

Ontology Alignment

- Many ontologies have been developed
- \rightarrow Many of them have overlapping information
- Use of multiple ontologies
 e.g. custom-specific ontology + standard ontology
- Bottom-up creation of ontologies experts can focus on their domain of expertise
- → Important to know the inter-ontology relationships

	linguistic	structure	constraints	instances	auxiliar
ArtGen	name	parents, children		domain specific documents	WordNe
ASCO	name, label description	parents, children, siblings, path from root			WordNe
Chimaera	name	parents, children			
FCA-Merge	name			domain specific documents	
FOAM	name, label	parents, children	equivalence		
GLUE	name	neighborhood		instances	
HCONE	name	parents, children			WordNet
IF-Map				instances	a referen ontology
iMapper		leaf, non-leaf, children, related node	domain, range	instances	WordNet
OntoMapper		parents, children		documents	
(Anchor-) PROMPT	name	direct graphs			
SAMBO	name, synonym	is-a and part-of, descendants and ancestors		domain specific documents	WordNet UMLS
S-Match	label	path from root	semantic relations codified in labels		WordNet

Alignment Strategies

- Many alignment strategies (matchers, combinations, filters) available.
- Question: For a given alignment task, how to choose a strategy?

Recommending alignment strategies

Recommending strategies

- Use knowledge about previous use of alignment strategies (Mochol, Jentzsch, Euzenat 2006)
 Not so much knowledge available
 OAEI
- Parameters for ontologies, similarity assessment, matchers, combinations and filters + optimize parameters (Ehrig, Staab, Sure 2005)

 $\hfill\square$ Based on validation of alignment suggestions by users

Our approach - idea

- Use the actual ontologies to align to find good candidate alignment strategies
- User/oracle with minimal alignment work
- Complementary to the other approaches

Idea

- Select small segments of the ontologies
- Generate alignments for the segments (expert/oracle)
- Use and evaluate available alignment algorithms on the segments
- Recommend alignment algorithm based on evaluation on the segments

Framework

Experiment case - Oracle

- UMLS
 - □ Library of Medicine
 - □ Metathesaurus contains > 100 vocabularies
 - □ NCI thesaurus and MeSH included in UMLS
 - □ Used as approximation for expert knowledge
 - □ 919 expected alignments according to UMLS

Experiment case

- alignment strategies
- Matchers and combinations
 - 🗆 N-gram (NG)
 - □ Edit Distance (ED)
 - \Box Word List + stemming (WL)
 - \Box Word List + stemming + WordNet (WN)
 - □ NG+ED+WL, weights 1/3 (C1)
 - \Box NG+ED+WN, weights 1/3 (C2)
- Threshold filter
 thresholds 0.4, 0.5, 0.6, 0.7, 0.8

Segment pair selection algorithms

SubG

□ Candidate segment pair = sub-graphs according to is-a/part-of with roots with same name; between 1 and 60 terms in segment

□ Segment pairs randomly chosen from candidate segment pairs such that segment pairs are disjoint

Segment pair selection algorithms

Candidate segment pair is pair of clusters containing terms with the same name; at least 5 terms in clusters

D.A

□ Segment pairs randomly chosen from candidate segment pairs

Segment pair alignment generator

Used UMLS as oracle

Alignment toolbox

- Used KitAMO as toolbox
- Generates reports on similarity values produced by different matchers, execution times, number of correct, wrong, redundant suggestions

Recommendation algorithm

- Recommendation scores: F, F+E, 10F+E
- F: quality of the alignment suggestions
 - average f-measure value for the segment pairs
- E: average execution time over segment pairs, normalized with respect to number of term pairs
- Algorithm gives ranking of alignment strategies based on recommendation scores on segment pairs

Expected recommendations for F

- Best strategies for the whole ontologies and measure F:
- 1. (WL,0.8)
- 2. (C1,0.8)
- 3. (C2,0.8)

Results

- Top 3 strategies for SubG and measure F:
- A1: 1. (WL,0.8) (WL, 0.7) (C1,0.8) (C2,0.8) A2: 1. (WL,0.8) 2. (WL,0.7) 3. (WN,0.7)
- A3: 1. (WL,0.8) (WL, 0.7) (C1,0.8) (C2,0.8)
- Best strategy always recommended first
- Top 3 strategies often recommended
- (WL,0.7) has rank 4 for whole ontologies

Results

- Top 3 strategies for Clust and measure F:
- B1: 1. (C2,0.7) 2. (ED,0.6) 3. (C2,0.6)
- B2: 1. (WL,0.8) (WL, 0.7) (C1,0.8) (C2,0.8)
- B3: 1. (C1,0.8) (ED,0.7) 3. (C1,0.7) (C2,0.7) (WL,0.7) (WN,0.7)
- Top strategies often recommended, but not always
- (WL,0.7) (C1,0.7) (C2,0.7) ranked 4,5,6 for whole ontologies

Results

- SubG gives better results than Clust
- Results improve when number of segments is increased
- 10F+E similar results as F
- F+E
 - WordNet gives lower ranking
 - Runtime environment has influence

Conclusion

- Recommendation strategy for alignment algorithms with no previous knowledge and minimal user/oracle effort
- For the test case, good recommendations were generated

Future work

- Investigate influence of segment pair selection, recommendation measures, recommendation algorithms
- Test with other alignment algorithms
- Complementary to the other approaches
 - Use knowledge
 - Optimization