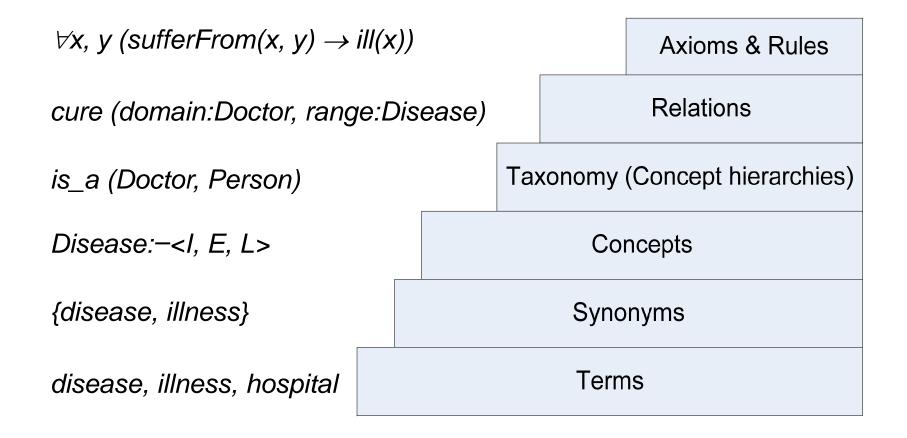
Ontologies and Ontology Engineering

Kristian Stavåker and Dag Sonntag VT 2011

LIU EXPANDING REALITY


Summary

- Wikipedia:
 - "Ontology learning (ontology extraction, ontology generation, or ontology acquisition) is a subtask of information extraction. The goal of ontology learning is to (semi-)automatically extract relevant concepts and relations from a given corpus or other kinds of data sets to form an ontology."
- Paul Buitelaar et al. / Ontology Learning from Text: An Overview [3]:
 - "The process of defining and instantiating a knowledge base is referred to as knowledge markup or ontology population, whereas (semi-)automatic support in ontology development is usually referred to as ontology learning."

Summary (2)

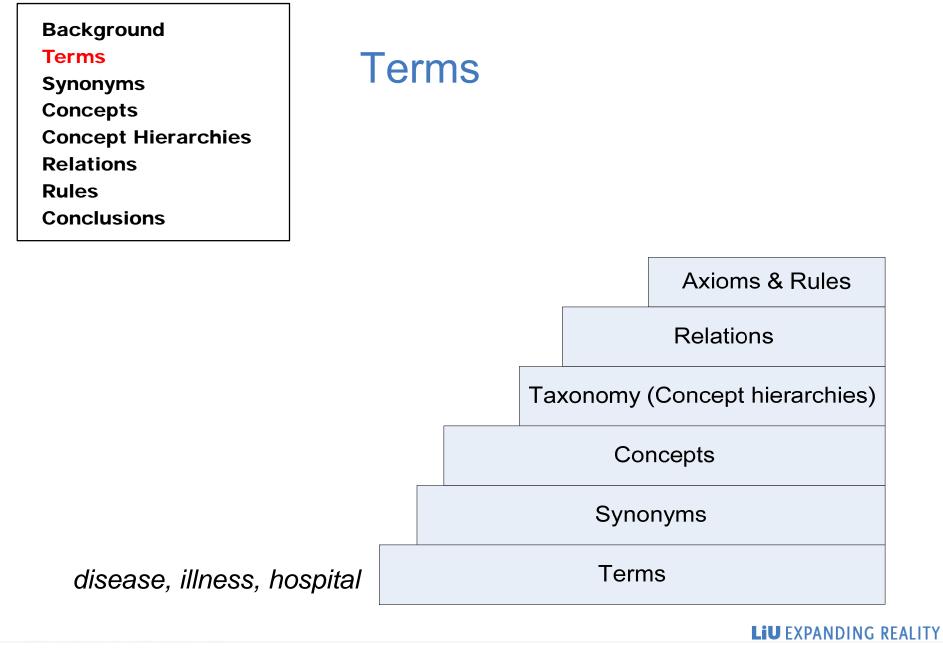
- A lot of the work in this area builds on work from natural language processing, artificial intelligence and machine learning.
- The *ontology layer cake* consists of the various subtasks (increasing in complexity) involved in ontology learning.

The Ontology Learning Layer Cake

Outline

- Background
- Terms
- Synonyms
- Concepts
- Concept Hierarchies
- Relations
- Rules
- Conclusions

Terms Synonyms Concepts Concept Hierarchies Relations Rules Conclusions


Background

- Used for building an ontology from scratch through the application of a set of methods and techniques.
- The process of identifying terms, concepts, relations and optionally axioms from textual information to form an ontology.

Terms Synonyms Concepts Concept Hierarchies Relations Rules Conclusions

Background (2)

- Unstructured sources (NLP techniques, morphological and syntactic analysis, etc.)
- Semi-structured sources (such as XML schema)
- Structured data (extract concepts and relations from for instance databases)

Terms

Synonyms Concepts Concept Hierarchies Relations Rules Conclusions

Terms

- Term extraction is a prerequisite for all aspects of ontology learning from text.
- Term extraction implies more or less advanced levels of liguistic processing.
- An example of extracting relevant terms is counting frequencies of terms in a given set of documents (the corpus).

Terms

Synonyms

Concepts

Concept Hierarchies

Relations

Rules

```
Conclusions
```

Terms

• The computational linguistics community has proposed a wide range of more sophisticated techniques for term extraction.

Terms

Synonyms

Concepts

Concept Hierarchies

Relations

Rules

Conclusions

Terms

- One common method:
 - A Part-Of-Speech (POS) tagger is run over the domain corpus
 - Possible terms are identified by constructing patterns, such as: Adj-Noun, Noun-noun, Adj-Noun-Noun, ... (names are ignored)
 - Apply statistical metrics in order to identify only the relevant to the text terms

Background Terms Synonyms Concepts Concept Hierarchies Relations Rules Conclusions	Term	S		
[[He SUBJ] [booked PRED] [[this] [table HEAD]NP:DOBJ:X1]] Discourse Analysis			Discourse Analysis	
[[It SUBJ:X1] [was PRED] still available…] [[He SUBJ] [booked PRED] [[this] [table HEAD] NP:DOBJ]S]] Depe	endency Structure (S)
[[the SPEC] [large MOD] [table HEAD] NP]			-	dency Structure (Phrases)
[[the] [large] [table] NP] [[in] [the] [corner] PP]			Phrase Recognition	
[work~ing V]		Morphological Analysis (stemming)		
[table N:ARTIFACT] [table N:furniture]			Speech & S	emantic Tagging
[table] [2005-06-01] [John Smith] Tokenization (incl. Named-Entity Rec.)				

2011-06-12

Terms

Synonyms

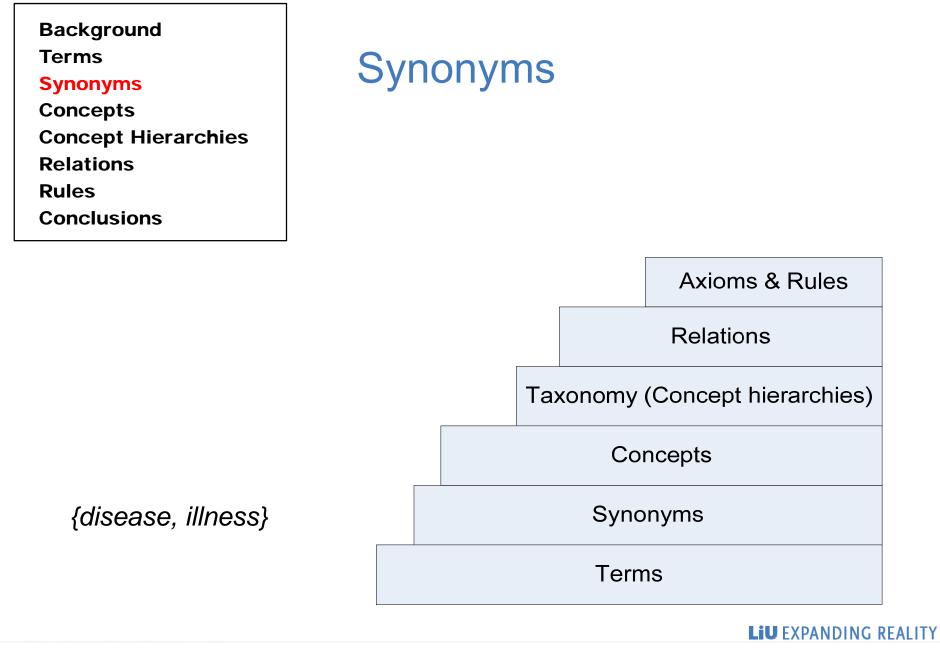
Concepts

Concept Hierarchies

Relations

Rules

Conclusions


Terms

- **Statistical Analysis** •
- Term Frequency Inverted Document • Frequency (TFIDF) - a popular weighting scheme

$$tfidf(w) = tf(w) \cdot \log(\frac{N}{df(w)})$$

LIU EXPANDING REALITY

13

Terms

Synonyms

Concepts

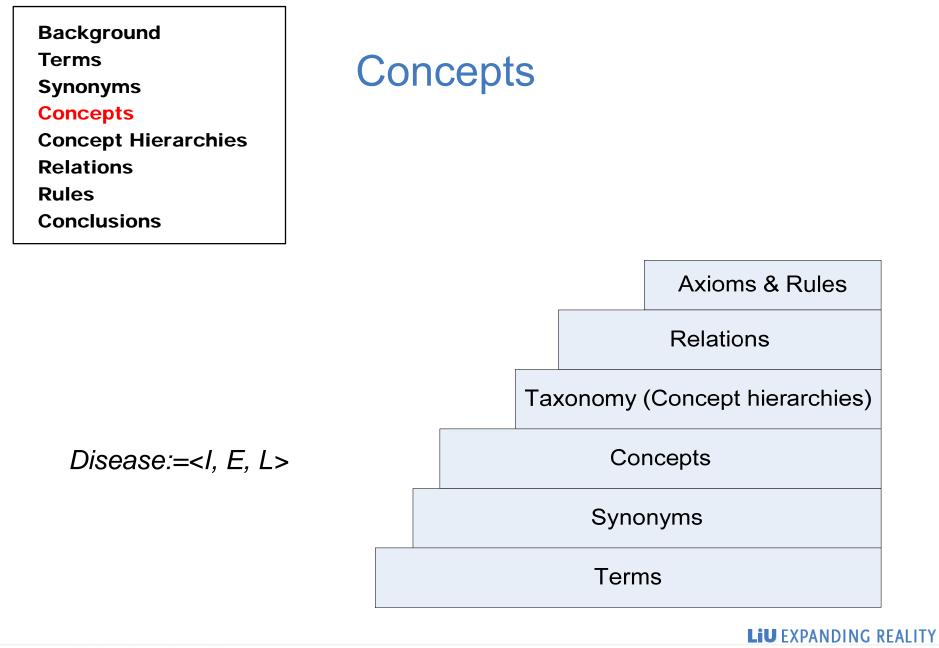
Concept Hierarchies

Relations

Rules

Conclusions

Synonyms


- Identification of terms that share semantics (potentially refer to the same concept)
- Methods for extracting synonyms
 - Based on WordNet/EuroWordNet
 - Harris' distributional hypothesis
 - Latent Semantic Indexing (LSI)
 - A NLP technique of analyzing relationships between a set of documents and the terms they contain

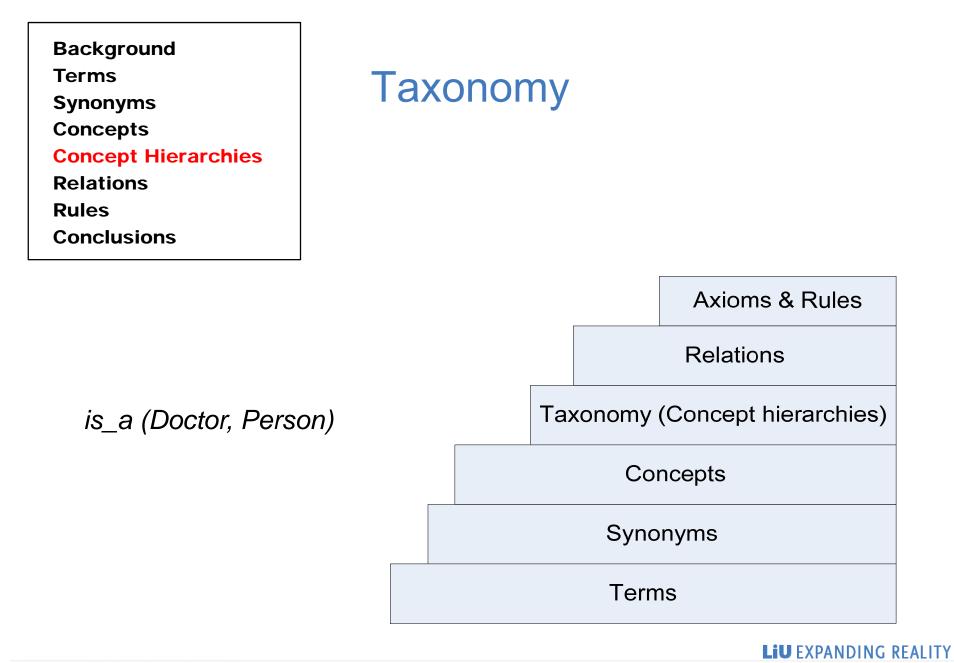
Synonyms

• Pointwise Mutual Information measure for extracting synonyms.

$$PMI(x, y) \coloneqq \log_2 \frac{P(x, y)}{P(x)P(y)}$$

$$PMI_{Web}(x, y) \coloneqq \log_2 \frac{Hits(xANDy)MaxPages}{Hits(x)Hits(y)}$$

17


Concepts

• Some confusion what extraction of concepts is since it is not clear what exactly constitutes a concept.

LIU EXPANDING REALITY

Concepts

- Intension (in)formal definition of the set of objects that this concept describes
 - Example: sound is a mechanical wave that is an oscillation of pressure composed of frequencies within the range of hearing
- Extension a set of objects that the definition of this concept describes
 - Example: music, noise, speech
- Lexical realizations the term itself and its multilingual synonyms
 - Example: sound, acoustics

그 지수는 물통 알끔 것 같아. 옷 옷에 다운 것이다.

Terms

Synonyms

Concepts

Concept Hierarchies

Relations

Rules

Conclusions

Taxonomy

- Simple ideas that work fairly well
 - Lexico-Synthatic Patterns (Hearst)
 - Formal Concept Analysis (FCA)
 - Phrase Analysis
 - WordNet
- These methods can be weightened together to get best results

Lexico-Synthatic Patterns (Hearst)

- Hearst identified the following patterns
 - Hearst1: NPhyper such as {NPhypo,}* {(and | or)} NPhypo
 - Hearst2: Such NPhyper as {NPhypo,}* {(and | or)} NPhypo
 - Hearst3: NPhypo {,NP}* {,} or other NPhyper
 - Hearst4: NPhypo {,NP}* {,} and other NPhyper
 - Hearst5: NPhyper including {NPhypo,}* NPhypo {(and | or)} NPhypo
 - Hearst6: NPhyper especially {NPhypo,}* {(and | or)} NPhypo
- Example: "Vehicles such as bikes and cars"

Terms

Synonyms

Concepts

Concept Hierarchies

Relations

Rules

Conclusions

Machine Readable Dictionaries

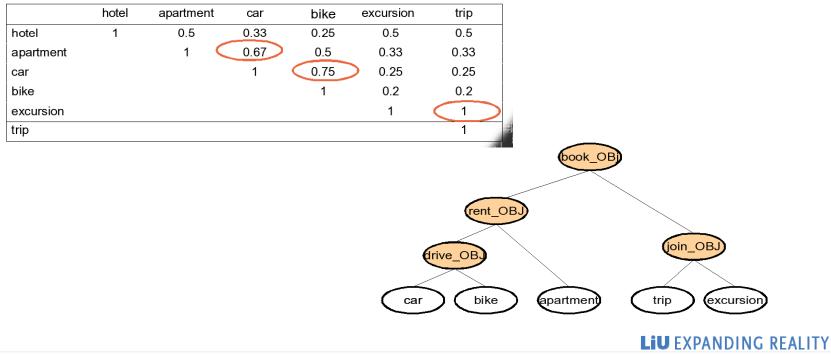
- Idea: Exploit the regularity of dictionaries like Wikepedia or Google definition
- Example: (from wikipedia)
 - Car: "An automobile, autocar, motor car or car is a wheeled motor vehicle used for transporting passengers, which also carries its own engine or motor. " => is(car, vehicle)

Terms

Synonyms

Concepts

Concept Hierarchies


Relations

Rules

Conclusions

Formal Concept Analysis (FCA)

- Idea: Similar words share similiar attributes
- Example:

Phrase Analysis

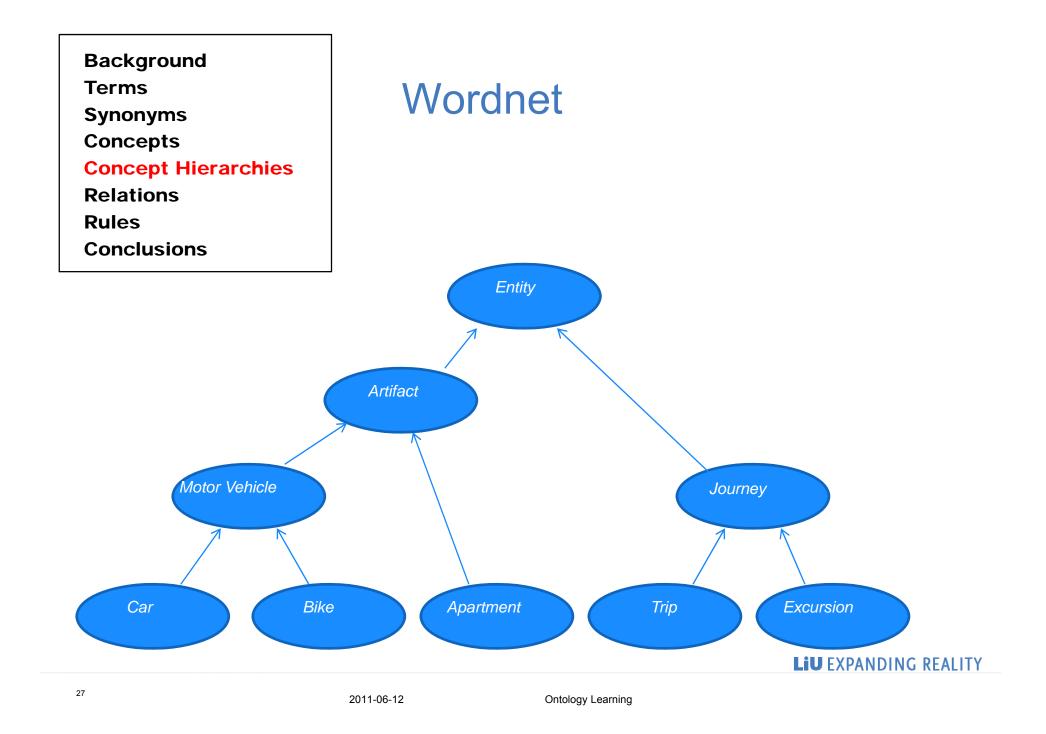
- Idea: Adjectives or Nominals in front of nouns in noun-phrases often indicate subclass
- Example: *Focal epilepsy* is a subclass of *epilepsy*

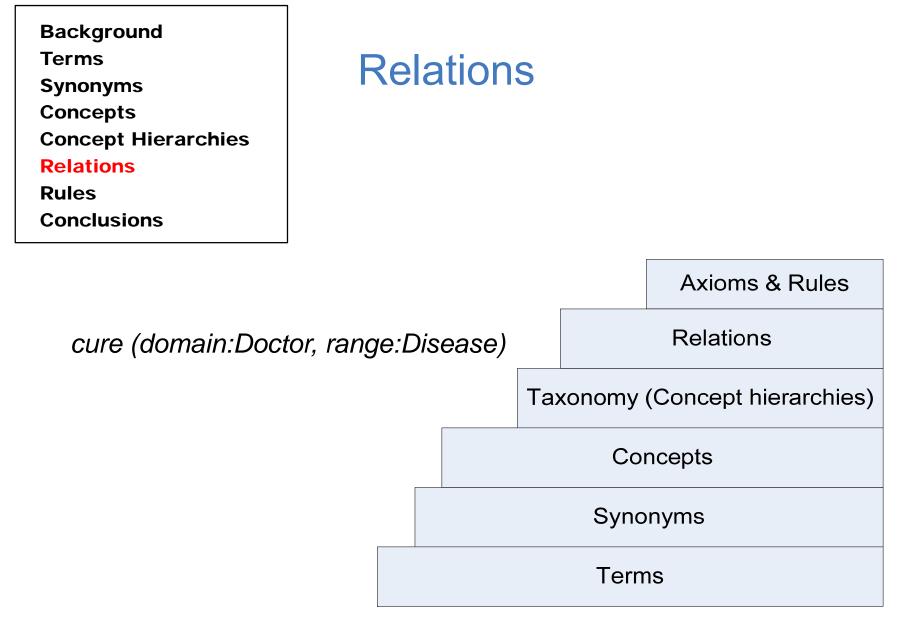
Terms

Synonyms

Concepts

Concept Hierarchies


Relations


Rules

Conclusions

Wordnet

- Idea: Use already created ontologies
- WordNet contains ≈155000 words
 - Type (noun, verb and so on)
 - Their definition
 - Semantic synsets like
 - Hypernyms, hyponyms, meronyms, synonyms...

Relations

- Can be found similar as concept hierarchies (is relation)
 - Lexico-Synthatic Patterns
 - Collocation Discovery
 - WordNet
- Specific relations
 - Part of (meronym)
- Attributes
 - Adjectives, e.g. color, weight and so on...

Lexico-Synthatic Patterns

- Finds relations by searching after patterns of words
- E.g. The car has wheels =>, part-of(wheel, car) The car is red => is(car, red) or color(car,red) The car consists of wheels, engine, …

=> part-of(engine, car)...

• Hard to model every possible combination

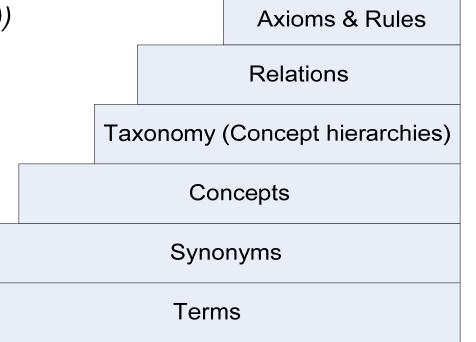
Collocation Discovery

- Idea: find words that occur together in a statistically significant manner
- Similar to the PCA-approach for the taxonomy
- The type of relation can then later be found by linguistic approaches
- Example: www-search for two concepts K1 and K2 using the Jaccard coefficient:

GoogleHits(Keyword1,Keyword2)

GoogleHits(K1) + GoogleHits(K2)-<u>GoogleHits(K1,K2)</u>

WordNet


- Idea: Use already created ontologies
- Previously found relations can be used to train other machine learning techniques (e.g. decision trees, association rule learning, neural networks)

LIU EXPANDING REALITY

Background
Terms
Synonyms
Concepts
Concept Hierarchies
Relations
Rules
Conclusions

Axioms & Rules

```
\forall x, y (sufferFrom(x, y) \rightarrow ill(x))
```


Terms

Synonyms

Concepts

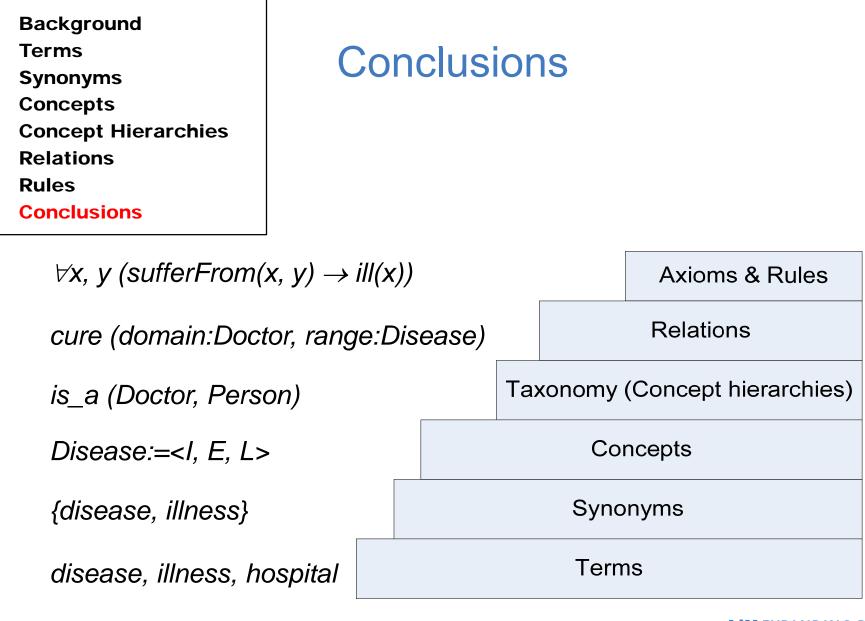
Concept Hierarchies

Relations

Rules

Conclusions

Axioms & Rules


Mostly Lexico-Synthatic Patterns

• Example: LExO

Rule	Natural Language Syntax	OWL Axioms
Disjunction	NP ₀ or NP ₁	$X \equiv (\mathrm{NP}_0 \sqcup \mathrm{NP}_1)$
Conjunction	NP_0 and NP_1	$X \equiv (\mathrm{NP}_0 \sqcap \mathrm{NP}_1)$
Determiner	$Det_0 NP_0$	$X \equiv \mathrm{NP}_0$
Intersective Adjective	Adj ₀ NP ₀	$X \equiv (\operatorname{Adj}_0 \sqcap \operatorname{NP}_0)$
Subsective Adjective	Adj ₀ NP ₀	$X \sqsubseteq \mathrm{NP}_0$
Privative Adjective	Adj ₀ NP ₀	$X \sqsubseteq \neg \operatorname{NP}_0$
Transitive Verb Phrase	$V_0 NP(obj)_0$	$X \equiv \exists V_0.NP_0$
Verb with Prep. Compl.	$V_0 \operatorname{Prep}_0 \operatorname{NP}(pcomp-n)_0$	$X \equiv \exists V_0 _ Prep_0.NP_0$
Noun with Prep. Compl.	$NP_0 Prep_0 NP(pcomp-n)_1$	$X \equiv (\mathrm{NP}_0 \sqcap \exists \mathrm{Prep}_0.\mathrm{NP}_1)$
Prepositional Phrase	Prep ₀ NP ₀	$X \equiv \exists \operatorname{Prep}_0.\operatorname{NP}_0$

Data: Facts that result from measurements or observations. Data \equiv (Fact $\sqcap \exists result_from.(Measurement \sqcup Observation))$

LIÚ EXPANDING REALITY

LIU EXPANDING REALITY

Conclusions

- Mainly three methods used:
 - Natural language processing (NLP)
 - Statistical methods
 - Using other existing ontology

LIU EXPANDING REALITY

Natural Language Processing

• Positive:

- Easy to find corpus
- High success-rate for certain patterns
- Negative:
 - Hard to model every kind of pattern
 - Ambiguity in natural text

Statistical Methods

• Positive:

- Needed in some parts of the layer cake, like term extraction
- Can give confidence to relations (or synonyms) found by other methods
- Negative:
 - Even if a statistical similarity if found, the relation binding the words together is unknown

Use Other Existing Ontology

Positive:

- Very easy to find relations and definitions
- If a relation or similar is found the probabilityrate of it being correct is very high
- Can be combined in a successful way with other methods
- Negative:
 - Can be hard to find ontologies in specialized areas
 - Words can have multiple meaning

Terms

Synonyms

Concepts

Concept Hierarchies

Relations

Rules

Conclusions

References

- [1] Ontology Learning Philipp Cimiano, Alexander M\u00e4dche, Steffen Staab, Johanna V\u00f6lker, 2009.
- [2] Ontology Learning Alexander Maedche, Steffen Staab.
- [3] Ontology Learning from Text: An Overview – Paul Buitelaar, Philipp Cimiano, and Bernardo Magnini, 2003.
- [4] Ontology Learning from Text: A Look back and into the Future – Wilson Wong, Wei Liu, Mohammed Bennamoun, 2011.
- [5] Aquisition of OWL DL Axioms from Lexical Resources – Johanna Völker, Pascal Hitzler and Philipp Cimiano

Linköping University expanding reality

dileda marity

commilia.sc/onlin

10 Habelenih

adatadı-/ zvsakı ra

2011-06-12

41