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Abstract

User validation is one of the challenges facing the ontology alignment community, as there are limits

to the quality of the alignments produced by automated alignment algorithms. In this paper we present

a broad study on user validation of ontology alignments that encompasses three distinct but interrelated

aspects: the profile of the user, the services of the alignment system, and its user interface. We discuss key

issues pertaining to the alignment validation process under each of these aspects, and provide an overview

of how current systems address them. Finally, we use experiments from the Interactive Matching track

of the Ontology Alignment Evaluation Initiative 2015-2018 to assess the impact of errors in alignment

validation, and how systems cope with them as function of their services.

1 Introduction

The growth of the ontology alignment field over the past years has led to the development of a number

of ontology alignment systems. In most cases, these systems apply fully automated approaches where an

alignment is generated for a given pair of input ontologies without any human intervention. However,

after several editions of the Ontology Alignment Evaluation Initiative (OAEI), it is becoming clear to

the community that there are limits to the accuracy of automated systems, as adopting more advanced

alignment techniques has brought diminishing returns (Granitzer et al. (2010), Paulheim et al. (2013)).

This is likely due to the complexity and intricacy of the ontology alignment process, with each task having

its particularities, dictated by both the domain and the design of the ontologies. Thus, automatic generation

1This is an extended version of Dragisic et al. (2016). We have extended the literature review taking into account

all systems participating in the Ontology Alignment Evaluation Initiative 2007-2018, added a detailed account of the

qualitative evaluation and added three more years of results for the experiments.
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of mappings should be viewed only as a first step towards a final alignment, with validation by one or more

users being essential to ensure alignment quality (Euzenat et al. (2011)).

Having users validate an alignment enables the detection and removal of erroneous mappings, and

potentially the addition of alternative mappings, or altogether new ones, not detected by the alignment

system. Additionally, if user validation is done during the alignment process, it enables the adjustment

of system settings, the selection of the most suitable alignment algorithms, and the incorporation of user

knowledge (Paulheim et al. (2013)). Even if users make mistakes, experiments have shown that user

validation is still beneficial up to an error rate of 20% (Jiménez-Ruiz et al. (2012), Dragisic et al. (2017)),

although the exact error threshold depends on the alignment system and how it makes use of the user

input.

In recent years, user involvement has received increasing attention in the Semantic Web area as shown

by a growing number of contributions to the literature, a dedicated workshop at the International Semantic

Web Conference (Visualization and Interaction for Ontologies and Linked Data, VOILA) and a recent

special issue on this topic (Ivanova et al. (2019)). In ontology alignment the relevance of user involvement

is evidenced by the fact that nearly half of the challenges facing the community identified in (Shvaiko &

Euzenat (2013)) are directly related to it. These include explanation of matching results to users, fostering

user involvement in the matching process, and social and collaborative matching. Moreover, the lack

of evaluation of the quality and effectiveness of user interventions was identified as one of the general

issues after six years of experience in the OAEI (Euzenat et al. (2011)), leading to the introduction of the

Interactive Matching track in the OAEI 2013 campaign (Paulheim et al. (2013)) where user validation

was simulated using an Oracle. This track was extended in 2015 to also take into account erroneous user

feedback to the systems as well as additional use cases.

There have been earlier studies addressing user involvement in ontology alignment and evaluating

the requirements and techniques involved therein (Lambrix & Edberg (2003), Falconer & Storey (2007),

Granitzer et al. (2010), Falconer & Noy (2011)). More recently, requirements for fostering user support

for large-scale ontology alignment were identified and current systems were evaluated (Ivanova et al.

(2015)). However, these studies focused mostly on the user interface of ontology alignment systems.

While that is a critical aspect for user involvement, there are other important aspects which have been

largely unaddressed, such as how systems cope with erroneous user input or how they maximize the value

of limited input.

In this document, we present a broader study of user validation in ontology alignment. We start giving

some basic notions of ontology alignment validation (Section 2). In Section 3 we identify the key issues

regarding user validation of ontology alignments by reviewing existing systems and literature related to

ontology alignment, as well as drawing from our experience in the field. These issues pertain to three

categories: the user profile, the alignment systems’ services, and their user interfaces. In Section 4, we

first assess how current systems deal with the identified issues in a qualitative evaluation (Subsection 4.1),

then use the experiments from the Interactive Matching track of the OAEI 2015-2018 campaigns to show

how some of these issues impact alignment quality (Subsection 4.2).

2 Background

Ontology alignment (or matching) is the process of generating mappings, or correspondences, between

entities of two ontologies. A mapping is typically represented as a 4-tuple 〈e; e′; r; c〉 where e and e′ are

the mapped entities of the ontologies, r is the semantic relation between them (usually ≡,⊑ or ⊒) and c

is a confidence score which expresses the degree of certainty in the mapping (usually in [0;1]). A set of

mappings between two ontologies is called an alignment.

The automated ontology alignment process can typically be divided into two stages: the matching stage

and the filtering stage.

In the matching stage, systems employ one or more algorithms to find matching entities between

the ontologies. These are usually similarity algorithms that rely on features such as labels and other

annotations or the structure of the ontologies. Matching systems can reduce the computational workload

of this stage by partitioning the ontologies into mappable parts (or blocks) and only generate mappings
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from those parts (Hu & Qu (2008), Hu et al. (2008), Nagy et al. (2009), Hamdi et al. (2009), Kirsten et al.

(2011), Jiménez-Ruiz et al. (2012), Kachroudi et al. (2017), Lambrix & Kaliyaperumal (2017), Laadhar

et al. (2018), Jiménez-Ruiz et al. (2018)).

In the filtering stage, systems analyze the pool of candidate mappings resulting from the preceding

stage, and select from it a final alignment. In this stage, systems apply rules to filter out mappings

so that the final alignment respects certain criteria. The simplest and most common filtering strategy

consists of employing one or more similarity thresholds and excluding mappings with confidence score

below these. Also common is cardinality filtering, or mapping selection, where conflicting mappings that

share an entity are excluded so that only one mapping per entity remains and the final alignment is 1-

1. This is usually done with an optimization algorithm, adapted from either of the related assignment

and stable marriage problems (Melnik et al. (2002)) or with a simpler greedy heuristic (e.g., Faria et al.

2013). Other filtering approaches include quality checks (Beisswanger & Hahn (2012)) and logic-based

filtering (Jiménez-Ruiz et al. (2011), Solimando et al (2017)). The latter aims at ensuring that logical

principles such as consistency (all entities in the union of the mapped ontologies via the alignment should

be satisfiable), conservativity (no new semantic relations between the entities of either ontology should be

derived from the alignment), and locality (mapped entities should have semantically related entities that

are also mapped) are respected by the alignment. The most common form of logic-based filtering, called

alignment repair, focuses on the consistency principle.

While most ontology alignment problems have a large fraction of mappings that are trivial to detect

automatically (e.g., entities have near-equal labels), they also have mappings that are challenging, and

which often lead to a trade-off between precision and recall—in order to capture true mappings that are

challenging, alignment systems tend to capture also false mappings. This means it is necessary to manually

validate ontology alignments produced automatically, especially in use-cases where the goal is to integrate

ontologies or make them semantically interoperable.

The ontology alignment validation process consists of asking one or more users to classify the

mappings in an ontology alignment as correct or incorrect, as well as potentially replace incorrect

mappings with correct alternatives, or even add new mappings. In this context, we call candidate

mapping to a mapping produced automatically by a matching system prior to user validation, and

validated mapping to a mapping that was classified by the user as either correct or incorrect.

We can distinguish between a pure validation setting, where the user has control of the process and

validates the full final alignment produced automatically by a matching system, and an interactive setting,

where the matching system asks the user to validate a selection of mappings during its matching and/or

filtering stages.

The status of a mapping should not be considered absolute, because ontology alignment is not a

purely objective process. Indeed, ontologies themselves are not purely objective—they reflect a given

point of view of the domain they cover. Thus entities in two related ontologies can seldom be considered

fully equivalent in the mathematical sense. Rather, they are approximately equivalent under a given joint

interpretation of the two ontologies, for a given alignment application.

The only practical alternative to assess mapping status is to employ a panel of experts and get a general

consensus about that mapping, which is the approach commonly used to build reference alignments and

evaluate ontology matching systems. But while this approach is adequate to assess the accuracy of a

matching system, its adequacy to assess the accuracy of a human user is debatable, because it does not

distinguish between “genuine” errors, due to lack of expertise from the user, and “false” errors, made

knowingly, due to differences in opinion from the consensus.

In a real-world scenario, where a user is validating mappings for their own purpose, only “genuine”

errors matter, and the main concern should be on whether a matching system’s user interface is sufficiently

intuitive and informative to empower the user and compensate for their lack of expertise, thus precluding

some of these errors. This is the perspective with which we discuss and assess alignment validation in

Sections 3 and 4.1.

In an interactive scenario, where ontology matching systems are making their own decisions on the

status of some mappings based on user feedback on other mappings, one must also be concerned with
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Table 1 Classification of aspects that affect ontology alignment validation.

Domain Scope Category

User Profile

(UP)

(1) Domain

Expertise
(a) domain expert, (b) domain novice

(2) Technical

Expertise
(a) technical expert, (b) technical novice

(3) Alignment

System Expertise
(a) alignment system expert, (b) alignment system novice

System Services

(SS)

(1) Stage of

Involvement

(a) before, (b) matching, (c) filtering,

(d) iterative, (e) after

(2) Feedback

Demand

(a) selected mappings, (b) filtered mapping candidates,

(c) unfiltered minimal, (d) unfiltered redundant

(3) Feedback

Propagation

(a) re-computation

(b) conflict detection / blocking / re-validation

User Interface

(UI)

(1) Alignment

Visualization

(a) 7 visual info-seeking tasks

(b) visual analytics

(c) alternative views

(d) grouping

(e) mapping status

(f) metadata & context

(g) ranking/recommendations

(h) mapping provenance & justification

(i) impact of validation decisions

(2) Alignment

Interaction

(a) accept/reject mapping

(b) create/refine mapping

(c) search

(d) user annotation

(e) session

(f) create temporary mapping

how user errors propagate and affect the matching system. To assess this in practice, as we do in

our experimental evaluation in Section 4.2, we must resort to the traditional reference alignment-based

evaluation. However, here the focus is on how the user affects the system, rather than on how the system

empowers the user.

3 Overview of Ontology Alignment Validation

Ontology alignment validation is a cognitively demanding task that involves a high memory load and

complex decision making. Furthermore, it is an exhaustive task, as ontology alignments often reach up to

the thousands or tens of thousands of mappings. Thus, it depends heavily on the expertise of the user (user

profile), but also on the support that matching systems can provide, both in the form of services to decrease

the workload of the user (system services), and in the form of visual support to aid in their decision and

facilitate the validation process (user interface). Within each of these three categories of aspects that affect

the process of alignment validation, we can detail several sub-categories which are summarized in Table 1

and discussed in detail in the ensuing subsections2.

3.1 User Profile

Alignment validation requires users to be acquainted with the domain of the ontologies, their formal

representations, and their underlying point of view, before being able to understand and decide on the

mappings provided by an alignment system or creating mappings by themselves (Falconer et al. (2006)).

One key aspect of the user profile is domain expertise (UP.1), i.e., depth of knowledge about the

domain(s) of the ontologies to align. This determines the user’s ability to assess the conceptual correctness

2Note: The subsections are organized by Domain, with instances of Scope highlighted in bold in the text and instances

of Category italicized.
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of a mapping and therefore is likely to be the main source of validation errors (Falconer & Storey (2007)).

Its impact is proportional to the complexity and particularity of the domain in question, with ontologies

about everyday things naturally requiring less domain expertise than ontologies from specialized domains

with complex terminology such as the life sciences.

Another key aspect of the user profile is technical expertise (UP.2), i.e., depth of knowledge about

knowledge engineering and modeling, and particularly about ontologies and their formalism. This

determines the user’s ability to assess the formal correctness of a mapping (i.e., whether a mapping is

logically sound given the constraints of the two ontologies). While domain knowledge is critical for

alignment validation, domain experts are often not familiar with knowledge engineering concepts and

formal representations (Conroy et al. (2009)), and may have difficulty in interpreting a mapping in the

context of the ontologies and perceiving subtle differences in modeling that make it incorrect.

While alignment system users will usually fall under the categories of domain expert or knowledge

engineer (with high technical expertise), it should be noted that domain and technical expertise are not

disjoint. Indeed, the development of tools like Protégé has allowed domain experts to delve into knowledge

engineering (Gennari et al. (2003)). Nevertheless, the differences between these two user types are

important for the design of every knowledge-based system, and should be addressed both when designing

the system and when building support for it. For instance, in order to assist users with limited technical

expertise, alignment systems should provide information about the structure of the ontologies and the

entailments of a mapping in a manner that is intuitive to understand. Likewise, in order to assist users with

limited domain expertise, systems should provide detailed contextual and conceptual information about

the mapping. Indeed, a study showed that, given enough contextual help, the quality of the validation of

non-domain experts can approximate that of domain experts (Noy et al. (2013)) – although this is likely

to depend on the domain in question.

The final aspect of the user profile is alignment system expertise (UP.3), i.e., familiarity with the

alignment system, its functionality and visual representations. Novice users can face comprehension

difficulties and make erroneous decisions, not for lack of domain or technical expertise, but because

they cannot fully acquire the information made available about a mapping or its entailments. It is up to

the developers of the alignment system to make the system as intuitive as possible in both functionality

and visual representations so that novice users can focus on the alignment process and are not limited

by their lack of expertise with the system (Nielsen 1993). In this context, it is important to consider

that different visual representations are suited for conveying different types of information, as we will

detail in Subsection 3.3. Systems should also provide support to expert users in the form of shortcuts or

customizations, so that they can speed up their work.

Users can be expected to make mistakes in alignment validation (Conroy et al. (2009), Ivanova et al.

(2012)), be that due to lack of domain expertise, technical expertise, or expertise with the alignment

system. However, the possibility of user errors is often disregarded in existing alignment systems. On

the one hand, it is true that users are generally expected to make less errors than automated systems,

and experiments have shown that up to an error rate of 20%, user input is still beneficial (Jiménez-Ruiz

et al. (2012), Dragisic et al. (2017)). On the other hand, there are risks of taking user input for granted,

particularly when that input is given during the alignment process, and inferences are drawn from it,

leading to the potential propagation of errors. An example of this is given by Jiménez-Ruiz et al. (2012),

where user validated mappings during an alignment repair step are fixed, meaning that they cannot be

removed during subsequent steps, and other potentially correct mappings may have to be removed instead.

User errors can be prevented to some extent by warning the user when contradicting validations are

made (Ivanova & Lambrix (2013)). Furthermore, in a multi-user setting such as in crowdsourcing, errors

may be diluted through a voting strategy, where the mapping confidence is proportional to the consensus

on the mapping (Sarasua et al. (2012)), or by adopting a more skeptical approach where full agreement

between the users is required (Cruz et al. (2016)). Such a setting also enables the classification of users

as trusted or untrusted (McCann et al. (2008)). Errors can also be reduced in a single-user setting, by

asking the user to reassess previously revised mappings, though evidently the gain of such a strategy

is expected to be smaller than when multiple users are available, since there is only one point of view.
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Figure 1: Profile of surveyed ontology matching system users with regard to their expertise (left chart)

and background (right chart).

Regardless of the scenario, due to the substantial workload of alignment revision, especially when large

ontologies are involved, there may be a trade-off between the coverage of the alignment (i.e., the number

of different mappings revised) and the depth of revision (i.e., the number of user revisions per mapping)

that is possible.

In particularly difficult cases, such as when the matched entities have polysemous labels and lack

other annotations (e.g., synonyms and definitions) or semantic axioms, it may not be possible for users to

classify mappings better than the alignment system, regardless of their expertise (Abu Helou & Palmonari

(2017)).

In the interest of assessing the profile of current users of ontology matching systems, we conducted a

public survey3, where we asked users about their background, their use-cases, the need for user validation,

and the system(s) they use, having received replies from 24 users. As shown in Figure 1, we found that the

most users are either only knowledge engineers (46%) or both knowledge engineers and domain experts

(25%), whereas relatively few are only domain experts (8%) and some are neither (21%). We also found

that academic users were the most common (42%), but many users work in the industry (25%) or in

both industry and academia (29%). Of particular note, over 90% of the surveyed users declared that user

validation was necessary in their use-cases.

3.2 System Services

Users capable of performing alignment validation are a scarce and a valuable resource, and cannot be

expected to be able to validate a whole alignment of thousands of mappings. As such, the request for

user intervention of alignment systems should be limited and that intervention should be exploited in such

a way as to maximize its value. This is one of the main challenges of interactive ontology alignment

(Jiménez-Ruiz et al. (2012), Otero-Cerdeira et al. (2015)).

The strategies that alignment systems can adopt to exploit user interventions depend on the stage

of involvement of the user in the alignment process: before the alignment process (SS.1.a), during the

matching stage (SS.1.b), during the filtering stage (SS.1.c), in iterative fashion (SS.1.d) or after the

alignment process (SS.1.e). Non-interactive systems can only involve the user before or after the alignment

process.

When validation happens before the alignment process, the user provides an initial partial alignment

which is then used by the system to guide the process. The partial alignment can be used in the

3http://sws.ifi.uio.no/oaei/interactive/survey/

http://sws.ifi.uio.no/oaei/interactive/survey/
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preprocessing phase to reduce the search space (Lambrix & Liu (2009)), as input for the alignment

algorithms (Lambrix & Liu (2009), Duan et al. (2010)), or to select and configure the algorithms to

use (Tan & Lambrix (2007), Ritze & Paulheim (2011), Paulheim et al. (2013), Lambrix & Kaliyaperumal

(2017)).

When validation is done during the matching stage, it can also be used to select and configure the

algorithms to use, or to decide how to combine them. When it is done during the filtering stage, it can

be used to inform the filtering process. For example, systems can filter out candidate mappings which are

in conflict with validated mappings (Noy & Musen (2000), Lambrix & Tan (2006), Jiménez-Ruiz et al.

(2012), Ivanova & Lambrix (2013), da Silva et al. (2018b)), infer patterns from the validations and use

these to guide the filtering process (Hamdi et al. (2010), Guedes et al. (2014)), or simply decide on the

similarity threshold to apply.

When validation is iterative, the user is asked for feedback on several iterations of the alignment

process, where in each iteration the alignment from the previous iteration is improved (Lambrix &

Kaliyaperumal (2017)). When validation is performed after the automatic alignment process, the input

of the user cannot be exploited for aligning the ontologies.

The stage of involvement affects the feedback demand of the alignment system. When the user is

involved before or during (i.e., matching, filtering or iterative) the alignment process, the user can provide

feedback about only selected mappings (SS.2.a). These are determined by the user in the former case,

and by the system in the latter, with strategies such as selecting only “problematic” mappings where

different alignment algorithms disagree (Cruz et al. (2012)), active learning-based strategies (Jirkovský &

Ichise (2013), Cruz et al. (2016)) and using a similarity propagation graph to select the most informative

questions to ask the user (Shi et al. (2009)). When the user is involved only after the alignment process,

they will have to validate all filtered mapping candidates (SS.2.b).

In the case of an automated alignment system that does not perform filtering or an interactive alignment

system that requires the user to do the full filtering process, the user will have to validate all mapping

candidates. In this case, we can distinguish between two scenarios: unfiltered minimal (SS.2.c) and

unfiltered redundant (SS.2.d). In the former scenario, the user is required to validate only the minimal set

of mappings required for semantic interoperability between the two ontologies, meaning that no mapping

in the set is semantically implied by another mapping in the set. In the latter scenario, the system produces

and requires the user to validate a non-minimal alignment containing semantically implied (redundant)

mappings. The most common case of redundant mapping is a subclass mapping of the form A⊑B when

the alignment also contains an equivalence mapping A≡ C, and the target ontology declares C ⊑B.

Fortunately, it is common practice in ontology matching to generate minimal alignments by default, and

very few systems produce or display redundant mappings, as otherwise the workload in user validation

would explode.

Interactive systems can extrapolate user feedback through the use of feedback propagation techniques

as a strategy for reducing user workload. One form of feedback propagation is re-computation (SS.3.a)

of mapping confidence through propagation from validated mappings in their neighborhood, be that

neighborhood defined from the structure of the ontologies (Noy & Musen (2000), Lambrix & Tan (2006),

Kensche et al. (2007), Hu & Qu (2008), Hu et al. (2008), Jean-Mary et al.(2009), Li et al. (2009), Shi et al.

(2009), Wang & Xu (2009), Kirsten et al. (2011), Djeddi & Khadir (2014), Ngo & Bellahsene (2016)),

from the pattern of similarity scores of the various alignment algorithms (Lambrix & Liu (2009), Cruz

et al. (2012)), or from patterns in the accepted and rejected mappings (Guedes et al. (2014), da Silva

et al. (2018b)). This usually requires that the validation occur during the matching stage or be iterative.

Another form of feedback propagation that systems can implement during filtering is conflict detection

(SS.3.b) (Lambrix & Tan (2006), Curino et al. (2007), Wang & Xu (2008), Jean-Mary et al. (2009), Reul

& Pan (2010), Jiménez-Ruiz et al. (2012), Diallo (2014), Faria et al. (2015), Schwichtenberg & Engels

(2015), Ngo & Bellahsene (2016), Kachroudi et al. (2017)). This consists of detecting mapping candidates

that have conflicts with validated mappings (e.g., cardinality or logical conflicts) and either automatically

rejecting them or possibly asking for re-validations to resolve the conflicts. A variation of this strategy



8 H LI et al.

is to present the conflicting mappings together to the user, rather than individually, and ask the user to

resolve the conflict (Lambrix & Tan (2006), Meilicke et al. (2008), Jiménez-Ruiz et al. (2009)).

The demand for user involvement in the matching process can be evaluated by measuring the number

of questions (validation requests for candidate mappings) the system asks the user, and comparing it to the

actual size of the alignment produced by the system. The effectiveness with which systems exploit user

involvement can be evaluated by measuring their improvement in performance (in terms of precision and

recall) over the fully automated process, and relating it to the number of questions asked.

3.3 User interface

A graphical user interface (UI) is an indispensable part of every interactive system, as the visual system is

humans’ most powerful perception channel. Validating a mapping requires considering the structure and

constraints of two ontologies while also keeping in mind other mappings and their logical consequences,

and thus is all but impossible without visual support.

There are two categories of aspects pertaining to user interfaces that are determining to the process of

alignment validation: alignment visualization, i.e., the visual support that the alignment system provides

to the user; and alignment interaction, i.e., the functionalities the system implements to allow the user to

interact with and validate the alignment.

Given the complexity of ontologies and alignments, a critical aspect of visualizing them is to avoid

overwhelming the user. In general, humans apprehend things by using their working memory, which is

limited in capacity (it can typically hold 3±1 items) and thus can easily be overwhelmed when too much

information is presented (Smith & Kosslyn (2013)). However, this limitation can be addressed by grouping

similar things, a process called “chunking”, which can be exploited by visualization designers to facilitate

cognition and reduce memory load (Patterson et al. (2014)). For instance, encoding properties of entities

and mappings with different graphical primitives facilitates their identification and enables their chunking.

Another critical aspect of ontology alignment visualization is providing the user with sufficient

information to be able to decide on the validity of each mapping, which includes lexical and structural

information in the ontologies, and potentially other related mappings. This naturally competes with the

need not to overwhelm the user with information, and a balance between the two must be struck. As we

discussed in Subsection 3.1, different user types are likely to have different information requirements, and

alignment systems must cater to all.

The Visual Information Seeking Mantra (Shneiderman (1996)) defines 7 visual information seeking

tasks (UI.1.a) to be supported by information visualization interfaces in order to enable enhanced data

exploration and retrieval: overview, zoom, filter, details-on-demand, relate, history, and extract. The

former six of these were further refined for the purpose of ontology visualization (Katifori et al. (2007),

Dudas et al. (2018)), and all are relevant in the context of striking a balance between providing information

and avoiding memory overload.

Providing enhanced information while addressing the working memory limits is also the goal of the

field of visual analytics (UI.1.b), which combines data mining and interactive visualization techniques

to aid analytic reasoning and obtain insights into (large) datasets. The application of visual analytics to

ontology alignments facilitates their exploration and can provide quick answers to questions of interest

from the users (Lambrix & Tan (2007), Lanzenberger et al. (2008), Cruz et al. (2009), Cruz et al. (2012),

Aurisano et al. (2015), Ivanova et al. (2017)).

Another technique at the disposal of alignment systems is that of providing alternative views (UI.1.c)

(Falconer & Storey (2007), Lanzenberger et al. (2008), Quix et al. (2008), Cruz et al. (2009)). Different

views may be more suitable for performing different tasks—for instance, graphs are better for information

perception, whereas indented lists are better for searching (Fu et al. (2017))—and by providing alternate

views, systems need not condense all relevant information into a single view, and thus avoid overwhelming

the user. Also relevant in this context are maintaining the user focus in one area of the ontology (Noy &

Musen (2000)), and preserving the user’s mental map (e.g., by ensuring that the layout of the ontology

remains constant).
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Two strategies that facilitate chunking are grouping mappings together by different criteria to help

identify patterns (UI.1.d), and identifying mapping status (UI.1.e), i.e., distinguishing between validated

and candidate mappings (Falconer & Storey (2007)). Color-coding is a common and effective technique

for implementing both strategies.

With regard to facilitating the decision making process, showing metadata & context such as definitions

of terms (UI.1.f) is essential, and providing ranking/recommendations (UI.1.g) facilitates the process by

allowing the user to focus on a specific set of mappings.

Providing mapping provenance & justification is critical to clarify the source of the mapping (UI.1.h)

and has been identified as one of the future challenges of ontology alignment, given that many alignment

systems merely present confidence values for mappings as a form of justification (Otero-Cerdeira et al.

(2015)). Justifications require particular attention to the user profile: domain experts will require detailed

contextual information and a clear explanation of how a candidate mapping was inferred, whereas

for knowledge engineers summarized provenance information might suffice. Three distinct justification

approaches have been identified by Euzenat & Shvaiko (2013): proof presentation, strategic flow, and

argumentation. In the proof presentation approach, the explanation for why a candidate mapping was

created is given in the form of a proof, which can be a formal proof, a natural language explanation (e.g.,

Shvaiko et al. (2005), Falconer & Storey (2007)), or a visualization (Ivanova & Lambrix (2013)). In the

strategic flow approach the explanation is in the form of a decision flow which describes the provenance

of the acquired candidate mapping (e.g., Dhamankar et al. (2004), Falconer et al. (2006)). Finally, in the

argumentation approach, the system gives arguments for or against certain candidate mappings, which can

be used to achieving consensus in multi-user environments (e.g., Laera et al. (2006), Laera et al. (2007),

Jiménez-Ruiz et al. (2016), Euzenat (2017)).

Last but not least, alignment systems should provide feedback to the user about the impact of validation

decisions (UI.1.i) with regard to the alignment and ontologies, possibly through a trial execution (Falconer

& Storey (2007)).

With respect to alignment interaction functionalities, the most basic level of interaction is to allow

the user to accept/reject mapping candidates (UI.2.a). Additionally, allowing the user to create/refine

mappings manually (UI.2.b) is also important, since the system may not have captured a required mapping,

or may not have correctly identified the mapping relation (Aumüller et al. (2005), Falconer et al. (2006),

Falconer et al. (2007), Cruz et al. (2009), Lambrix & Kaliyaperumal (2017)).

The ability to search (UI.2.c) and filter information is critical to minimize the user’s cognitive load

(Aumüller et al. (2005), Falconer & Storey (2007), Lanzenberger et al. (2008), Cruz et al. (2009)). It

is relevant to enable searching/filtering both of the ontologies (e.g., to analyze the structural context of

a candidate mapping, or look for a concept to map manually) (Falconer & Storey (2007), Lanzenberger

et al. (2008)) and of the candidate mappings themselves (Falconer & Storey (2007), Cruz et al. (2009),

Lambrix & Kaliyaperumal (2017)).

Given the extension of the validation process, allowing the user to add metadata in the form of user

annotations (UI.2.d) (Falconer & Storey (2007), Lambrix & Kaliyaperumal (2017)), and accommodating

interruptions or sessions (UI.2.e) are key functionalities. However, while many systems enable interrup-

tions through saving and loading the ontologies and alignment, this often does not preserve the provenance

information.

Finally, allowing users to create temporary mappings (UI.2.f) in order to test decisions is a relevant

functionality for supporting the decision process (Lanzenberger et al. (2008)).

4 Evaluation

We conducted two different types of evaluation: a functional assessment of state-of-the-art ontology

alignment systems (Section 4.1); and an experimental evaluation of the impact of user validation and

user errors in an interactive matching scenario (Section 4.2). In Section 4.1, we manually assess how state

of the art ontology alignment systems comply with the key aspects we debated in the preceding section

with respect to the system services (SS) they implement and the functionalities of their user interfaces

(UI). In Section 4.2 we report and elaborate on a series of experiments from the Interactive Matching
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track of OAEI 2015-2018, where simulated user input with varying error rates enables the assessment of

the effectiveness and robustness of different interactive strategies (i.e., how much they gain from the user

feedback, and how resilient to user errors they are). This set-up captures the play between the expertise of

the user (UP) and the system services (SS).

4.1 Functional Assessment of State-of-the-Art Systems

To perform our functional assessment of state-of-the-art ontology alignment systems, we first identified

systems that meet the basic requirements to be evaluated, i.e., both incorporate user validation in the

alignment process and have a mature user interface. The systems that meet these criteria are the following:

AgreementMaker (Cruz et al. (2007), Cruz et al. (2009), Cruz et al. (2012)), AlViz (Lanzenberger et al.

(2008)), AML (Pesquita et al. (2014), Faria et al. (2015)), CogZ/Prompt (Falconer et al. (2007), Falconer

& Storey (2007) / Noy & Musen (2000)), COMA (Aumüller et al. (2005)), LogMap (Jiménez-Ruiz

et al. (2012)), RepOSE (Ivanova & Lambrix (2013)), and SAMBO (Lambrix & Tan (2006), Lambrix

& Kaliyaperumal (2017)). The results of our evaluation are summarized in Table 2.

Regarding the stage of involvement of the user (SS.1), all systems support interaction after the fully

automated alignment process is complete, but most also allow for user interaction at some point of the

alignment process. Of these, AgreementMaker and COMA are the most interactive systems, allowing for

interaction at any stage as well as in iterative fashion. They are followed by CogZ/Prompt, RepOSE, and

SAMBO, all of which allow for iterative user interaction. AML and LogMap can both involve the user during

filtering. AlViz does not have ontology alignment functionalities, only alignment validation functionalities,

and thus can only support validation of alignments generated by other tools.

With respect to feedback demand (SS.2), most systems rely only on some form of similarity threshold

to select which mappings to present to the user for validation. AgreementMaker and AML use a more

refined strategy for identifying “problem” mappings to present to the user, which relies on the variance of

the similarity scores of their various alignment algorithms. Additionally AML also identifies and presents

as “problem” mappings those involved in cardinality or logical conflicts, as well as those that involve

ontology entities declared as obsolete. Similarly, LogMap presents as candidate mappings those that cause

the violation of alignment principles such as consistency, locality, and conservativity.

Concerning feedback propagation (SS.3), most systems implement at least a conflict detection

mechanism, such as checking if the validated mapping contradicts previously validated mappings or

results in an incoherent or inconsistent integrated ontology (AML, CogZ/Prompt, LogMap, SAMBO,

RepOSE). AlViz does not implement such mechanisms and accepts user feedback without any additional

steps. AgreementMaker employs a blocking propagation strategy where the user can control to how

many similar mappings the validation is propagated. Re-validation is supported by AML and RepOSE

as a part of the conflict resolution phase. AgreementMaker, CogZ/Prompt, COMA, RepOSE and SAMBO

employ some form of re-computation, where the user’s input is used to guide the matching process. For

example, AgreementMaker propagates the user’s decision to similar mappings thus increasing/decreasing

the similarity value.

As for alignment visualization aspects of the user interface (UI.1), few systems support all of the 7

visual info-seeking tasks (UI.1.a)—overview is usually supported by systems, whereas filter, history and

relate are rarely supported. Only AgreementMaker implements Visual Analytics (UI.1.b).

Systems typically represent ontologies as trees or graphs, with the latter typically serving as an addi-

tional representation (AlViz, CogZ) or a visual support role (AML) and rarely being a main representation

(RepOSE). Mappings are typically represented as links between corresponding nodes, or sometimes as a

list/table of pairs (AML, SAMBO, CogZ, COMA, LogMap) which is used to support different interactions.

About half the systems support alternative views (UI.1.c) of the alignments and ontologies, often a tree

and a graph view which are more suitable for different alignment tasks (Fu et al. (2017)), as exemplified in

Figure 2. Several systems also implement an individual mapping information view, which supports many

of the visualization and interaction functionalities, as exemplified in Figure 3.

Most of the systems employ strategies for grouping (UI.1.d) the mappings together: SAMBO presents

all mappings for a particular concept together, CogZ, AML, LogMap, and RepOSE show the local
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Table 2: Aspects addressed by state-of-the-art systems.

Aspect Agreement AlViz AML Cogz COMA LogMap RepOSE SAMBO
Maker PROMPT

System Services (SS)

Stage of Involvement (SS.1) all after filter/after match/iterative/after all filter/after filter/iterative/after before/iterative/after

Feedback Demand (SS.2) selected (*) selected filtered filtered selected filtered filtered

Re-computation (SS.3.a) X X- - X X - X X

Re-validation (SS.3.b) X-(**) - X- X- - - X- - X- X- -

User Interface (UI)

7 Visual Info-Seeking Tasks (UI.1.a) X X X- X X- - - X- - X- -

Visual Analytics (UI.1.b) X X- - - - - - -

Alternate Views (UI.1.c) X X X X - - - X

Grouping (UI.1.d) X X X X - X- X X

Mapping Status (UI.1.e) X X-(***) X X X- -(***) - X- X-

Metadata & Context (UI.1.f) X - X X - X X- X- -

Ranking/Recommendations (UI.1.g) - X- - X- - X- - - X- X -

Provenance & Justification (UI.1.h) X- - X- - X- X- X- - X- - X- - -

Impact of Decisions (UI.1.i) X- X- - X- X- - - X- X- - -

Accept/Reject (UI.2.a) X X- X X X- X X X

Create/Refine (UI.2.b) X X X X X - X- X

Search (UI.2.c) - X X X X - - X

User Annotation (UI.2.d) - - - X - - - X

Session (UI.2.e) X- X- X- X- X X X- X

Temporary Mapping (UI.2.f) - X X- X - - - -

In the table Xmarks that all of the listed items are supported by the system while - marks that the issue is not covered by the system. Combinations such as X- and X- -

mark that one or two of the listed items are not supported. The issues are as defined in Table 1. (*) depends on the underlying system; (**) in a multi-user environment;

(***) candidate and validated mappings cannot be distinguished in the user interface.
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Figure 2: Example of alternate views (list view + graph view) annotated with the alignment visualization

and interaction functionalities they support (screenshot of AML). The list view displays the full alignment,

color-coded to indicate mapping status (UI.1.e), and provides functionalities to accept/reject mappings

(UI.2.a) and search the alignment (UI.2.c). The graph view displays the neighborhood of a mapping

grouping related mappings (UI.1.d), indicates mapping status through color (UI.1.e), provides semantic

context for the mapping (UI.1.f) and displays ranking information (UI.1.g) in the form of similarity scores.

Finally, it provides information on the impact of decisions (UI.1.i) by displaying conflicting mappings (in

orange).

neighborhood of a mapping up to a certain distance. AgreementMaker and AlViz combine the different

views with clustering algorithms and interaction techniques to support the comparison of the similarity

values calculated by the different matchers (AgreementMaker) or clustering nodes of the ontologies

according to a selected relationship (AlViz).

Most systems provide information about mapping status (UI.1.e) and detailed metadata & context

about the mappings (UI.1.f). However, ranking/recommendation (UI.1.g) functionalities are provided only

partially by most systems, and the same is true for provenance & justification for the mappings (UI.1.h)

or the impact of decisions during validation (UI.1.i). Most systems provide only a similarity value or

employ color coding as a form of explanation for the mapping, which is insufficient for users to make

informed decisions (one exception is CogZ which shows a short natural language explanation for the
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Figure 3: Example of a mapping information view annotated with the alignment visualization and

interaction functionalities it supports (screenshot of LogMap). The view is divided into sections which

provide justification for the mapping (UI.1.h), lexical metadata and semantic context about the mapping

(UI.1.f), inform the user about conflicting and ambiguous mappings, grouping them (UI.1.d) and showing

the impact of validation decisions (UI.1.i). It also supports interaction to accept/reject the mapping

(UI.2.a).

mapping). Thus our evaluation survey confirms findings from (Ivanova et al. (2015)) that explanations for

candidate mappings are not well supported by the user interfaces of alignment systems, and continue to

be a challenge for the alignment community (Shvaiko & Euzenat (2013)).

With respect to alignment interaction functionalities (UI.2), most systems allow user to accept/reject

mappings (UI.2.a) and create/refine mappings (UI.2.b), but this information is not always displayed to

the user—rejected mappings, for instance, are rarely shown. AlViz and COMA do not distinguish between

validated and candidate mappings, thus making it difficult for the user to keep track of already visited

mappings. Search (UI.2.c) is also often supported by systems, but a previous survey of some of these

systems found serious limitations in that functionality (Ivanova et al. (2015)).

Only two systems (CogZ and SAMBO) allow user annotations of mappings (UI.2.d) during the

validation process. By contrast, sessions (UI.2.e) are directly (COMA, LogMap, SAMBO) or indirectly

(by saving and loading files) supported by all systems. Finally, only three systems (AlViz, AML and CogZ)

allow the user to create temporary mappings (UI.2.f).

4.1.1 AgreementMaker

AgreementMaker (Cruz et al. (2007), Cruz et al. (2009), Cruz et al. (2012)) computes an initial alignment

which is then iteratively altered according to the user feedback (SS.1.d) (SS.1.e). For every mapping

the system creates a signature vector containing its similarity values calculated by different matchers.

The signature vector is then used during the processes of candidate mappings selection and feedback

propagation (SS.1.c) (SS.2.a) (SS.3.a). For every mapping a disagreement metric is calculated—the
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disagreement is high when the similarity values computed by the different matchers are in a wide interval.

The system presents the top-k mappings with the highest disagreement values for user validation. The

mappings are clustered based on their vectors and the user feedback is propagated to those with similar

vectors to the vector of the mapping validated by the user applying a linear function for both accepted

and rejected mappings; already validated mappings are not updated any longer and the same mapping is

not shown again to the user, e.g., it is not validated twice. The user can adjust the size of the feedback

propagation cluster via a threshold. The approach described in Cruz et al. (2016) also discusses blocking

propagation in the context of multi-user alignment. In this case the feedback propagation can be controlled

via the consensus of users for a given candidate mapping (SS.3.b). Conflict detection is not discussed.

The ontologies are visualized as trees and their mappings are depicted as color-coded lines representing

the matcher that calculated the similarity value (the value itself is shown as a number without an

explanation (UI.1.h−−)). As described in Cruz et al. (2007) comments and additional information

are shown when a concept is selected (UI.1.f) (UI.1.a). A visual analytics panel (UI.1.b) (UI.1.a)

helps in comparing the similarity values calculated by the different matchers, their combination and

‘disagreement’; it also shows the mappings in the same cluster (UI.1.c) (UI.1.d). The user can adjust the

size of the cluster and visualize its members thus visualizing the impact of the validations (UI.1.i−). In the

visual analytics panel the mappings are represented with matrices (one per matcher) and are color-coded

to represent accepted, rejected, candidate, and manually created mappings (UI.1.e). The tool supports all

(UI.1.a) of the seven information visualization seeking mantra tasks with a different level of coverage:

overview is supported by observing the lines representing the mappings; filtering by different criteria

(UI.1.a) can reduce the number of mappings shown to the user (by threshold, by matcher, by number of

mappings per concept); undo and redo (UI.1.a) are supported as described in Cruz et al. (2007) but it is

not clear if they are supported in later versions and how undoing an action would affect the propagation

algorithm. During the validation process the user can accept, reject (UI.2.a) and create mappings manually

(UI.2.b) (6 mappings types are supported). All mappings calculated for a particular concept are shown to

the user (Li et al. (2015)). Sessions (UI.2.e−) are not directly supported but load and save operations

provide indirect support.

4.1.2 AlViz

AlViz (Lanzenberger et al. (2008), Lanzenberger et al. (2010)) is a Protégé plugin which uses multiple

views to visualize an alignment produced by the FOAM system (Ehrig & Sure (2005)) (UI.1.c). Thus

the user is involved after the computation of the alignment (SS.1.e). During the alignment process each

ontology is represented as a pair of views—a tree and a small world graph—i.e., four in total. The views

are connected by the linking and brushing paradigm where navigation in one of the views changes the

representation in the other. The nodes in the ontology are clustered according to a selected relationship,

called also a mutual property, and level of detail, where the sizes of the clusters depend on the number of

nodes in them and the colors are determined by one out of three strategies (UI.1.d). Color-coding shows

the degree of similarity and the type of the association but explicit similarity values are not provided

(UI.1.h−−).

Mappings are edited, (indirectly) accepted and rejected (UI.2.a−) in the tree views by using toolbar

buttons for choosing between one out of six types of mappings, called associations (UI.2.b) (UI.1.e−).

The six types are equal, syntactical, broader-than, narrower-than, similar and different. There is no clear

distinction between mappings and candidate mappings (UI.1.e−). Temporary decisions for questionable

mappings are supported by a tracking button (UI.1.e−) (UI.2.f). A search field under the tree view is

provided for each ontology (UI.2.c).

The tool supports many of the tasks from the information-seeking mantra (UI.1.a)—overview by small

world graphs, zoom in to selected level of detail, filter by mutual property, details-on-demand by tooltips

and labels, history by list of activities and undo/redo buttons, and relate by different comparison strategies.

Ranking and recommendations at a mapping level are not provided but the color-coding of the clusters can

help in the identification of interesting regions and starting points (UI.1.g−−). Sessions can be considered

supported by save and load (UI.2.e−).
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4.1.3 AML

AML (Pesquita et al. (2014), Faria et al. (2015)) is a lightweight ontology alignment system that focuses

primarily on scalability and coherence. While its matching algorithms are fully automated, AML supports

user interaction during the filtering procedure, as well as validation of the final alignment. It employs an

interactive selection algorithm based on the similarity scores produced by its various matching algorithms

(SS.1.c) (SS.2.a) for picking candidates for revision, also taking into account ambiguous mappings.

Additionally, it employs an interactive repair algorithm that addresses conflicting mappings (SS.3.b−).

AML’s user interface displays two different views of the alignment (UI.1.c): a local graph view, where the

user can visualize an individual mapping and its local context, including related mappings (UI.1.d); and a

list view that serves as an overview and enables the user to find further details about each mapping (both

structural and lexical) upon clicking (UI.1.f). Additionally, the latter also enables the user to review and

reject mapping candidates (UI.2.a−), and displays information about competing and logically conflicting

mappings (UI.1.i−).

AML’s menu enables the user to customize the graph view, and offers the functionalities of searching the

alignment for mappings (UI.2.c) and creating new mappings from five types which are equivalence, sub,

super, overlap and unknown (UI.2.b) by searching through the ontologies. While AML doesn’t explicitly

implement sessions, it does allow the user to save and load the alignment at any stage, and thus interrupt

and resume their revision at will (UI.2.e−).

4.1.4 CogZ

CogZ (Falconer et al. (2007), Falconer & Storey (2007)), builds on PROMPT (Noy & Musen (2000)). It is

an extension of PROMPT’s user interface and uses its other components to address cognitive requirements

defined in Falconer & Storey (2007). The matching process is iterative (SS.1.d). The tool starts by making

a list of initial candidate mappings which are then presented to the user. Based on the user’s validations, the

tool will check for conflicts and proceed in building additional suggestions which are based on the user’s

previous input (SS.1.b) (SS.2.b) (SS.3.a). The examples of conflicts considered by the tool are name

conflicts, dangling references, redundancy in the concept hierarchy, slot value restrictions that violate

concept inheritance (Noy & Musen (2000)) (SS.3.b−−) (only conflict detection, tool automatically deals

with the conflicts, possible re-validations are not discussed).

The ontologies in CogZ are represented as trees and mappings are represented as dashed lines between

concepts. Hovering over a mapping shows the explanation for the mapping. The explanations are short

natural language texts describing the reasons why a certain mapping was selected (UI.1.h−) (confidence

value not shown). Users can also explore the neighborhoods of the terms in a candidate mapping (UI.1.d)

(UI.1.f) (UI.1.i−−). The user can define manually new mappings as well as add annotations (UI.2.b)

(UI.2.d). Users can mark a candidate mapping as a temporary mapping (UI.2.f) (UI.1.e). When the user

is validating a mapping (UI.2.a), the tool presents mappings related to the parts of the ontology where the

user is currently working on (UI.1.d). The candidate-heavy regions in this view can be identified by parts

of the ontologies with large concentration of lines between them (UI.1.g−−), but no recommendations are

provided at a single mapping level. In addition, the user interface provides searching (UI.2.c) and filtering

(UI.1.a) for both ontologies and candidate mappings. All of the tasks considered in the visual information

seeking manta are supported (UI.1.a) and the system keeps track of the user’s previous decisions and the

user can at any time inspect the candidate mappings as well as already completed validations. In this way,

the user can follow his/her progress.

In Falconer et al. (2006) the authors show the alternate tree-map view (UI.1.c) which provides an

overview of the ontology and candidate mappings. In this view ontologies are partitioned into parts

and color-coded depending on the number of candidate mappings. Thus, candidate-heavy regions can

be identified through different color intensities. In addition to this, this view provides a pie-chart for each

branch of the ontology which contains numbers of candidate mappings, mapped concepts and concepts

without association.

The mappings can be stored and loaded from a file thus the whole mapping process does not need to

be done in one occasion (UI.2.e−).
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4.1.5 COMA

COMA (Aumüller et al. (2005), Massmann et al. (2011)) is a system for aligning large schemas and

ontologies. The system supports the fragment-based matching strategy. In this strategy, the system applies

a divide-and-conquer approach where it aims at identifying similar fragments of ontologies which are then

matched. The user can validate the output from each phase of this process (matching pairs of fragments)

and the user’s validation will be used in subsequent computations (SS.1.a) (SS.1.b) (SS.1.c) (SS.1.d)

(SS.1.e) (SS.2.b) (SS.3.a). Suggestion selection is controlled via threshold values.

The ontologies are shown as trees and mappings are shown as lines between them; the similarity values

are color-coded in the lines’ colors (UI.1.h−−) and are shown on hover. Therefore, regions with a large

number of lines represent regions with many candidate mappings (candidate-heavy regions). Under each

ontology there is a search box (UI.2.c). The tool has limited support for the information seeking tasks

with filter, history and relate not supported (UI.1.a−−).

The system allows saving and loading generated mappings to the mapping repository (UI.2.e−). Users

can reject (UI.2.a−) or manually add new mappings (UI.2.b), it supports complex mappings, not only

equivalence mappings. The system does not differentiate in the interface between candidate mappings

and validated mappings neither supports temporary mappings (UI.1.e−−). If a user validates a candidate

mapping, it is assigned the highest confidence value.

4.1.6 LogMap

LogMap (Jiménez-Ruiz & Cuenca Grau (2011), Jiménez-Ruiz et al. (2012)) is an ontology alignment

system that implements scalable reasoning and diagnosis algorithms, which minimize any logical errors

introduced by the matching process. It supports user interaction during the matching process, which is

essential for use cases requiring accurate mappings, and it is able to generate equivalence and subsumption

mappings.

LogMap presents to the user only the mappings that are not “clear cut” cases (SS.1.e) (SS.2.a), for

which user feedback would be highly beneficial. The number of such mappings can still be significant;

hence, it is crucial to reduce the number of questions to the human expert by applying automatic decisions

based on users’ feedback. Automatic decisions based on a particular user decision to accept or reject

a mapping (UI.2.a) are made according to two criteria: ambiguity and conflictness. That is, additional

mappings will be (automatically) rejected/accepted if they were in conflict (i.e., lead to an unsatisfiable

concept) or ambiguous (i.e., share the source or target entity) with the user (SS.3.b−−).

Each candidate mapping is presented to the user with a confidence value (UI.1.h−−), information

about the context/scope of the matched entities (i.e., superconcepts and subconcepts), and lexical

information such as synonyms (UI.1.f). In addition, the ambiguous mappings and mappings in conflict are

also presented in order to help the user understand the consequences of the feedback (UI.1.d−, UI.1.i−).

The user can validate the mappings in one or several sessions (UI.2.e) or end the interactive process at any

time (the remaining cases are decided heuristically). Finally, LogMap ranks mappings (UI.1.g−) according

to their impact on other mappings (i.e., mapping that have other mappings in conflict are shown first).

4.1.7 RepOSE

RepOSE (Ivanova & Lambrix (2013)) is based on an integrated taxonomy4 alignment and debugging

framework. The system can be seen as an ontology alignment system with a debugging component

for detecting and repairing modelling defects (missing and wrong subsumption relations/mappings) in

taxonomy networks (both in the alignments and ontologies). The alignment process goes through three

phases - generation of candidate mappings, validation and repairing (SS.1.d) (SS.1.e). Selection of

mappings suggestions is only controlled by threshold values for different matchers (SS.2.b). During the

repairing step for every accepted mapping the user is given possibility to add a mapping which would

make the accepted mapping derivable. A limited form of re-computation as user feedback is used in the

repairing process (SS.3.a) (SS.1.d) (SS.1.e). The system checks for contradictions after each group of

4Other versions of RepOSE deal with slightly more expressive ontologies, but focus more on the debugging phase,

e.g., Lambrix et al. (2012), Wei-Kleiner et al. (2014).
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suggestions is validated and after a repairing action and does not allow the current action to take place if

such are found (SS.3.b−).

During the validation phase the candidate mappings are shown as graphs in groups where the last

group in the list contains the most suggestions (UI.1.g) (UI.1.d), thus the user can choose the area to

start with. The nodes are color-coded according to their hosting ontology and the edges according to

the state of the represented mappings - candidate mappings and added/rejected mappings (UI.1.e−),

(temporary mappings are not supported). The justifications of the mappings inferred from the taxonomy

network are presented to the user as graphs, for the rest a tooltip that appears when the user hovers on an

edge shows the similarity value calculated by the (combination of) matchers (UI.1.f−) (UI.1.h−−) (only

derivation path, no information on why the mapping was selected). If the current user action contradicts

with previous actions an error message is shown to the user (UI.1.i−−). Users can accept/reject mappings

(UI.2.a). During the validation and repairing processes recommendations based on external knowledge

are provided (UI.1.g) for every mapping. Creating arbitrary mappings is not possible but some flexibility

is provided during the repairing phase where the user can create a mapping that entails the accepted

mapping (mappings can be refined in the repairing phase (UI.2.b−)). The system supports equivalence

and subsumption mappings. Sessions are indirectly supported (users can save/load mappings (UI.2.e−)).

Some overview and details-on-demand (regarding mappings) tasks are supported (UI.1.a−−).

4.1.8 SAMBO

SAMBO (Lambrix & Tan (2006), Lambrix & Kaliyaperumal (2017)) is a session-based (UI.2.e) ontology

alignment system. The sessions are in the form of interruptible computation sessions. Users can thus

begin the validation process even before the completion of the computation. In addition, users can specify

points of interruptions, e.g., by specifying the number of concept pairs that need to be processed before

the interrupt and the validation process. The system is iterative and computation sessions can reuse results

from previous validations (SS.1.a) (SS.1.d) (SS.1.e) (SS.3.a). The validation decisions are also used in the

recommendation of settings for the alignment algorithms (Tan & Lambrix (2007)). A partial alignment

can be used to reduce the search space (Lambrix & Liu (2009)) (SS.1.a) (SS.1.d) (SS.1.e). Selection of

mapping suggestions is controlled via different combination and filtering strategies using the similarity

values for different matchers (SS.2.b). It is possible to include the reasoner to check the consistency of

the validated candidate mappings. If conflicts are found they will be reported to the user (supports only

checks for problems within the logic in ontologies, users are asked to re-validate, (SS.3.b−−)).

The user interface is implemented in the form of tabs where each tab is related to one part of the

alignment process. The system groups together related candidate mappings (UI.1.d). Related mappings

are those which share the same terms. For every candidate mapping, the user can select to either reject

it or accept it as either a subsumption relation or equivalence relation (UI.2.a). The system also allows

manual creation of mappings (UI.2.b) as well annotation of decisions (UI.2.d), showing the annotation

is however not easy (UI.1.f−−). In the manual mode (UI.1.c), the user is presented with a tree view of

the ontologies and needs to select one concept from each tree and the relation between them in order to

create a mapping manually (UI.1.e−), temporary mappings are not supported. In this view, the user can

also search the ontologies (UI.2.c).

From the seven information seeking tasks, only the history task is well supported (UI.1.a−−)—the

system logs all user decisions and enables their review, and it includes an undo button as well. The user

can also review remaining candidate mappings which need to be dealt with. Relate and details on demand

are indirectly supported by grouping mappings for a single concept together in the list view.

4.2 Experiments

These experiments aim at assessing the impact of user validation and user errors to the performance of

ontology alignment systems in an interactive setting. They were conducted in the scope of the Interactive

Matching track of the OAEI from 2015 to 2018, and the results we show are a compilation of those results

across the years, though we elaborate on the discussion made in the OAEI.
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4.2.1 Set Up

The OAEI evaluation relies on the SEALS client, developed in the Semantic Evaluation At Large Scale

project5. This client was modified in 2013 for the interactive matching track to allow systems to pose

questions regarding the correctness of a mapping to the Oracle, which simulates a user by checking the

reference alignment from that task. This process is fully automated, happening during the run-time of the

system, and only systems that implement Oracle calls can be evaluated in this manner. The decision of

when to stop the user interactions lies solely with the matching system. The Oracle will reply to any and

all questions the system asks, but will also record and tally them all, to use as an evaluation criterion.

In 2015, we modified the Oracle to randomly generate erroneous replies, with a uniform distribution of

fixed probability (or error rate), set by the OAEI organizer. In this experiment the error rates considered

were 0% (perfect Oracle, denoted by Or0), 10% (Or10), 20% (Or20) and 30% (Or30). While uniformely

distributed random errors are not realistic—some mappings are expected to be more challenging to users

than others—they serve our purpose of assessing how errors affect the performance of matching systems

in an interactive scenario. Furthermore, the Oracle is implemented with a “fixed mind”, meaning that after

it replies to a query from the system, it will always give the same reply for the same query. This prevents

systems from asking repeated questions to compensate for the error rate, which while not an unrealistic

premise, would hamper our analysis of the effect of errors on the performance of the systems.

In 2016, we further modified the Oracle to enable it to reply to queries about a set of up to three

related mappings rather than to only queries about individual mappings. If a query contains a set of no

more than three competing mappings, then the Oracle counts this as a single interaction, and returns the

subset of correct mappings from the original set (under the given error rate). An example of a set of three

competing mappings is: Muscle ≡ Muscle, Muscle ≡ Muscle Tissue, Striated Muscle Tissue ≡ Muscle

Tissue. Formally, we can say that a set of mappings is competing if, for each mapping in the set, there

exists another mapping that shares either its source or target entities. The rationale behind counting a small

set of competing mappings as a single interaction is that it simulates a grouping scenario where the user

is able to choose between related mappings with no more effort than it would take to revise an individual

mapping (potentially less, since grouping makes more information available to the user which he might

otherwise have to search in order to decide on any of the mappings in the group).

4.2.2 Datasets

The experiments were carried out on datasets from the OAEI. The Conference and Anatomy datasets were

used in 2015-2018, the LargeBio (Large Biomedical Ontologies) dataset was used in 2015-2016 and the

(Disease &) Phenotype dataset was used in 2016.

The Conference dataset for the Interactive track comprises 7 small ontologies and 21 reference

alignments between pairs of ontologies in the domain of conference organization. The Anatomy dataset

contains 2 medium-sized ontologies, the Adult Mouse Anatomy (2744 conceptss) which is a part of the

Gene Expression Database6 and a small fragment (3304 concepts) of the National Cancer Institute (NCI)

Thesaurus7 describing the human anatomy, and a reference alignment. LargeBio uses 3 large ontologies,

the Foundational Model of Anatomy (FMA)8, SNOMED CT, and NCI, which contain 78,989, 306,591

and 66,724 concepts, respectively. There are different tasks for aligning the whole ontologies or fragments

of the ontologies. The Phenotype dataset has 2 tasks: aligning the Human Phenotype Ontology (HPO) to

the Mammalian Phenotype Ontology (MP), and aligning the Human Disease Ontology (DOID) to the

Orphanet and Rare Diseases Ontology (ORDO).

5http://www.seals-project.eu
6http://www.informatics.jax.org/expression.shtml
7https://ncit.nci.nih.gov/ncitbrowser/
8http://sig.biostr.washington.edu/projects/fm/AboutFM.html

http://www.seals-project.eu
http://www.informatics.jax.org/expression.shtml
https://ncit.nci.nih.gov/ncitbrowser/
http://sig.biostr.washington.edu/projects/fm/AboutFM.html
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Table 3 Interactive matching evaluation parameters.

Evaluation Parameter Explanation

System Effectiveness and Efficiency

Size
Number of mappings in the alignment; should be close to the size of the

reference alignment.

Precision,
Standard evaluation parameters for gauging system performance against the

reference alignment, scaled 0-1.
Recall,

F-measure

Run time Total run time of the system in seconds.

User Interactions

Total Requests
Measures the number of queries to the Oracle (with sets of up to 3 conflicting

mappings counting as a single query).

Distinct Mappings Measures the total number of distinct mappings validated by the Oracle.

True Positives, Measure the number of mappings the system asked the Oracle to validate

which are respectively true positive, true negative, false positive, and false

negative; these give us a detailed picture of the nature of the system’s queries

and the replies of the Oracle.

True Negatives,

False Positives,

False Negatives

Time between requests
Time intervals in seconds between Oracle queries, which reflects the expected

waiting times for users.

User Expertise

Oracle Positive Precision Measure the fraction of positive and negative answers given by the oracle

which are correct, thus reflecting user expertise.Oracle Negative Precision

System Robustness / Impact of Errors

Precision for Oracle, Standard evaluation parameters but measured against the reference alignment

modified by the Oracle’s errors; should be constant across different error rates;

if they decrease with the error, it means there is error propagation.

Recall for Oracle,

F-measure for Oracle

4.2.3 Evaluation Parameters & Configurations

Due to the several factors to take under consideration in these experiments (e.g., the number of queries,

the number and type of erroneous replies) our evaluation includes an unusually high number of evaluation

parameters, which are listed in Table 3.

Regarding the effectiveness and efficiency of the alignment systems we compute the size (number

of mappings) of the alignments produced, the traditional parameters precision, recall and F-measure,

measured against the respective OAEI reference alignment, and finally, the run time of the system. These

are the standard evaluation parameters in all OAEI tracks, so we can compare the interactive performance

of the systems with their non-interactive performance in order to gauge the impact of user validation.

Regarding the user interactions of the system, we measure total requests and distinct mappings. The

former is the number of distinct queries (of up to three conflicting mappings) the system asks the Oracle,

representing the expected user workload in the validation process (so more requests means the system

requires more work from the user). The latter is the total number of distinct mappings for which the Oracle

gave feedback to the user (regardless of whether they were submitted simultaneously, or separately).

The latter should be compared with the former to assess whether the system is harnessing a grouping

strategy to reduce user workload (total requests < distinct mappings), or if on the contrary it is asking

redundant questions (total requests > distinct mappings). Furthermore, we also measure the numbers of

true positives, true negatives, false positives and false negatives in the queried mappings, to get a more

detailed picture about the status of the mappings the system tends to ask about (mostly correct, mostly

incorrect, or a balanced mix) and whether the distribution of errors from the Oracle was balanced as well.

With regard to these four parameters, it is their relative distribution rather than their absolute number that

is of relevance. Although these are not used as evaluation parameters, we use the terms ‘question with

negative answer’ and ‘question with positive answer’ to refer to validation requests for which the Oracle

answers that the candidate mapping is false or true, respectively. Also pertaining to user interaction, we
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compute the time between requests, reflecting the expected user waiting times, and display the distribution

of such times during the system run.

Regarding user expertise, we compute the Oracle positive precision and Oracle negative precision,

which measure, respectively, the fraction of positive and negative answers given by the Oracle that

are correct. They are computed directly from the counts of true and false positives, and true and false

negatives, respectively. These two parameters give us a deeper insight into how the lack of user expertise

(given by the error rate) affects the system depending on the bias of the system’s interactive algorithm

towards negative or positive mappings.

Regarding the robustness of the systems, or how they are impacted by user errors, we compute the

parameters precision for Oracle, recall for Oracle and F-measure for Oracle, which are the same as

the traditional parameters, but computed against the OAEI reference alignment modified by the Oracle’s

errors. These parameters are expected to be constant across error rates if the system is linearly affected

by the errors (i.e., only the errors produced by the Oracle change), or to decrease with the error rate if the

system is affected supralinearly (i.e., there is error propagation). They can instead increase with the error

if the system is able to detect and compensate for the higher error rate somehow, and also when the errors

cause the system to make more validation requests (even if the answer is erroneous, it will be correct

according to the Oracle).

The evaluations of the Conference and Anatomy datasets were run on a server with 3.46 GHz (6 cores)

and 8GB RAM allocated to the alignment systems. In 2015, each system was run three times. From

2016 to 2018, each system was run ten times. The final result for a measure for a system and an error

rate represents the average of the multiples runs. For the Conference dataset with the ra1 alignment, the

relative parameters (precision, recall, etc) were macro-averaged across the various ontology pairs, whereas

the absolute parameters (size, total requests, etc) were summed across all pairs. Then the parameters were

averaged over the multiple runs.

The Phenotype (2016) and LargeBio (2015-2016) evaluations were run only once (due to their larger

size) on a Ubuntu Laptop with an Intel Core i7-4600U CPU @ 2.10GHz x 4 and allocating 15GB of

RAM.

4.2.4 Systems and techniques

This evaluation comprises only systems that participated in the OAEI 2015-2018 Interactive track, as it

can only be carried out on systems configured to use the SEALS client and make use of the Oracle, which

is not true of most of the systems we assessed functionally in Section 4.1. Furthermore, OAEI rules do

not require systems to have a user interface, and many do not, and thus could not be covered in Section

4.1. Thus, the overlap between the two sections is small, with only AML (Faria et al. (2015)) and LogMap

(Jiménez-Ruiz et al. (2012)) being included in both. Note also that the versions of these two systems

evaluated in this section are the SEALS version they submitted to the OAEI, which may differ from the

stand-alone user interface versions we assessed in Section 4.1.

AML (Faria et al. (2015)) and LogMap (Jiménez-Ruiz et al. (2012)) have participated continuously in

the Interactive track since 2015, JarvisOM9 and ServOMBI (Kheder & Diallo (2015)) participated in 2015,

and ALIN (da Silva et al. (2018a)) and XMap (Djeddi et al. (2018)) participated in 2016-2018.

Not all systems produced results for all datasets: ServOMBI and ALIN delivered partial results for the

full LargeBio dataset in 2015 and 2016, respectively, while JarvisOM did not deliver any results for the

full LargeBio dataset in 2015. Furthermore, XMap and ALIN did not complete all tasks in the Phenotype

dataset in 2016.

Apart from JarvisOM, which involves the user during the matching stage, the systems all make use of

user interactions exclusively in the filtering stage. Both LogMap and AML request feedback on selected

candidate mappings and filter candidate mappings based on the user validations. LogMap interacts with

the user to decide on candidate mappings which are not clear-cut cases. AML uses patterns in the similarity

values produced by its various matching algorithms to detect suspicious mappings and employs a query

limit and other strategies to minimize user interactions. ServOMBI asks the user to validate all of its

9https://sourceforge.net/projects/jarvis-om/

https://sourceforge.net/projects/jarvis-om/
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candidate mappings and uses the validations and a stable marriage algorithm to decide on the final

alignment. ALIN uses the feedback from the user regarding accepted candidate mappings to add new

candidate mappings and to remove candidate mappings that are covered by an antipattern related to the

accepted candidate mappings. XMap uses various similarity measures to generate candidate mappings

and applies two thresholds to filter the candidate mappings: one for the mappings that are directly added

to the final alignment and another for those that are presented to the user for validation. The validation

requests are mainly about incorrect mappings. JarvisOM is based on an active learning strategy known as

query-by-committee: at every iteration JarvisOM asks the user for pairs of entities that have the highest

disagreement between committee members and lower average euclidean distance, and at the last iteration,

the classifiers committee is used to generate the alignment.

4.2.5 Results

The lessons learned from the OAEI Interactive Matching track are shared across the different datasets and

different years, so for the sake of clarity and brevity we only present the results for the Anatomy dataset

for 2015 and 2018. These cover all participating systems from the 2015-2018 interval and are usually

representative of the overall performance of the systems. Where there are notable differences between

datasets, we discuss them in the text. The full results can be found at the OAEI Interactive track results

web pages.10

The evaluation results for the Interactive Anatomy dataset from 2015 and 2018 are shown across Tables

4-6 and in Figure 4. Table 4 shows the standard evaluation parameters of the systems in the non-interactive

setting and in the interactive setting with varying error rates (perfect Oracle – Or0, 10% error – Or10,

20% error – Or20, and 30% error – Or30). Table 5 shows the evaluation parameters pertaining to user

interactions and user expertise across all error rates, except for the time between queries, which is shown

in boxplot form in Figure 4. Table 6 shows the evaluation parameters for assessing system robustness /

impact of errors.

AML improves more in terms of recall than precision with user interactions. It exploits them in part

to test mappings with lower similarity scores than the ones it accepts in non-interactive mode, which is

why it asks more questions with negative answers from the Oracle than questions with positive answers.

As a result, when the error rate increases, AML’s precision drops below the non-interactive precision (at

20% in 2018), but its recall remains higher than the non-interactive recall. However, for the Conference,

LargeBio and Phenotype datasets the improvement in precision and recall are similar, and for LargeBio

and one of the Phenotype datasets the number of questions with negative answers is about the same as

the number of questions with positive answers. These differences to Anatomy may be partially explained

by the fact that in non-interactive mode the precision of AML in Anatomy is already quite high. AML

is affected linearly by the errors, as evidenced by the fact that its performance as measured against the

Oracle (Table 6) remains almost constant at all error rates. This means that AML does not extrapolate from

the user feedback about a mapping to decide on the classification of multiple mapping candidates. While

extrapolation (be it through active learning, feedback propagation, or other techniques) is an effective

strategy for reducing user demand, it also implies that the system will be more heavily impacted by user

errors (e.g., Cruz et al. (2016)).

LogMap improves only with regard to precision with user interactions. In 2015-2016 it was the most

balanced system regarding positive versus negative Oracle answers. This means that, in this particular

task during 2015-2016, the questions with positive answers that LogMap asked the Oracle all correspond

to mappings it would also accept in its non-interactive setting, whereas the ones with negative answers

allow it to exclude some mappings that it would also (erroneously) accept. Due to the balance between

its questions in 2015-2016, when presented with user errors, LogMap was affected with regard to both

precision and recall in approximately equal measure. However, since its precision increased substantially

with user interactions, it remains higher than the non-interactive precision at all error rates, unlike the

recall. In 2017-2018, LogMap asks a similar amount of questions with positive answers, but circa 3

times as many questions with negative answers than earlier, which leads to a slightly lower precision.

10http://sws.ifi.uio.no/oaei/interactive/

http://sws.ifi.uio.no/oaei/interactive/
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Table 4 Impact of user validation and user errors on the effectiveness and efficiency of alignment systems, assessed

in the Interactive Anatomy dataset.

Parameter
AML AML LogMap LogMap JarvisOM ServOMBI ALIN XMAP

2015 2018 2015 2018 2015 2015 2018 2018

Non-Interactive

Size 1477 1493 1397 1397 458 971 928 1413

Precision 0.956 0.947 0.918 0.911 0.365 0.963 0.991 0.928

Recall 0.931 0.936 0.846 0.846 0.110 0.617 0.611 0.865

F-measure 0.944 0.941 0.880 0.877 0.169 0.752 0.756 0.895

Run time 40 42 24 23 217 792 271 37

Interactive with Or0

Size 1491 1490 1298 1306 1168 935 1260 1416

Precision 0.970 0.964 0.988 0.982 0.867 1 0.994 0.929

Recall 0.954 0.948 0.846 0.846 0.668 0.617 0.826 0.867

F-measure 0.962 0.956 0.912 0.909 0.755 0.763 0.902 0.897

Run time 49 48 24 23 213 711 317 41

Interactive with Or10

Size 1502 1506.2 1306 1311.2 1467.7 842.7 1330.8 1416

Precision 0.955 0.952 0.966 0.961 0.764 0.996 0.914 0.929

Recall 0.946 0.946 0.832 0.832 0.666 0.553 0.802 0.867

F-measure 0.950 0.948 0.894 0.892 0.684 0.659 0.854 0.897

Run time 45 49 25 23 214 563 317 42

Interactive with Or20

Size 1525 1521.7 1311.7 1319.7 2045.3 757 1401.8 1416.2

Precision 0.936 0.938 0.953 0.945 0.529 0.989 0.848 0.929

Recall 0.942 0.941 0.824 0.823 0.710 0.494 0.784 0.867

F-measure 0.939 0.939 0.884 0.88 0.601 0.659 0.815 0.897

Run time 47 49 24 23 214 571 315 42

Interactive with Or30

Size 1526 1546 1317 1331.2 1501.7 658.3 1462.8 1416.4

Precision 0.931 0.92 0.941 0.932 0.511 0.986 0.784 0.929

Recall 0.936 0.938 0.818 0.819 0.530 0.428 0.757 0.867

F-measure 0.934 0.929 0.875 0.872 0.493 0.597 0.77 0.897

Run time 48 49 24 23 214 447 313 42

Note: The best values among systems in each setting are highlighted in bold, blue is used to indicate

cases where interactive performance was better than non-interactive performance and red is used for the

opposite case.

For the Conference dataset and one of the Phenotype datasets the system asks more questions with

negative answers, while for LargeBio it asks more questions with positive answers, and also obtains a

small improvement in recall.

Another interesting observation about LogMap is that in 2015-2016 the number of requests it made

increased slightly but steadily with the error rate, whereas other systems show stable rates or a lower

amount of requests. This is also true, but to a lower extent for AML. Both systems employ logical repair

techniques, and this increase can be tied to the fact that user errors can lead to more complex decisions

when interaction is used in filtering steps and inferences are drawn from the user feedback. For instance,

during alignment repair, if the user indicates that a mapping that would be removed by the system to solve a

conflict is correct, the system may have to ask the user about one or more alternative mappings to solve that

conflict, thus increasing the number of requests. In this context, the query-based evaluation of 2015 did not

accurately reflect an interface-based alignment validation, where the user could be shown all the mappings

that cause a conflict simultaneously. In 2016-2018, systems could present sets of competing mappings to

the Oracle for a concerted decision, and in 2017-2018 LogMap took advantage of this evolution. It now

makes a constant number of requests (388) which cover more than 1000 mappings.
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Table 5 User interactions of the matching systems and user expertise, assessed in the Interactive Anatomy dataset,

with varying error rates.

Parameter
AML AML LogMap LogMap JarvisOM ServOMBI ALIN XMAP

2015 2018 2015 2018 2015 2015 2018 2018

Or0

Total Requests 312 240 590 388 7 2136 602 35

Distinct Mappings 312 240 590 1164 7 1128 1448 35

True Positives 73 51 287 287 4 955 326 5

True Negatives 239 189 303 877 3 173 1122.9 30

False Positives 0 0 0 0 0 0 0 0

False Negatives 0 0 0 0 0 0 0 0

Or. Pos. Precision 1 1 1 1 1 1 1 1

Or. Neg. Precision 1 1 1 1 1 1 1 1

Or10

Total Requests 317.3 268 609 388 7 2198.7 578 35

Distinct Mappings 317.3 268 609 1164 7 1128 1373 35

True Positives 66.3 51.4 261.3 258.8 3.3 857.3 289.9 4.4

True Negatives 218 191 288.3 787.0 3 156.3 942.7 27.3

False Positives 23 20.2 33.7 90 0.3 16.7 106.9 3

False Negatives 10 5.9 25.7 28.2 0.3 97.7 34.3 0.6

Or. Pos. Precision 0.742 0.719 0.885 0.742 0.916 0.98 0.731 0.601

Or. Neg. Precision 0.956 0.97 0.918 0.966 0.9 0.615 0.965 0.978

Or20

Total Requests 321.7 272 630 388 8 2257 564 35

Distinct Mappings 321.7 272 630 1164 8 1128 1343 35

True Positives 66.3 44.9 233 231.7 4.7 767.3 262.6 4.1

True Negatives 186.7 174.1 274 699.8 1 131.3 815.6 24.5

False Positives 52.3 42 69 177.2 1.3 41.7 205.2 6.2

False Negatives 16.3 42 54 55.3 1 187.7 60 0.9

Or. Pos. Precision 0.559 0.52 0.771 0.567 0.783 0.948 0.561 0.4

Or. Neg. Precision 0.919 0.935 0.835 0.927 0.5 0.411 0.931 0.965

Or30

Total Requests 306 299 663 388 7.3 2329.7 552 35

Distinct Mappings 306 299 663 1164 7.3 1128.3 1307 35

True Positives 54 43 200.7 201.4 4 663.3 221.1 3.7

True Negatives 168.7 168 270.7 614 1.7 129 681.7 21.7

False Positives 61.3 70.9 105.3 263 1 44.3 307.7 9

False Negatives 22 17.4 86.3 85.6 0.7 291.7 97.1 1.3

Or. Pos. Precision 0.468 70.9 0.655 0.434 0.8 0.937 0.419 0.298

Or. Neg. Precision 0.884 0.905 0.758 0.878 0.708 0.306 0.875 0.946

JarvisOM is the system that most depends on user interactions, as evidenced by the poor quality of

its non-interactive alignment. Thus, it is the system that most improves with user interactions, and the

only one that improves substantially in both precision and recall. It is also the one that makes the least

requests to the Oracle – only 7-8 requests per alignment – as it uses these requests in an active learning

approach rather than to validate a final alignment. This means it is the system that extrapolates the most

from the user feedback, which as expected, makes it the one that is most affected by user errors – its F-

measure drops by 26 percentage points from the perfect Oracle to the one with a 30% error rate. However,

it depends so heavily on user interaction, that even at 30% errors, its results are still better than the non-

interactive ones. JarvisOM is also the system where the impact of the errors most deviates from linearity,

precisely because it extrapolates from so few mappings. Another curious consequence of this is that its

alignment size fluctuates considerably, increasing to almost double between the perfect Oracle and the one

with a 20% Oracle error rate, but then decreasing again at 30% Oracle error rate. JarvisOM behaves very

differently in the Conference track, showing a linear impact of the errors, as in that case less inferences
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Table 6 Assessment of the robustness to errors of matching systems in the Interactive Anatomy.

Parameter
AML AML LogMap LogMap JarvisOM ServOMBI ALIN XMAP

2015 2018 2015 2018 2015 2015 2018 2018

Or0

Precision for Oracle 0.970 0.964 0.988 0.982 0.867 1 0.994 0.929

Recall for Oracle 0.954 0.948 0.846 0.846 0.668 0.617 0.826 0.867

F-measure for Oracle 0.962 0.956 0.912 0.909 0.755 0.763 0.902 0.897

Or10

Precision for Oracle 0.970 0.965 0.964 0.964 0.760 1 0.994 0.929

Recall for Oracle 0.953 0.95 0.831 0.801 0.667 0.587 0.833 0.866

F-measure for Oracle 0.961 0.957 0.893 0.875 0.682 0.740 0.906 0.896

Or20

Precision for Oracle 0.971 0.965 0.945 0.944 0.527 1 0.994 0.929

Recall for Oracle 0.954 0.95 0.814 0.761 0.711 0.553 0.839 0.865

F-measure for Oracle 0.962 0.957 0.875 0.842 0.6 0.712 0.91 0.896

Or30

Precision for Oracle 0.971 0.966 0.924 0.922 0.509 1 0.995 0.929

Recall for Oracle 0.953 0.951 0.797 0.725 0.531 0.519 0.843 0.863

F-measure for Oracle 0.961 0.958 0.856 0.812 0.493 0.683 0.912 0.895

Note: Blue is used to indicate cases where the performance of the system is substantially better with error

than without (difference > 0.002) and red is used for the case where it is substantially worse.

are drawn from its 7-8 Oracle requests because they represent circa 50% of the Conference alignments

(whereas in Anatomy they represent 0.5%).

ServOMBI is the system that improves the least with user interaction in the Anatomy track, showing

an increase of only 1 percentage point in F-measure, and improves only with regard to precision. In the

Conference dataset there is a large improvement of 44 percentage points in precision and a 6 percentage

points improvement in recall. It is also the system that makes the most Oracle requests, as it asks the

Oracle about every candidate mapping it finds, and the only system that makes redundant questions (its

total number of requests is almost double that of the distinct ones). Interestingly, it is also the only system

that produces alignments that do not contain all the mappings identified as correct by the Oracle, as some

are apparently discarded by its stable marriage algorithm. Because it makes so many Oracle requests,

ServOMBI is strongly affected by Oracle errors, so much so that at only 10% Oracle error rate, the

interaction is no longer beneficial in terms of F-measure. In fact, since 85% of the questions ServOMBI

asks the Oracle have positive answers, the system would have a better performance (72% F-measure)

by simply accepting all its mapping candidates than it does at 10% error rate. Because of its strong bias

towards questions with positive answers, ServOMBI feels the impact of the errors mostly in terms of recall

and alignment size, whereas precision is hardly affected. However, given the number of false positives

returned by the Oracle at 30% error rate, we would expect a drop in precision as well, but it remains almost

constant as the errors increase. This attests to the ability of this system’s stable marriage algorithm to filter

out user errors. (For the conference dataset the interaction is no longer beneficial in terms of F-measure

at a 30% Oracle error rate, and the number of questions with positive answers is similar to the number of

questions with negative answers.) Interestingly, the number of total Oracle requests made by ServOMBI

increased with the Oracle error rate, even though the number of distinct requests remains constant – as

it should, considering the system already asks the Oracle about all candidate mappings it identifies. This

means that ServOMBI is making more redundant questions, which, given our experimental setting where

the Oracle always gives the same answer to questions it replied previously, serves no purpose.

ALIN has in two of its three participations a higher precision for the non-interactive version of the

system than for the interactive version. The recall and F-measure, however, are highly improved by using

the interactive version of the system. For the Conference dataset the precision for the interactive version

is higher than for the non-interactive version. Both precision and recall decrease with growing Oracle

error rates. When comparing with the reference alignment modified by the Oracle, the precision remains
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Figure 4: Time intervals between requests to the user/Oracle for the Anatomy dataset in 2015 (top 4

plots) and in 2018 (bottom 4 plots). Whiskers: Q1-1,5IQR, Q3+1,5IQR, IQR=Q3-Q1. The labels under

the system names show the average number of requests and the mean time between the requests.

constant with growing error rates. In contrast to other systems, for ALIN the number of requests to the

Oracle decreases when the error rate grows higher. Further, ALIN was the first system to take advantage
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of the ‘multiple competing mappings’ feature in 2016, which allows it to use a single interaction to cover

more than two mappings on average.

XMAP did not improve (2016) or improved very slightly the quality of its suggested alignment

compared with the non-interactive version of the system. The Oracle’s error rates do not influence

precision and recall (and thus F-measure), although they do influence very slightly the recall and F-

measure with respect to the reference alignment modified by the Oracle. For LargeBio there is also a slight

influence on precision. This may be because XMAP asks few questions (35 in each OAEI participation)

and these questions have mainly negative answers for which the Oracle has high precision.

4.2.6 Discussion

The effect of user interactions on the performance of alignment systems is clear, as the F-measure of all

evaluated systems improves when they have access to a perfect Oracle (Or0) in comparison with their

non-interactive performance. The precision and recall of all systems are also at least as high with a perfect

Oracle as with no Oracle, as some systems improve mainly in precision and others improve mainly in

recall. When we increase the Oracle’s error rate, we observe that the F-measure of all systems deteriorates,

as expected. However, in many cases, even at relatively high Oracle error rates, some systems still have

higher F-measures than in non-interactive mode, which corroborates the observations in Jiménez-Ruiz

et al. (2012). The rate at which user errors become net negative for an alignment system naturally depends

on how much the system relies on user input but also on how good the non-interactive performance of the

system is. Errors become net negative for AML at a lower error rate than other systems (20%) because it

has a very high non-interactive F-measure, so even a few errors are very detrimental. They become net

negative for LogMap at a rate of 30% while they are still positive for XMap, despite the similar F-measure

of the two systems, due to the huge differences in number of queries between them. They are also still

positive for ALIN and JarvisOM at 30% because the non-interactive performance of these systems was

relatively low. As ServOMBI employs the user to validate all its candidate mappings, there are much more

user requests than for the other systems, and in being the system most dependent on the user, is also the

one most affected by user errors.

The way in which the systems exploit user interactions, how they benefit from them, and how they are

affected by errors are very different. In some cases erroneous answers from the Oracle had the highest

impact on the recall, in other cases on the precision, and in others still both measures were significantly

affected. The impact of the errors was linear in some systems and supralinear in others. A supralinear

impact of the errors indicates that the system is making inferences from the user and thus deciding on the

classification of multiple candidate mappings based on user feedback about only one. This is an effective

strategy for reducing the workload of the user, but leaves the alignment system more susceptible to user

errors.

Regarding the number of user requests, for system versions not using the mapping grouping func-

tionality in their Oracle queries, we note that ServOMBI, LogMap and AML generally increase the

number of requests they make as the error rate increase, whereas XMAP and JarvisOM keep their number

approximately constant. For system versions using the mapping grouping functionality, ALIN decreases

the number of requests when the error rate grows higher, while the number of LogMap requests remains

constant. An increase can occur when interaction is used in filtering steps and inferences are drawn from

the user feedback (such as during alignment repair) as it may lead to an increased number of subsequent

requests. JarvisOM is not affected by this because it uses interaction during matching and makes a fixed 7-

8 requests per matching task. In each OAEI participation XMAP asked 35 questions. AML prevents raising

the number of requests too much by employing a maximum query limit and stringent stopping criteria.

When the Oracle has given a positive answer to a request in ALIN, the system asks questions about related

concepts. Therefore, when the Oracle error rate grows and more correct candidate mappings are answered

wrongly by the Oracle, fewer questions will be asked.

Most systems asks more questions with negative answers than questions with positive answers which

leads to a typically higher Oracle negative precision than positive precision (as, given a fixed error rate,

there will be more false positives than false negatives). LogMap from 2015 and JarvisOM are more
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balanced in their questions, whereas ServOMBI is the only system that asks more questions with positive

answers and as a result has a higher Oracle positive precision than negative precision.

Regarding system response times, two models are frequently used in the literature (Dabrowski &

Munson (2011)). The Shneiderman model takes a task-centred view and uses four categories according to

task complexity: typing, mouse movement (50-150 ms), simple frequent tasks (1 s), common tasks (2-4

s) and complex tasks (8-12 s). It is suggested that the user is more tolerable to delays with the growing

complexity of the task at hand. Unfortunately, no clear definition is given for how to define the task

complexity. The Seow model looks at the problem from a user-centred perspective by considering the user

expectations towards the execution of a task. The categories are instantaneous (100-200 ms), immediate

(0.5-1 s), continuous (2-5 s) and captive (7-10 s). Ontology alignment is a cognitively demanding task and

can fall into the third or fourth categories in both models. In this regard the response times (in our paper the

time between requests) observed with the Anatomy dataset (with the exception of several measurements

for ServOMBI) fall into the tolerable and acceptable response times in both models. The same applies for

the average times between requests for the tasks in the LargeBio dataset. For the Conference dataset these

are lower (with the exception of ServOMBI) than those discussed for the Anatomy dataset. However, very

low system response times may not always be needed as the user needs sufficient time for the validation

of candidate mappings.

5 Conclusions

In this broad study of user validation in ontology alignment, we encompassed three distinct but interrelated

aspects: the profile of the user; the ontology alignment systems’ services; and their user interfaces.

We functionally assessed the services and user interfaces of state of the art systems, and carried out

experiments to investigate the impact of errors in alignment validation within the scope of the OAEI.

Despite the advances in automated ontology alignment techniques, it is clear that user validation

remains critical to ensure alignment quality, due to the complexity and diversity of ontologies and their

domains. This is evidenced by the fact that over 90% of the users of ontology matching systems we

surveyed stated that their use-cases required manual validation, and also by the development effort of

ontology alignment systems towards supporting user validations through services and user interfaces.

While there have been significant advances on the part of alignment systems in this regard, there are

still key challenges to overcome in user validation of ontology alignments, and aspects which merit further

improvement:

• Reducing user workload is key in such a time-consuming and laborious process. As our experiments

demonstrate, systems tend to make an inordinate number of validation requests in relation to their

improvement in performance with user interaction, and there are several strategies systems could

adopt to reduce these requests:

– Prioritizing mapping candidates that are non-trivial and/or those which cause conflicts, and

presenting mainly these to the user is something systems can clearly improve at.

– Grouping competing mappings and asking the user to choose between them is an effective

strategy that several systems already employ (both in the experiments and in our functional

assessment) but which should be balanced with the previous strategy, rather than exploited to

ask the user to validate almost the whole alignment (as systems do in the experiments).

– Exploiting feedback propagation techniques in order to extrapolate user validations to map-

pings with similar features than those they revised is an effective strategy for reducing user

workload, as demonstrated by JarvisOM in our experiments, but it is currently underexploited by

alignment systems.

– Supporting manual annotations of mappings and validation over multiple sessions are both

essential to enable users to interrupt and resume the validation task according to their availability.

However, they are aspects where most alignment systems have room for improvement.

• Balancing informativeness with cognitive load is extremely challenging, as systems have to

provide rich contextual information to enable the user to decide on each mapping, while avoiding
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overwhelming the users with too much information, as humans have limited working memory. Some

systems already do a reasonable job at this, by implementing some of the following strategies, but

there is still room for improvement:

– Compartmentalizing information such that it is accessible to the user on-click but not all

shown simultaneously is a strategy that many systems have adopted, in particular by providing

alternate views of the alignment and/or each mapping that complement each other in the type of

information they convey.

– Grouping competing mappings and displaying them together is also a relevant strategy in this

regard, as it gives more information for the user to decide without significantly increasing the

cognitive load.

– Providing detailed explanations about the provenance and justification for each mapping

(ideally on-click) is important to support user decisions, but also something systems can improve

at.

– Predicting and displaying the impact of validation decisions with respect to the logical

entailments to the ontologies of the resulting alignment is also essential, as it is virtually

impossible for users to grasp this information, yet it is critical to ensure alignment coherence.

It is something that only a few systems do reasonably—mainly those that also implement logical

repair algorithms.

• Balancing user workload with user errors is also extremely challenging, as the most effective

strategies for reducing validation errors—to have several users revise each mapping, or ask a single

user for reassessment—all increase user workload substantially. Furthermore, the most effective

strategy for reducing user workload—feedback propagation—is the most impacted by user errors.

There are a few strategies that systems can adopt to compensate for or reduce the impact of user errors

without increasing user workload, but few of them are adopted by the ontology matching community:

– Grouping competing mappings and asking the user to choose between them is yet again a

relevant strategy in this regard, as it decreases the likelihood of error due to the user having more

information available to make a single decision rather than two or more independent decisions

with less information (this is only true with real users, not in our experiment with simulated user

interactions).

– Asking about related mappings is a strategy that systems can adopt to try and gauge the level of

expertise of the users, and determine how much to trust them. It may increase the user workload

on its own, but if paired with a feedback propagation technique or in a strategy where untrusted

users are asked less questions, the overall workload can be kept in check. Of the systems we

overviewed and evaluated in our study, the only one that implements such a strategy is ALIN, so

there is clearly potential for systems to explore it further.

– Asking users directly to gauge their confidence about the validation decision is another strategy

to determine how much to value their feedback, information which can then be harnessed as in

the strategy above. The main limitation of this approach is that it relies on the users being aware

of the limitations to their knowledge, which may not be entirely accurate in cases that are more

complex than they appear. But in general, this is likely the most reliable approach to preclude

and handle user errors, and one that is severely underexplored by matching systems.

While our study can provide some help for users to decide which alignment system to use, that is

beyond its scope. Our goal was to assess the state of the art as a whole, rather than to highlight individual

systems. There are too many aspects to consider, and there is no clear-cut set of criteria that would

enable us to choose the best system(s), given that all have aspects in which they are better or worse.

An aspect of systems that is also relevant for this decision but was outside the scope of our study is the

automatic performance of the system, as systems that produce better results automatically demand less

user workload for validation. A recent study highlighted AML as one of the academic solutions meeting

most of the functional requirements for an ontology mapping service (Harrow et al. (2019)) and our

survey of alignment system users revealed that AML and LogMap are the most popular systems among the



User validation in ontology alignment 29

community, likely because both have a long history of versatility and quality in the OAEI, but this does

not mean that they are necessarily the best systems for alignment validation.

Our functional assessment of state-of-the-art ontology alignment systems has shown that there is clear

room for improvement with respect to the support for user validation of their user interfaces. We expect

our assessment to serve as a starting point towards establishing guidelines and best practices for good user

interface design in the context of ontology alignment, and aim to leverage it in that direction. That said,

it is clear that the way forward for assessing the interfaces of ontology matching systems and promoting

their development is through usability assays with real users having varying degrees of expertise (Pesquita

et al. (2018)) in a semi-competitive setting such as the OAEI. The logistical challenges to organizing such

an evaluation cannot be overstated, but it is clear that doing so should be our goal.

Our experiments from the OAEI have shown that there is also room for improvement with regard to

the workload demand of interactive alignment systems and their ability to handle errors. In the short term,

we aim to refine our experimental setup to better simulate the manual validation process. Concretely,

we will limit the number of queries systems are allowed to make, to force systems to make the most of

the available workload. We will also have the simulated user provide a confidence value rather than a

binary classification of each mapping, to enable systems to explore strategies relying on user confidence.

In the long term, the way forward is to move the OAEI Interactive evaluation towards user validation

experiments with real users, relying on the user interfaces of the systems. Such an evaluation could even

be combined with usability assays. Again, there are several logistical challenges to overcome, but the most

feasible scenario for this evaluation would be a crowdsourcing scenario where some reward (monetary or

otherwise) could be given to participants based on their workload (e.g., through a sponsorship).
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