.e., subspace borders are orthogonal to the axes of
C.

In an experimental version of our composition tool, we offer a precision-
controllable offline-trainer and dynamic composer based on ranges, i.e. it tries
to automatically approximate the (usually, non-rectangular and possibly non-
convex) subsets in C where one particular implementation variant performs bet-
ter than all the others, by a set of subspaces.

Our idea is to find sufficiently precise approximations by adaptively recur-
sive splitting of subspaces by splitting the intervals Ii, i = 1, ..., D. Hence, sub-
spaces are organized in a hierarchical way (following the subspace inclusion re-
lation) and represented by a 2D-ary tree (cf. binary space partitioning trees and
quadtrees/octrees etc.).

Our algorithm for off-line measurement starts from a trivial tree TC that has
just one node, the root (corresponding to the whole C), which is linked to its
2D corner points (here, the 2D outer corners of C) that are stored in a separate
table of recorded performance measurements. The implementation variants of
the component under examination are run with each of the corresponding 2D

context instances, possibly multiple times for averaging, using a context instance
generator provided with the metadata of the component; a variant whose exe-



cution exceeds a timeout for a context instance are aborted and not considered
further for that context instance. Now we know the winning implementation
variant for each corner point and store it in the performance table, too, and TC
is properly initialized.

Fig. 2. Cutting a space recursively into subspaces, and the resulting dispatch tree.

Consider any leaf node v in the current tree Tt representing a subspace
Sv = Rv1 × ... × RvD. If the same specific implementation variant runs fastest
on all context instances corresponding to the 2D corners of Sv, we stop further
exploration of that subspace and will always select that implementation when-
ever a context instance at run-time falls within that subspace. Otherwise, the
subspace Sv may be refined further. Accordingly, the tree is extended by creating
new children below v which correspond to the newly created subspaces of Sv.

By iteratively splitting the ranges in FIFO order, we generate an adaptive
tree structure to represent the performance data and selection choices, which we
call dispatch tree.

The user can specify a maximum depth (training depth) for this iterative
refinement of the dispatch tree, which implies an upper limit on the runtime
lookup time, and also a maximum tree size (number of nodes) beyond which
any further refinement is cut off. Third, the user may specify a timeout for
overall training time, after which the dispatch tree is considered final.

Run-time lookup searches through the dispatch tree starting from the root
and descending into subspace nodes according to the current runtime context
instance. If the search ends at a closed leaf, i.e., a leaf node with equal winners
on all corners of its subspace, the winning implementation variant can be looked
up in the node. If the search ends in an open leaf with different winners on its
borders (e.g., due to reaching the specified cut-off depth), we perform an ap-
proximation within that range by choosing the implementation that runs fastest
on the subspace corner with the shortest Euclidean distance from the run-time
context instance.

The deeper the algorithm explores the tree, the better precision the dynamic
composer can offer for the composition choice; however, it requires more off-line
training time and more runtime lookup overhead as well. We give the option to
let the user decide the trade-off between training time and precision by setting
the cut-off depth, size and time in the component interface descriptor.



3.3 Example for hybrid composition with adaptive off-line training

Let us consider a matrix-matrix multiplication example with two implementation
variants, the well-known sequential version and a parallel version parallelized by
pthreads with a fixed number of 4 threads. In the off-line training phase, per-
formance data is measured by one execution per context instance; at execution
time of the composed code with dynamic selection, performance is averaged over
10 runs per context instance.

Fig. 3. Execution time for hybrid com-
position with a 41-node lookup tree de-
termined by the adaptive refinement
training algorithm with cut-off depth
3. — The hardware we use is a multi-
core system with 16 CPUs, where each
CPU is an Intel(R) Xeon(R) CPU
E5520 running at 2.27GHz with 8192
KB cache. The operating system is
Linux 3.0-ARCH and the compiler is
gcc 4.6.1.

As the resources (here, number of threads for OpenMP) was fixed, a context
instance is just a triple consisting of the three problem sizes that define the
operand matrix dimensions. The training space of context instances was chosen
as [1 : 1000, 1 : 1000, 1 : 1000], i.e., comprising 109 possible context instances
(input sizes). As tree data structure we used an octree with simultaneous refine-
ment of subspaces along all three dimensions. The cut-off depth for the tree was
set to 3. With these settings, the off-line training time (i.e., for the tree construc-
tion including the measurements on the target system) takes 228 seconds and
the constructed tree has 41 nodes, where the adaptive tree refinement is done
mostly for subspaces with smaller problem sizes. By comparing the composed
code at runtime with the actually fastest component for each context measured
for square test matrices (see Figure 3), we find that the tree lookup yields a
dynamic selection precision of 92%. From Figure 3 we can also see that the
overhead for performing dynamic selection is rather negligible. For some context
instance the dynamically selected implementation variant runs even faster than
the same one without dynamic selection; such anomalies are mostly due to the
operating system’s interruptions during measuring; in principle, the composed
code should always run slightly slower than the best individual component, due
to run-time lookup overhead.

3.4 Selection

At initialization time, we read the dispatch tree from the file generated in the
training phase, and add a translation table that maps each implementation vari-
ant’s symbolic name to its function address.

The wrapper function generated by the composition tool selects the relevant
parameter values from the call context and uses them to look up the dispatch



tree and thereby the right function address, which is filled in the descriptor for
the task to be submitted to the runtime system. For open leaves, it chooses the
winner of the corner that has the shortest Euclidean distance from the actual
context instance.

4 Experimental results

Platform We use two GPU based heterogeneous systems called Fermi and Cora.
A brief description of the two platforms is shown in Table 1.

Table 1. Platform description

Machine
name

CPU
cores

CPU type GPUs GPU type OS Compiler

Fermi 16 Intel(R) Xeon(R) CPU
E5520 @ 2.27GHz

2 two Tesla M2050 3.2.1-2-
ARCH

gcc 4.6.2 and nvcc
V0.2.1221

Cora 16 Intel(R) Xeon(R) CPU
X5550 @ 2.67GHz

3 two nVidia Tesla C2050 and
one Tesla C1060

RHEL 5.6 gcc 4.1.2 and nvcc
V0.2.1221

Benchmark For the evaluation we have chosen 4 benchmark problems: matrix-
matrix multiplication, sorting, and two RODINIA benchmarks: path finder and
backpropagation. A detailed description is shown in Table 2.

Table 2. Benchmark test settings

Benchmark feature modeling Range space size Implementation variants

Matrix-matrix
multiplication

row size, column size of first
matrix; column size of sec-
ond matrix

(1, 1, 1) to
(3000, 3000,
3000)

2.7E+10 Sequential implementation, CUDA im-
plementation, Blas implementation,
Pthread implementation

Sorting array size; discretization of
array values distribution (
sampled number of inver-
sions )

(1,0) to
(100000,10)

1000000 bubble sort, insertion sort, merge sort,
quick sort, CUDA thrust sort (only on
Fermi)

Path finder row; column (1,1) to
(10000,20000)

200000000 OMP implementation, CUDA imple-
mentation

Back propoga-
tion

array size (1000) to
(100000)

99000 OMP implementation, CUDA imple-
mentation

Methodology We first train each benchmark problem with training depth
from 0 to 4. If the training time exceeds 3 hours then we terminate the training
process. Each benchmark is trained twice, with one version which prunes closed
space in the tree representation and another which performs no pruning at all.

The test points are chosen evenly from the training space so that every sub-
space in the dispatch tree is used for performance prediction.

Experimental results on two machines The test results for 4 benchmarks on
Fermi are shown in Table 3. In particular, for backpropagation, the performance
behavior for different training depths on Fermi are shown in Figure 4.

The results for the 4 benchmarks on Cora are shown in Tables 4.



Table 3. Test results for 4 benchmarks on Fermi (td: Training depth; tt: Training
time; ato: average time overhead on dynamic selection; nn: Number of nodes generated
in the tree representation)

Matrix-matrix multiplication on Fermi, 343 test points
td pruning closed space no pruning for closed space

tt (s) Precision (%) ato (µs) nn tt (s) Precision (%) ato (µs) nn
0 85 51 17 1 88 50 15.9 1
1 755 48 21 9 762 48 20.4 9
2 6118 62 23 73 6252 62 23 73

Sorting on Fermi, 110 test points
pruning closed space no pruning for closed space

0 233 36 4 1 233 36 3.6 1
1 1035 61 4.9 5 1035 64 4.9 5
2 2485 80 5.5 17 4071 80 5.6 21

Back propagation on Fermi, 20 test points
pruning closed space no pruning for closed space

0 7 55 9 1 6 55 9 1
1 7 80 11 3 6 80 10 3
2 8 90 13.6 5 8 90 11.8 7
3 7 95 12 7 13 95 12.5 15
4 8 100 13.1 9 18 100 14 31

Path finder on Fermi, 200 test points
pruning closed space no pruning for closed space

0 36 59 12.6 1 29 59 12.7 1
1 161 77 16.5 5 122 77 14.5 5
2 371 86 16.5 17 497 86 15.8 21
3 609 95 16.8 45 1992 95 20.9 85

Discussion The sorting, pathfinder and backpropagation benchmarks have
shown a good result. The result for the matrix-matrix multiplication bench-
mark is a little disappointing, because it has a relatively large training space.
Most subspaces in its tree are open ones and for the points near their corners the
Euclidean distance criterion can give a better approximation while in the large
central area of these subspaces, the precision can not be guaranteed. Since we
train on a large space, which means large input sizes, a single training execution
may take a long time; for this reason, training depths larger than 3 become not
practical and not considered in this benchmark testing.

From the test results we can see that in most cases the precision of prediction
of the winner implementations increases with the depth of the dispatch tree. This
is expected because, as open subspaces can be partly closed by exploring deeper
levels, the precision increases. This trade-off is exposed to the users.

We also can see that for a relatively short training time, we get a reasonable
prediction precision in total which means pruning closed subspaces works and
the assumption that we can treat all points in a closed subspace equally holds
for those benchmarks. Another evidence for the assumption is the comparison
between two version of test results, one which perform closed subspace pruning
and one which does not. We get almost the same results from the two set of
tests on all benchmarks we use, thus it is safe not to explore closed space in the
training phase.



Fig. 4. Performance with
maximum depths 0 to 4
for the backpropagation
benchmark on Fermi.

The time overhead for run-time selection is acceptable, on the level of mi-
croseconds. Since we only explore a shallow depth of a dispatch tree, the number
of nodes generated is small, too, so the memory overhead is acceptable as well.

As for the relation between precision and performance, we can illustrate it in
Figure 4 for backpropagation. Comparing constant invocation of the OpenMP
implementation variant with dynamic selection among all available variants, we
see that for subspaces where the OpenMP variant wins, the performance of all
variants only differs by a few microseconds; for the subspace where OpenMP does
not win, we gain performance. The performance gained might be remarkable if
some variant scaling badly is constantly invoked. From the figures we can also
see that wrong decisions for points within open subspaces often happen near
transition points between different winners, and often the performance difference
of implementation variants at points near transition points is low, thus a wrong
decision does not yield a performance penalty as large as in other points in the
subspace.

In general, our approach can pick the best implementation variant for most
of the cases for the different platforms.

We observed an anomaly for exploration of subspace in matrix-matrix mul-
tiplication on Fermi. When the depth increases from 0 to 1, with more training
time, the precision drops. One possible explanation is that when splitting some
space where the winner on one of the corners is shared by a minority of the other
corners, the Euclidean distance criterion will cause a majority of points to be
predicted wrongly, which with the coarser dispatch tree are predicted correctly.
Continuing to refine that subspace may make the precision increase again; how-
ever, continuing the exploration for matrix-matrix multiplication on such large
space is so time-consuming that we have to postpone further investigation of
this problem to future work.



Table 4. Test results for 4 benchmarks on Cora

Matrix-matrix multiplication on Cora, 343 test points
td pruning closed space no pruning for closed space

tt (s) Precision (%) ato (µs) nn tt (s) Precision (%) ato (µs) nn
0 67 48 17.6 1 63 48 18.3 1
1 634 49 22.5 9 621 49 22.2 9
2 5115 67 26.4 73 5009 68 26.2 73

Sorting on Cora, 110 test points
pruning closed space no pruning for closed space

0 162 34 5.3 1 159 35 5.5 1
1 714 62 7.1 5 710 62 8.5 5
2 1747 80 8.6 17 2809 78 8.6 21

Back propagation on Cora, 20 test points
pruning closed space no pruning for closed space

0 3 55 11.9 1 3 60 13 1
1 4 85 12.6 3 4 90 14.7 3
2 4 95 16.1 5 5 95 14 7
3 4 100 13.4 7 7 95 15.2 15

Path finder on Cora, 200 test points
pruning closed space no pruning for closed space

0 21 39 12.5 1 21 39 12.1 1
1 97 67 14.5 5 92 67 16.1 5
2 219 82 15.6 17 400 82 16.2 21
3 367 95 15.9 45 1511 95 18.1 85

5 Related work

Techniques for automated performance tuning have been considered extensively
in previous work; they are applied e.g. in generators of optimized domain-specific
libraries (such as basic linear algebra [25,14,21], reduction [26], sorting [15,21]
or signal transforms [8,20,17,7]), iterative compilation frameworks (e.g. [16]), or
for the optimized composition of general program units [11,13,2,1,24], e.g. the
components in our case.

Automated performance tuning usually involves three fundamental prepara-
tory tasks: (1) search through the space of context property values, (2) generation
of training data and measurements on the target system, (3) learning a decision
function / rule (e.g. for best variant selection, decomposition, or settings for
tunable parameters), or alternatively (3a) learning a predictor for performance
and then (3b) decide / optimize based on that predictor among the remain-
ing options. In our approach, these three tasks are tightly coupled to limit the
amount of measurement time and representation size required, while most other
approaches decouple at least two of these tasks.

Search, measurements and learning can each be performed off-line (i.e., at de-
ployment time or compile time) or on-line (i.e., at run time), or as a combination
of both. In our approach, all tasks are done off-line at component deployment
time, while all are performed at runtime in the StarPU runtime system by con-
tinuously recording measurements from the running program and using these
data for future decisions [2].

Kessler and Löwe [11] propose a methodology for optimized composition of
grey-box components. The component provider offers additional knowledge such
as time functions for performance prediction, which might include data obtained



from microbenchmarking, measuring, direct prediction or hybrid prediction. Pre-
dictions are made for a regularly sampled (dense) space of context instances,
including composition of prediction functions for recursive components in a dy-
namic programming algorithm. Based on those predictions, a dispatch table and
dynamic selection code are generated and injected into the components for run-
time selection. The dispatch tables can be a-posteriori compressed using various
machine learning techniques such as decision tree, decision graph, Bayesian clas-
sifier and SVM, where the decision tree was empirially found to be most effective
[5]. In contrast, our current work does the compression a-priori, thus avoiding
excessive prediction or measurements.

PetaBricks [1] provides a framework with language and compiler support for
exposing implementation variant choices. It also contains an off-line autotun-
ing system which starts to test with a small input size and doubles the size of
the input on each later iteration. They assume that optimal choices for smaller
subproblems are independent of the larger problem, so they construct new com-
position candidates incrementally from small input sizes to larger ones. The
algorithmic choices are made off-line in the output of the compiler.

Elastic computing [24] lets the programmer transparently utilize the hetero-
geneous computing resources by providing a library of elastic functions. The
autotuner trains itself from measurements (which are not further specified) and
then uses a linear regression model for predicting performance of untested input
values.

Grewe and O’Boyle [9] suggested an approach for statically choosing the
best mapping between tasks and unit types (CPU, GPU). Static features such
as numbers of float operations, are extracted from a set of programs, and and
scheduling decisions are fed to a SVM classifer. Then at compile time, the deci-
sion for distribution of work load on different kinds of processors is made.

ABCLibScript[10] is a directive system that provides autotuning function-
ality on numerical computations within the FIBER framework. The choice of
performance-related parameters, such as unrolling depth and block length, is
specified for training execution. A performance model is also specified by the
users, and generated together with training results. At run-time, best code re-
gions are selected.

Danylenko et al. [5] compares 4 different machine-learning approaches, De-
cision Trees, Decision Diagrams, Naive Bayes and SVM on sorting benchmark
in the field of context-aware composition for a-posteriori compression of the dis-
patch function. Results show Decision Diagram performs better in scalability,
and almost the same in prediction accuracy and decision overhead comparing
with other 3 approaches.

Singer and Veloso [19] applied a back-propagation neural netork for perfor-
mance prediction in the field of signal processing. Results show that choices of
different combination of features affect remarkably the prediction precisions.

[22] presents an unsupervised learning approach (fuzzy clustering algorithm)
for a machine learning based compiler. Significant reduction in the training cost
is achieved by grouping training programs into clusters using ’ratio of assembly



instructions to the total program instructions’ as a feature vector. After cluster-
ing, they carried training executions on one (randomly selected) representative
from each cluster, recording the best execution configuration for each of the
selected programs. This is an alternative approach to reduce training time.

In [23], Wang and O’Boyle developed two predictor functions (data-sensitive
and data-insensitive) to predict the best OpenMP execution configuration (num-
ber of OpenMP threads, scheduling policy) for an OpenMP program on a given
architecture. They use two machine learning algorithms (Artificial Neural Net-
work and Support Vector Machine) and train them using code, data and runtime
features extracted via source to source instrumentation.

Our approach can be considered as an adaptive variant of decision tree learn-
ing. Decision tree learning, often based on C4.5 [18] or similar tools, is also used
in many other approaches, e.g. in [20,21,26,7]. A direct comparison of our learn-
ing algorithm with C4.5 and other learning methods is planned for future work.

6 Conclusions and Future Work

We have developed an adaptive off-line training algorithm and dispatch tree
representation that allows to pick the best implementation variants for most
of the cases on different GPU-based heterogeneous machines, hence it improves
performance portability. Our method allows to reduce training time and enables
the user to trade off prediction precision, runtime overhead and training time.

Our approach for pruning closed space is based on the assumption that,
if corners of a space show a common winner, all points in the space would
have the same winner, which holds in most of our benchmark applications. The
assumption needs to be further investigated with more applications, and refined
prediction methods for open spaces should be developed. Note that, in cases
where the user knows that the assumption does not hold, a better accuracy
could then be enforced by also refining closed space within the given depth
limit, at the expense of a larger dispatch tree and longer training time.

Further improvements of our method are possible and will be considered in
future work. For instance, timeouts for individual measurements (applicable on
CPUs) and aborting variants under measurement that exceed the current winner
of a training point can save more training time. Also, the user may accept a
tolerance such that even suboptimal variants not slower than the winner by that
tolerance could also be considered winners in order to close spaces earlier.
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nier. StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures. Concurrency and Computation: Practice and Experience, Special
Issue: Euro-Par 2009, 23:187–198, February 2011.

4. Siegfried Benkner, Sabri Pllana, Jesper Larsson Träff, Philippas Tsigas, Uwe Dolin-
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