

Get my pizza right: Repairing missing is-a relations in ALC ontologies

Patrick Lambrix, Zlatan Dragisic and Valentina Ivanova

Linköping University Sweden

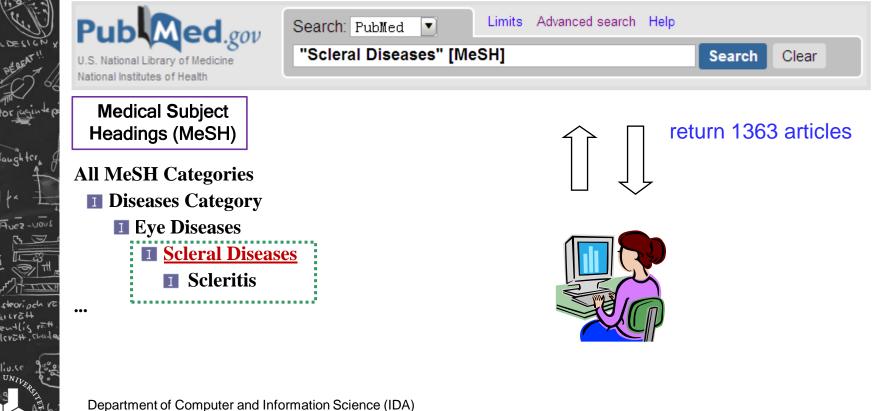
Introduction

- Developing ontologies is not an easy task
- It may happen that ontologies are
 - Incorrect
 - Incomplete

Defects in ontologies

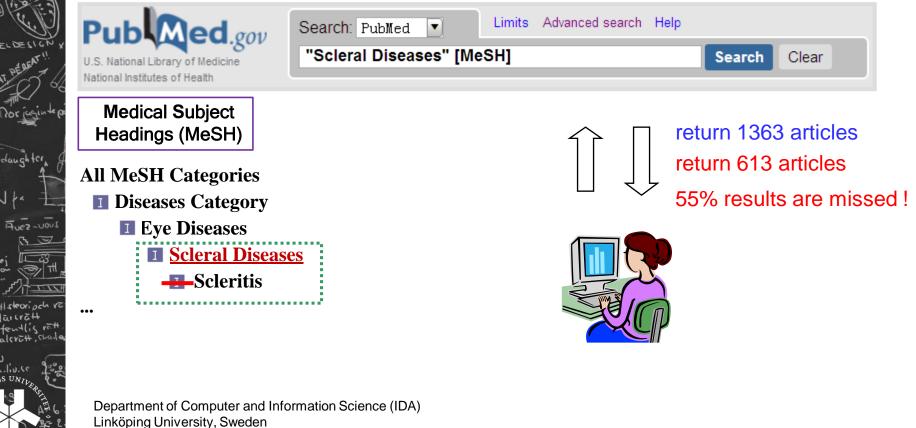
- Syntactic defects
 - e.g. wrong tags or incorrect format
- Semantic defects
 - e.g. unsatisfiable concepts, incoherent and inconsistent ontologies
- Modeling defects
 - e.g. wrong or missing relations

Example – missing is-a relations


- In 2008 Ontology Alignment Evaluation Initiative (OAEI) Anatomy track, task 4
 - Ontology MA : Adult Mouse Anatomy Dictionary (2744 concepts)
 - Ontology NCI-A : NCI Thesaurus anatomy (3304 concepts)
 - 988 mappings between MA and NCI-A
 - 121 missing is-a relations in MA
 - 83 missing is-a relations in NCI-A

Linköping University, Sweden

Influence of defects in structure


Ontology-based querying.

Influence of defects in structure

Incomplete results from ontology-based queries

Debugging defects

- Two phases:
 - Detection
 - Repair
 - Missing is-a relations: TBox abduction problem

Example – missing is-a relations

 $Pizza \stackrel{.}{\sqsubset} \top$ Missing relation: $PizzaTopping \stackrel{.}{\sqsubseteq} \top$ MyPizza $\stackrel{.}{\sqsubset}$ FishyMeatyPizza hasTopping $\Box \top \times \top$ AnchoviesTopping $\dot{\Box}$ PizzaTopping MeatTopping \sqsubseteq PizzaTopping HamTopping \sqsubseteq MeatTopping ParmaHamTopping \Box PizzaTopping FishTopping \Box PizzaTopping \Box \neg MeatTopping TomatoTopping \Box PizzaTopping $\Box \neg$ MeatTopping $\Box \neg$ FishTopping GarlicTopping \square PizzaTopping \square \neg MeatTopping \square \neg FishTopping $MvPizza \doteq Pizza \sqcap \exists hasTopping.AnchoviesTopping \sqcap \exists hasTopping.ParmaHamTopping$ FishyMeatyPizza \doteq Pizza $\sqcap \exists$ hasTopping.FishTopping $\sqcap \exists$ hasTopping.MeatTopping MyFruttiDiMare \doteq Pizza $\sqcap \exists$ hasTopping.AnchoviesTopping $\sqcap \exists$ hasTopping.GarlicTopping $\sqcap \exists$ hasTopping.TomatoTopping $\sqcap \forall$ hasTopping.(AnchoviesTopping \sqcup GarlicTopping \sqcup TomatoTopping) VegetarianPizza \doteq Pizza $\sqcap \neg \exists$ hasTopping.FishTopping $\sqcap \neg \exists$ hasTopping.MeatTopping NonVegetarianPizza \doteq Pizza $\sqcap \neg$ VegetarianPizza

Repairing actions:

 $\begin{array}{l} \{ MyPizza \sqsubseteq FishyMeatyPizza \} \\ \{ AnchoviesTopping \sqsubseteq FishTopping, ParmaHamTopping \sqsubseteq MeatTopping \} \\ \{ AnchoviesTopping \sqsubseteq MeatTopping, ParmaHamTopping \sqsubseteq FishTopping \} \end{array}$

Outline

- Definitions
- Approach
- Implementation
- Future work

Outline

- Definitions
- Approach
- Implementation
- Future work

Generalized TBox abduction problem

- Given
 - KB a knowledge base in \mathcal{L}
 - □ { $C_i \sqsubseteq D_i$ | $1 \le i \le m$ } where C_i , D_i are satisfiable w.r.t. *KB*
 - □ $KB \cup \{ C_i \sqsubseteq D_i \mid 1 \le i \le m \}$ is coherent
- Find
 - □ $S_{GT} = \{G_j \sqsubseteq H_j \mid j \le n\}$ such that $KB \cup S_{GT} \vDash C_i \sqsubseteq D_i$
- In our setting C_i , D_j , G_j , H_j are named concepts

Description logic ALC

Concepts

Atomic concept	А
Universal concept	т
Bottom concept	T
Concept negation	¬С
Intersection of concepts	СпD
Union of concepts	С⊔D
Universal restriction	∀R.C
Existential restriction	∃R.C

Axioms

- Terminological axioms ($C \sqsubseteq D, C \equiv D$) TBox
- Assertional axioms (C(a), R(a,b)) ABox

Acyclic terminologies

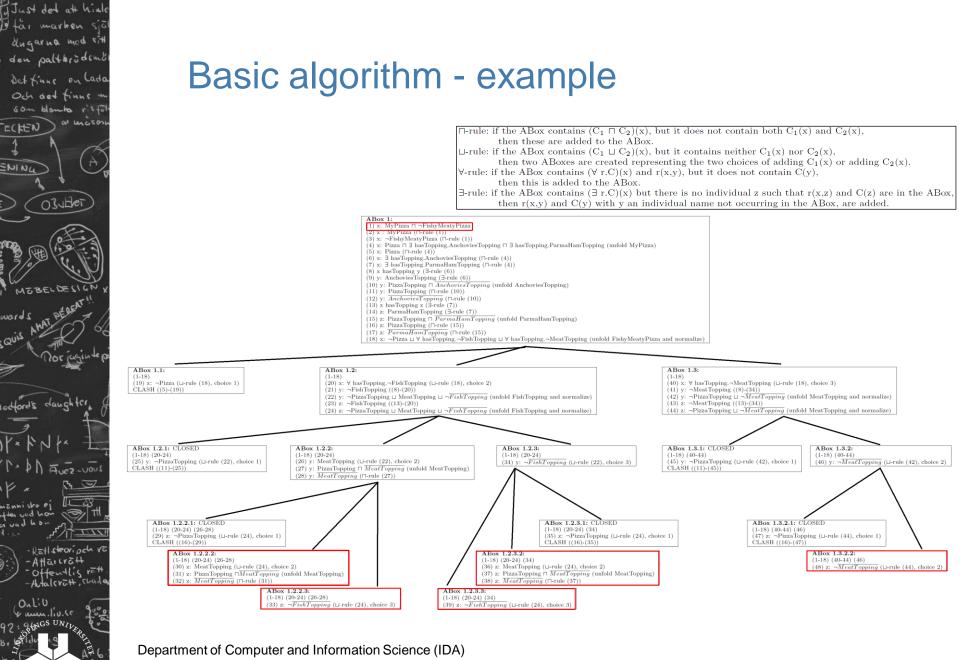
- Acyclic terminology finite set of concept definitions (i.e. terminological axioms of the form C = D where C is a concept name) that neither contain mutiple definitions nor cyclic definitions
 - MeatTopping ⊑ PizzaTopping could be replaced with
 - MeatTopping ≐ PizzaTopping ⊓ MeatTopping

where MeatTopping is a new atomic concept

Outline

- Definitions
- Approach
- Implementation
- Future work

Basic algorithm


- Input Ontology represented by a knowledge base and a set of missing is-a relations
- Output set of repairing actions
- Two main steps:
 - Creating repairing actions for individual missing is-a relations
 - Creating repairing actions for all missing is-a relations

Repairing missing is-a relations using tableaux-based algorithm

- For a missing is-a relation C ⊑ D run a tableaux algorithm on x: C □ ¬D
- Try to find set of is-a relations {G₁ ⊑ H₁, ..., G_n ⊑ H_n} which would close open branches in the completion graph

Just det att hinle Just det att hinle Utai marken själ dugarna med eitt den paltkrödemön Det finne on lada Och det finne m som blombo rieföl	Tableaux-based algorithm	
ELING OBJET	 ABox 1: (1) x: MyPizza □ ¬FishyMeatyPizza □-rule: if the ABox contains (C₁ □ C₂)(x), but it does not contain both C₁(x) and C₂(x), then these are added to the ABox. □-rule: if the ABox contains (C₁ □ C₂)(x), but it contains neither C₁(x) nor C₂(x), then two ABoxes are created representing the two choices of adding C₁(x) or adding C₂(x). □-rule: if the ABox contains (∀ r.C)(x) and r(x,y), but it does not contain C(y), then this is added to the ABox. □-rule: if the ABox contains (∃ r.C)(x) but there is no individual z such that r(x,z) and C(z) are in the r(x,y) and C(y) with y an individual name not occurring in the ABox, are added. 	
MEBELDESICN X		
avis her for juginter		
T- A Avez-vous	ABox 1.1: (1-18) (19) x: ¬Pizza (⊔-rule (18), choice 1)	
- Katlstoripch ve - Attar (vätt - Offentlis vätt - Attal (vätt, chaile	ABox 1.2: $(1-18)$ (20) x: \forall hasTopping. \neg FishTopping (\sqcup -rule (18), choice 2)	
OALIU (Value, liv.se 92: gares UNIVER 8. At 100 94: 9 4. 4. 6. 4. 7. 4.	ABox 1.3: (1-18) (40) x: \forall hasTopping.¬MeatTopping (\sqcup -rule (18), choice 3) 17	
Args UNIVE CIT-	17	

Linköping University, Sweden

NGS UNIVER

oter

Basic algorithm - example

Just det at hind

dugarna med si den paltbröden

OZUELET

- Ratisteorioch V

Icv7t+

 $R_{\mathcal{A}} = \{$

-Attaicratt Offendlis ra

ENING

ABox 1.2.2.2: (1) x: MyPizza $\sqcap \neg$ FishyMeatyPizza (2) \mathbf{x} : MyPizza (\square -rule (1)) (3) x: \neg FishyMeatyPizza (\square -rule (1)) (4) x: Pizza $\sqcap \exists$ hasTopping.AnchoviesTopping $\sqcap \exists$ hasTopping.ParmaHamTopping (unfold MyPizza) (5) x: Pizza (\square -rule (4)) (6) x: \exists hasTopping.AnchoviesTopping (\Box -rule (4)) (7) x: ∃ hasTopping.ParmaHamTopping (□-rule (4)) (8) x hasTopping y $(\exists$ -rule (6)) (9) y: AnchoviesTopping $(\exists$ -rule (6)) (10) y: PizzaTopping $\sqcap \overline{AnchoviesTopping}$ (unfold AnchoviesTopping) (11) y: PizzaTopping (\sqcap -rule (10)) (12) y: $\overline{AnchoviesTopping}$ (\sqcap -rule (10)) (13) x hasTopping z $(\exists$ -rule (7)) (14) z: ParmaHamTopping $(\exists$ -rule (7)) (15) z: PizzaTopping $\sqcap \overline{ParmaHamTopping}$ (unfold ParmaHamTopping) (16) z: PizzaTopping (\square -rule (15)) (17) z: $\overline{ParmaHamTopping}$ (\sqcap -rule (15)) (18) x: \neg Pizza $\sqcup \forall$ hasTopping, \neg FishTopping $\sqcup \forall$ hasTopping, \neg MeatTopping (unfold FishyMeatyPizza and normalize) (20) x: \forall hasTopping. \neg FishTopping (\sqcup -rule (18), choice 2) (21) y: \neg FishTopping ((8)-(20)) (22) y: \neg PizzaTopping \sqcup MeatTopping $\sqcup \neg \overline{FishTopping}$ (unfold FishTopping and normalize) (23) z: \neg FishTopping ((13)-(20)) (24) z: \neg PizzaTopping \sqcup MeatTopping $\sqcup \neg \overline{FishTopping}$ (unfold FishTopping and normalize) (26) y: MeatTopping (\sqcup -rule (22), choice 2) (27) y: PizzaTopping $\sqcap \overline{MeatTopping}$ (unfold MeatTopping) (28) y: $\overline{MeatTopping}$ (\sqcap -rule (27)) (30) z: MeatTopping (\sqcup -rule (24), choice 2) (31) z: PizzaTopping $\sqcap \overline{MeatTopping}$ (unfold MeatTopping) (32) z: $\overline{MeatTopping}$ (\Box -rule (31)) ∕MyPizza ⊏ FishyMeatyPizza x: MyPizza x: ¬FishyMeatyPizza < ≻Pizza ⊏ FishyMeatyPizza x: Pizza

Basic algorithm - example

- Repairing actions for a missing is-a relation created by choosing one element from each set R_A
- Example 5 open ABoxes

```
{MyPizza 	_ FishyMeatyPizza}
{Pizza 	_ FishyMeatyPizza}*
{AnchoviesTopping 	_ FishTopping, AnchoviesTopping 	_ MeatTopping}*
{PizzaTopping 	_ FishTopping, AnchoviesTopping 	_ MeatTopping}*
{ParmaHamTopping 	_ FishTopping, AnchoviesTopping 	_ MeatTopping}
{AnchoviesTopping 	_ FishTopping, PizzaTopping 	_ MeatTopping}*
{PizzaTopping 	_ FishTopping, PizzaTopping 	_ MeatTopping}*
{ParmaHamTopping 	_ FishTopping, PizzaTopping 	_ MeatTopping}*
{ParmaHamTopping 	_ FishTopping, PizzaTopping 	_ MeatTopping}*
{AnchoviesTopping 	_ FishTopping, ParmaHamTopping 	_ MeatTopping}*
{PizzaTopping 	_ FishTopping, ParmaHamTopping 	_ MeatTopping}*
{PizzaTopping 	_ FishTopping, ParmaHamTopping 	_ MeatTopping}*
```


Basic algorithm

- Same process repeated for other missing is-a relations
- Repairing actions for all missing is-a relations created by combining repairing actions for the individual missing is-a relations

Example – multiple missing is-a relations

Missing is-a relations

 $\{MyPizza \stackrel{.}{\sqsubseteq} FishyMeatyPizza, MyFruttiDiMare \stackrel{.}{\sqsubseteq} NonVegetarianPizza\}$

MyPizza 🚊 FishyMeatyPizza {MyPizza 🚊 FishyMeatyPizza} {AnchoviesTopping 🚊 FishTopping, ParmaHamTopping 🚊 MeatTopping } {ParmaHamTopping ⊑ FishTopping, AnchoviesTopping ⊑ MeatTopping}

 $\begin{array}{l} MyFruttiDiMare \doteq NonVegetarianPizza\\ \{MyFruttiDiMare \doteq NonVegetarianPizza\}\\ \{AnchoviesTopping \doteq FishTopping\}\\ \{AnchoviesTopping \doteq MeatTopping\}\end{array}$

Example – multiple missing is-a relations

 $\begin{array}{l} \{ MyPizza \stackrel{\scriptstyle `}{\sqsubseteq} FishyMeatyPizza \} \\ \{ AnchoviesTopping \stackrel{\scriptstyle `}{\sqsubseteq} FishTopping, ParmaHamTopping \stackrel{\scriptstyle `}{\sqsubseteq} MeatTopping \ \\ \{ ParmaHamTopping \stackrel{\scriptstyle `}{\sqsubseteq} FishTopping, AnchoviesTopping \stackrel{\scriptstyle `}{\sqsubseteq} MeatTopping \ \end{array} \end{array}$

 $\{ MyFruttiDiMare \sqsubseteq NonVegetarianPizza \} \\ \{ AnchoviesTopping \sqsubseteq FishTopping \} \\ \{ AnchoviesTopping \sqsubseteq MeatTopping \}$

 $\{MyPizza \stackrel{`}{\sqsubseteq} FishyMeatyPizza, MyFruttiDiMare \stackrel{`}{\sqsubseteq} NonVegetarianPizza \} \\ \{AnchoviesTopping \stackrel{`}{\sqsubseteq} FishTopping, ParmaHamTopping \stackrel{`}{\sqsubseteq} MeatTopping \} \\ \{ParmaHamTopping \stackrel{`}{\sqsubseteq} FishTopping, AnchoviesTopping \stackrel{`}{\sqsubseteq} MeatTopping \} \\ \{MyPizza \stackrel{`}{\sqsubseteq} FishyMeatyPizza, AnchoviesTopping \stackrel{`}{\sqsubseteq} FishTopping \} \\ \{MyPizza \stackrel{`}{\sqsubseteq} FishyMeatyPizza, AnchoviesTopping \stackrel{`}{\sqsubseteq} MeatTopping \} \\ \{MyPizza \stackrel{`}{\Longrightarrow} FishyMeatyPizza, AnchoviesTopping \stackrel{`}{\sqsubseteq} MeatTopping \} \\ \{MyPizza \stackrel{`}{\Longrightarrow} FishyMeatyPizza, AnchoviesTopping \stackrel{`}{\Longrightarrow} MeatTopping \} \\ \{MyPizza \stackrel{`}{\frown} FishyMeatyPizza, AnchoviesTopping \} \\ \{MyPizza \stackrel{`}{\frown} MeatTopp$

Algorithm - properties

- Sound
- Minimal solutions
- Solutions do not introduce incoherence

Algorithm - extension

Finding additional solutions Example:

 $\{AnchoviesTopping \stackrel{.}{\sqsubseteq} FishTopping, ParmaHamTopping \stackrel{.}{\sqsubseteq} MeatTopping\}$

Given: HamTopping \sqsubseteq MeatTopping

 $\{AnchoviesTopping \stackrel{.}{\sqsubseteq} FishTopping, ParmaHamTopping \stackrel{.}{\sqsubseteq} HamTopping\}$

- Is-a relation A ⊑ B in a repairing action can be replaced with P ⊑ Q where P is a super-concept of A and Q is a sub-concept of B
- Source and Target sets

Outline

- Definitions
- Approach
- Implementation
- Future work

Implementation

- System for repairing missing is-a relations in ALC acyclic terminologies
- Implemented in Java
- Uses Pellet
- Pellet modified to extract the completion graph

Just det att hinte gjust det att hinte den garna med sit den paltbrödembl Det finne on lada Och det finne m som blomta rigti

AE

Ma.

Q

led

Ouli

GS UNT

Implementation

RepOSE						
File						
Repair Missing Relations						
file:/Z:/PizzaTestData/small_pizza_experiment.owl		•		Show Ontology		
MyPizza -> FishyMeatyPizza		•				
Generate Repairing Actions				Revoke Repairing Actions		
AnchoviesTopping -> FishTopping,ParmaHamTopping -> MeatTopping				Validate is-a Relations in Repairing Action		
		•		Generate Source and Target Sets		
Source		Target				
🔅 Validate is-a Relations in Repairing Action						
	AnchoviesTopping -> FishTopping					
	ParmaHamTopping -> MeatTopping					
	Validate	Cancel				

VGS UNT

Implementation

RepOSE		
File		
Repair Missing Relations		
file:/Z:/PizzaTestData/small_pizza_experiment.owl	•	Show Ontology
MyPizza -> FishyMeatyPizza	•	This relation is already repaired!
Generate Repairing Actions		Revoke Repairing Actions
AnchoviesTopping -> FishTopping,ParmaHamTopping -> MeatTopping	•	Validate is-a Relations in Repairing Action
ParmaHamTopping -> MeatTopping	- Repaired	Generate Source and Target Sets
Source	Target MeatTopp HamT	ing

Outline

- Definitions
- Approach
- Implementation
- Future work

Future work

- Detecting missing is-a relations
- Debugging wrong is-a relations
- Debugging is-a relations and mappings in ontology networks