A session-based approach for aligning large ontologies

Patrick Lambrix, Rajaram Kaliyaperumal Linköping University

Ontologies with overlapping information

Use of multiple ontologies

- custom-specific ontology + standard ontology
- different views over same domain
- overlapping domains

→ important to know the inter-ontology relationships

Ontology Alignment

GENE ONTOLOGY (GO)

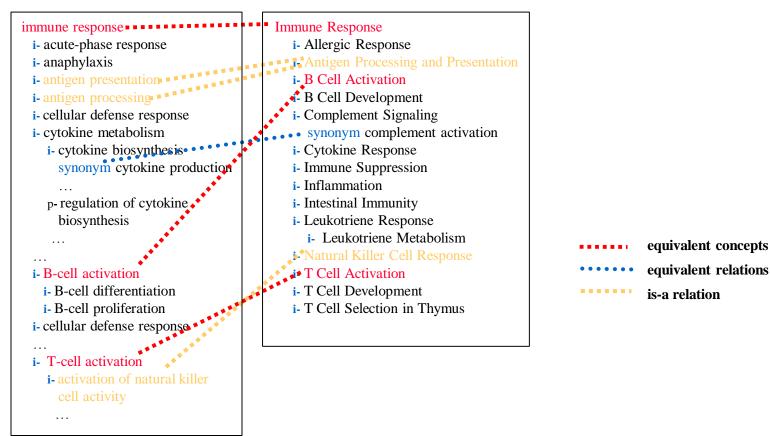
SIGNAL-ONTOLOGY (SigO)

immune response
i- acute-phase response
i- anaphylaxis
i- antigen presentation
i- antigen processing
i- cellular defense response
i- cytokine metabolism
i- cytokine biosynthesis
synonym cytokine production
...
p- regulation of cytokine
biosynthesis
...
i- B-cell activation

i- B-cell activation
i- B-cell differentiation
i- B-cell proliferation
i- cellular defense response

i- T-cell activationi- activation of natural killer cell activity

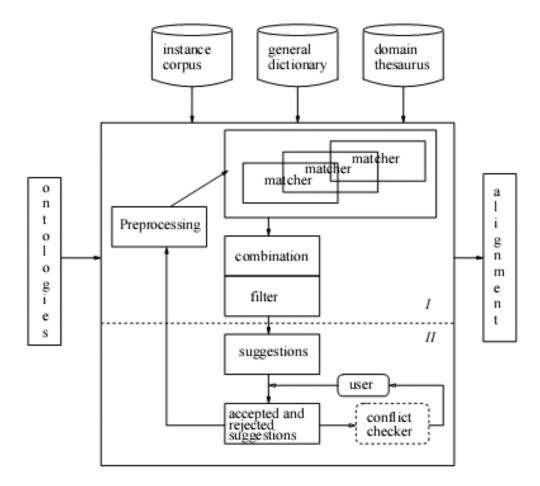
. . .


Immune Response

- i- Allergic Response
- i- Antigen Processing and Presentation
- i- B Cell Activation
- i- B Cell Development
- i- Complement Signaling synonym complement activation
- i- Cytokine Response
- i- Cytokine Response
- i- Immune Suppression
- i- Inflammation
- i- Intestinal Immunity
- i- Leukotriene Response
 - i- Leukotriene Metabolism
- i- Natural Killer Cell Response
- i- T Cell Activation
- i- T Cell Development
- i- T Cell Selection in Thymus

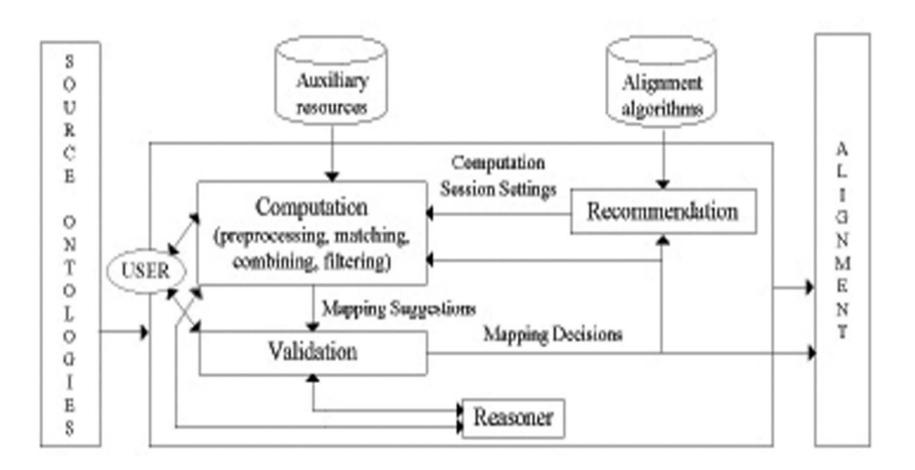
Ontology Alignment

GENE ONTOLOGY (GO)


SIGNAL-ONTOLOGY (SigO)

define the relationships between the terms in different ontologies

An Alignment Framework


Challenges for aligning large ontologies

- Scalability
- Support for matcher selection, combination and tuning
- Use of background information
 - □ Partial results
- User involvement

(Shvaiko & Euzenat 2013)

Session-based framework

An Alignment Framework

Session-based approach

- Scalability interruptable sessions, partial computation, partial validation
- Support for matcher selection, combination and tuning – *recommendation sessions*
- Use of background information
 - Use of partial results in computation and recommendation
- User involvement direct in setting process and validation, indirectly in computation and recommendation

Implemented system

Databases

Session management database

- □ User, ontologies, validated mappings, non-validated mappings, ...
- □ Multiple sessions

Similarity values database

□ Computation sessions, recommendation sessions

Mapping decisions database

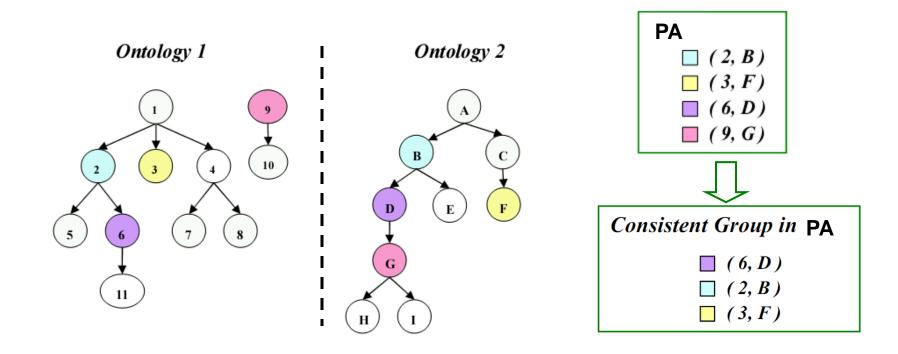
Start of computation

		iştərr;	Align Concept in mouse and h	2010-01-0-	
matchers:	1.0NGram1.0TermBasic1.0TermWN1.0UMLSM1.0Naive Bayes	single threshold: double threshold:	0.6 • upper 0.6 lower 0.4 •	weighted-sum combination maximum-based combination	use preprocessed data
Start Computa	on Finish Computation	Interrupt Computation	interrupt at: 1000]	

Implemented system – computation 1. preprocessing

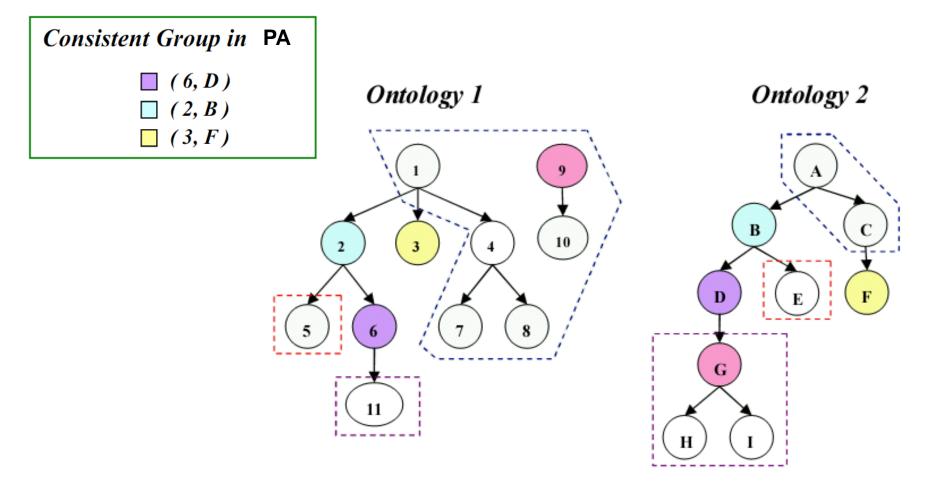
Use of PA in the preprocessing step

Intuition


During the preprocessing step, use mappings in PA to partition the ontologies into mappable groups.

(*Lambrix & Liu 2009*)

Use of PA in the preprocessing step


□ Strategy

- Find consistent group in PA
 - $\Box \quad if (A,A') \text{ and } (B,B') \text{ equivalence mappings in PA} \\ then A \text{ is-a B iff A' is-a B'}$
- Partition ontologies into mappable groups before aligning

Use of PA in the preprocessing step

□ Partition Results

Implemented system – computation 2. matchers

Matchers

- N-gram (linguistic)
- TermBasic (linguistic)
- TermWN (linguistic + auxiliary)
- UMLS (auxiliary)
- Naive Bayes (instance-based)

(*Lambrix & Tan 2006*)

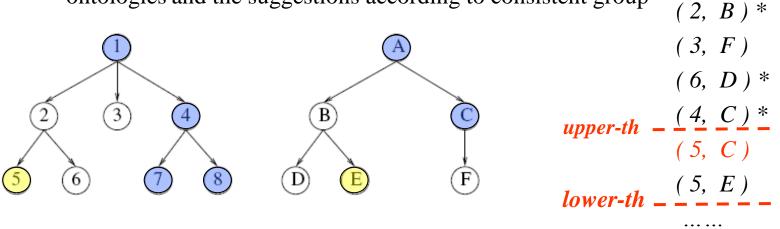
Implemented system –computation3. combination strategies

Combination Strategies

- Weighted sum of similarity values of different matchers
- Maximum of similarity values of different matchers

Implemented system – computation 4. filtering strategies

Filtering Strategies

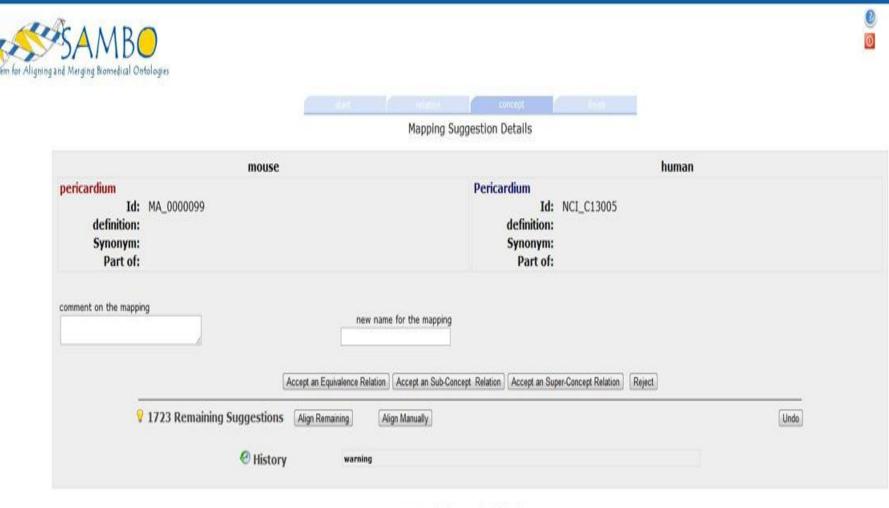

Single threshold filteringDouble threshold filtering

(Chen, Lambrix & Tan 2006)

Filtering strategies

Double threshold filtering

- (1) Pairs of concepts with similarity higher than or equal to **upper** threshold are mapping suggestions
- (2) Find consistent group among these mapping suggestions
- (3) Pairs of concepts with similarity between **lower** and **upper** thresholds are mapping suggestions if they make sense with respect to the structure of the ontologies and the suggestions according to consistent group

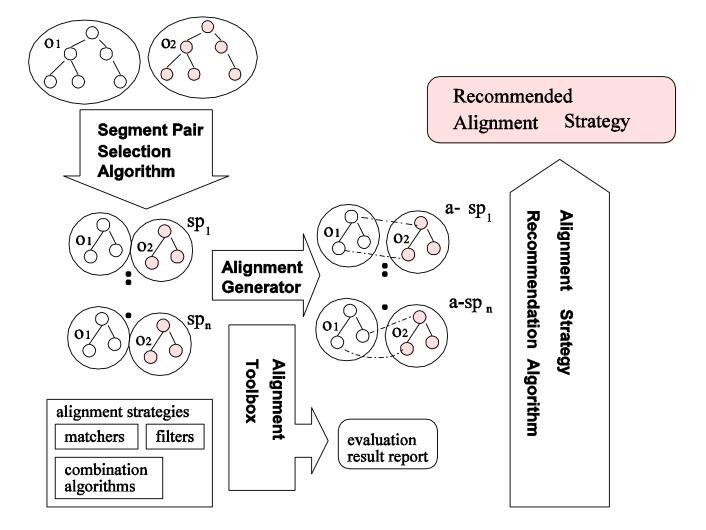

Filtering Strategies

- fPA remove mappings suggestions conflicting with mappings in PA
- Double threshold filtering with PA
 Use consistent group within PA

(*Lambrix & Liu 2009*)

Validation

comments to sambo@ida.liu.se


Implemented system – recommendation

Recommendation approach 1

- Select small segments of the ontologies
- Generate alignments for the segments (expert/oracle)
- Use and evaluate available alignment algorithms on the segments
- Recommend alignment algorithm based on evaluation on the segments

(*Tan & Lambrix 2007*)

Framework

Recommendation approach 2

- Evaluate available alignment algorithms on previous validation decisions
- Recommend alignment algorithm based on evaluation on the validation decisions

Recommendation approach 3

- Select small segments of the ontologies
- Evaluate available alignment algorithms on the segments based on previous validation decisions
- Recommend alignment algorithm based on evaluation on the segments

Recommendation approaches

- Approach 1
 - □ based on full knowledge of mappings in validated segments
 - □ Need domain expert/oracle
 - □ Good performance for segments does not necessarily lead to good performance for ontologies
- Approaches 2 and 3
 - No full knowledge of mappings may be available for any parts of the ontologies
 - □ No need for domain expert/oracle during recommendation
 - □ Validation decisions can come from different parts of the ontologies

Experiments

Experiments

As an ontology alignment system

For evaluation of ontology alignment strategies

Experiments

OAEI 2011 Anatomy track
 AMA, 2737 concepts
 NCI-A, 3298 concepts
 Reference alignment, 1516 equivalence mappings

5 matchers, 2 combination,
 2 filter / 6 thresholds → 4872 strategies

Top 10 strategies

matchers	weights	threshold	correct	wrong	\mathbf{F}^{c}	Sim2
			suggestions	suggestions		
TermBasic;UMLSM	1;1	0.4;0.7	1223	101	0.8612	0.7563
TermWN;UMLSM;NaiveBayes;n-gram	1;2;2;1	0.3;0.5	1223	101	0.8612	0.7563
n-gram;TermBasic;UMLSM	1;1;2	0.5;0.8	1192	63	0.8603	0.7549
n-gram;UMLSM	1;1	0.5;0.8	1195	67	0.8603	0.7548
UMLSM;NaiveBayes;TermWN	2;1;2	0.4;0.6	1203	78	0.8602	0.7547
UMLSM;NaiveBayes;n-gram;TermBasic	2;1;1;1	0.4;0.6	1199	73	0.8601	0.7545
n-gram;TermBasic;UMLSM	1;2;2	0.5;0.8	1181	50	0.8598	0.7541
UMLSM;NaiveBayes;TermBasic	2;1;2	0.4;0.6	1194	68	0.8596	0.7537
UMLSM;NaiveBayes;n-gram;TermBasic	2;2;1;1	0.3;0.5	1221	104	0.8595	0.7537
UMLSM;NaiveBayes;TermBasic	2;1;1	0.5;0.6	1187	60	0.8592	0.7531

Test strategies

strategy	matchers	weights	threshold	suggestions	\mathbf{F}^{c}	Sim2
AS1	TermBasic;UMLSM	1;1	0.4;0.7	1324	0.86	0.75
AS2	TermWN;n-gram;NaiveBayes	2;1;1	0.5	1824	0.65	0.48
AS3	n-gram;TermBasic;UMLSM	1;1;2	0.3	4061	0.48	0.32

Matcher computation time

	n-gram		NaiveBayes		
number of pairs	without previous	with previous	without previous	with previous	
	values stored	values stored	values stored	values stored	
902,662	2.59		196.15		
1,805,324	5.08	3.98	149.95	84.05	
4,513,310	12.73	10.78	418.49	265.87	
6,769,965	19.19	13.83	645.71	212.35	
9,026,626	25.85	17.32	790.74	207.64	

performance gains up to 25%

Filter using validated correct mappings

processed	AS1	AS2	AS3
500	20	107	156
1000	26	58	288
1300	4	20	20

- Removal of mapping suggestions conflicting with validated correct mappings
 - \rightarrow reduce unnecessary user interaction

Double threshold filter using validated correct mappings

processed	AS1	AS2	AS3	AS1	AS2	AS3
	suggestions	suggestions	suggestions	correct	correct	correct
	removed	removed	removed	removed	removed	removed
500	0/2	134/113	244/279	0/0	12/1	9/1
1000	1/0	52/47	532/470	1/0	1/0	22/4
1300	0/2	43/35	443/276	0/0	9/2	21/3

- Removal of suggestions using double threshold filtering with validated correct mappings
- Original ontologies / missing is-a relations added

Recommendations

Session-independent, segment pairs, oracle
 No change during process
 Dependent on original segments

Recommendations

- Session-dependent, validation decisions
 Not good for AS1, double threshold filtering
 AS1 suggested for AS3
- Session-dependent, segments, validation decisions
 - □Not good for AS1, lack of wrong suggestions

Recommendation improves with more validations

Conclusion

Session-based framework Computation, validation, recommendation Addressed several challenges System

Experiments

Future work

- Use of validation results in computation and recommendation
- Recommendation strategies