

Ontologies Rules!

Tomas Lööw
2011

Ontologies and Rules

Tomas Lööw
2011

Rules

● If-then-statements.
● Datalog, a computationally simple subset of

Prolog.
bird(X) ← animal(X), has_wings(X).

happy(X) ← married(X,Y), loves(X,Y), loves(Y,X).

happy(X) ← student(X), subject(X, computer-science).

● Many different extensions, negation, disjunction
etc.

The layers of the Semantic Web

● RDF: Describes relations between objects

<Subject> <relation> <object> triples
● RDFS: Extension to RDF.

Can define simple taxonomies, ranges, etc.
● OWL: Describes relations between concepts.
● RIF: Description of deduction rules.

Work in progress.

Combining Ontologies and rule
engines

● The goal:
● Use knowledge from Ontologies inside a rules

engine.
● Use deductions from rules to add knowledge to

Ontologies.

Sounds easy, right?

● In the ontology we have:
student = undergrad_student grad_student∪

undergrad_student(Linus), grad_student(Linnéa),
student(Lukas)

● In the rules engine we have:
takes_courses(X) ← grad_student(X).

takes_courses(X) ← undergrad_student(X).

● What about the query ”takes_courses(Lukas)?”
● A sophisticated integration between Ontology

and Rules engine is needed.

Problems with integration.

● Different axiomatic grounds. FOL vs non-
monotonic logic.

● Many possible designs.
Homogeneous/heterogeneous. Tight/Loose
coupling, syntax, etc.

● Tractability concerns.

Heterogeneous integration.

● Rules and ontology facts are handled the same
way.

● One computational engine.
● For example, treat rules as FOL statements

and add to the DL-base.
● Problems with efficiency, datalog computations

is simpler than general DL computations.

Homogeneous integration

● Ontology knowledge and rules are treated
explicitly different in the language.

● Can be constructed by coupling two engines
that communicate. Might allow reuse of existing
engines easier.

Semantics of Rules

● Two main kinds of semantics
● Strong Answer semantics:

Calculates many different, incompatible,
models.

● Well Founded semantics

Calculates one model which may be
incomplete.

DL-programs

● Heterogeneous integration
● (P,L) where P is a logic program and L is a

description logic base.
● Bidirectional flow between Logic Program and

Ontology.

The Logic Program can query the Ontology but
can also add knowledge to a copy of it.

Syntax

● predicate(atom).
● predicate(X) ← some(X),

 other(X,Y),predicates(Y).
● predicate(X) ← DL[Class](X), other(X)
● predicate(X) ←

 DL[Rel p, Rel2 ∪ ∪ p2;Class](X)

Example from the paper,
Knowledgebase.

≥ 1 wired ⊑ Node; T ⊑ ∀wired.Node;

wired = wired−;

≥ 4 wired ⊑ HighTrafficNode;

n1 = n2 = n3 = n4 = n5;

Node(n1); Node(n2); Node(n3); Node(n4); Node(n5);

wired(n1, n2); wired(n2, n3); wired(n2, n4);

wired(n2, n5); wired(n3, n4); wired(n3, n5).

Example, figure

Example, Program

newnode(x1).

newnode(x2).

overloaded(X) ← DL[wired connect; ⨄ HighTrafficNode](X).

connect(X, Y) ← newnode(X),DL[Node](Y),

 not overloaded(Y), not excl (X, Y).

excl(X, Y) ← connect (X,Z), DL[Node](Y), Y ≠ Z.

excl(X, Y) ← connect (Z, Y), newnode(Z),

 newnode(X), Z ≠ X.

excl(x1, n4).

Semantics

Strong-answer semantics:

● For a rule r, B+(r) is the positive clauses and B-(r) is the negative
clauses.

● I =
L
a if (informally) L with the added relations imply a.

● Gelfond-Lifschitz transform of a KB given a consistent set of
ground literals, I:

1. Delete all rules r such that I =
L
a, and a B∈ -(r)

2. Delete all negated literals from rules.

The resulting program is negation free and has a minimal
model.

● I is a strong answer set of a KB if it is a minimal model of KBI

Nice properties of DL-programs

● DL-programs without negation and ∩ has a
least model semantics, similar to prolog.

● Stratified programs have a unique least model
● Good computational complexity.

Other systems

● HEX-Programs:

Generalization of DL-programs.

Some higher order.

Non-monotonic. (If a is true in P then a might
be false in P {R}.∪

Allows disjunctive rules:

 a(X) b(Y) ← c(X,Y).∨

Summary

● Combining various forms of logic programming
with ontologies is a useful and powerful
technique.

● There are many different ways to do it, each
with different strengths and problems.

● DL-programs is one useful model with many
nice properties, but not the only one.

● RIF aims to become a standard for describing
rules.

References

● Hybrid reasoning with Rules and Ontologies. -
W Drabent, T Eiter, G Ianni T Krennwallner, T
Lukasiewicz J Mauszynski

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20

