

Description Logics

q A family of KR formalisms, based on FOPL decidable, supported by automatic reasoning systems
q Used for modelling of application domains
q Classification of concepts and individuals concepts (unary predicates), subconcept (subsumption), roles (binary predicates), individuals (constants), constructors for building concepts, equality ...
[Baader et al. 2002]

Applications

n software management
n configuration management
natural language processing
n clinical information systems
information retrieval

Outline

n DL languages
syntax and semantics
n DL reasoning services
algorithms, complexity
n DL systems
n DLs for the web
Ontologies and the Web

Syntax - $\mathcal{A} \mathcal{L}$

R atomic role, A atomic concept
$\mathrm{C}, \mathrm{D} \rightarrow \mathrm{A} \mid$ (atomic concept)
T I (universal concept, top)
$\perp \mid$ (bottom concept)
$\neg \mathrm{Al}$ (atomic negation)
$\mathrm{C} \cap \mathrm{D} \|$ (conjunction)
\forall R.C I (value restriction)
ヨR.T (limited existential quantification)

Example
Team
Team $\cap \geq 10$ hasMember
Team $\cap \geq 11$ hasMember
$\cap \forall$ hasMember.Soccer-player

$\mathcal{A} \mathcal{L}[X]$

$\mathcal{R} \quad \mathrm{R} \cap \mathrm{S}$ (role conjunction)
I R- (inverse roles)
\mathcal{H} (role hierarchies)
$\mathcal{F} \mathrm{u}_{1}=\mathrm{u}_{2}, \mathrm{u}_{1} \neq \mathrm{u}_{2}$ (feature (dis)agreements)

Tbox

n Terminological axioms:
$C=D \quad(R=S)$

* $\mathrm{C} \subseteq \mathrm{D} \quad(\mathrm{R} \subseteq \mathrm{S})$
\% (disjoint C D)
n An equality whose left-hand side is an atomic concept is a definition.
${ }_{n}$ A finite set of definitions T is a Tbox (or terminology) if no symbolic name is defined more than once.

Example Tbox

Soccer-player $\subseteq T$
Team $\subseteq \geq 2$ hasMember
Large-Team $=$ Team $\cap \geq 10$ hasMember
S-Team $=$ Team $\cap \geq 11$ hasMember
$\cap \forall$ hasMember.Soccer-player

DL as sublanguage of FOPL

Team(this)
\wedge
$\left(\exists x_{1}, \ldots, x_{11}\right.$:
hasMember(this, x 1$)^{\wedge}$ ^ ... ^ hasMember(this, x 11)
$\wedge \mathrm{x}_{1} \neq \mathrm{x}_{2} \wedge \ldots \wedge \mathrm{x}_{10} \neq \mathrm{x}_{11}$)
\wedge
($\forall \mathrm{x}$: hasMember(this, x) \quad Soccer-player (x))

Abox

n Assertions about individuals:
a $\mathrm{C}(\mathrm{a})$
$R(a, b)$

Example
Ida-member(Sture)

Individuals in the description language
n $O \quad\{\mathrm{i} 1, \ldots, \mathrm{ik}\} \quad$ (one-of)
${ }_{n} \mathrm{R}$: a (fills)

| Example |
| :---: | :---: |
| |
| |
| |
| |
| |
| |
| |

Knowledge base

A knowledge base is a tuple $<T, A>$ where T is a Tbox and A is an Abox.

Example KB

Soccer-player $\subseteq T$
Team $\subseteq \geq 2$ hasMember
Large-Team = Team $\cap \geq 10$ hasMember
S-Team $=$ Team $\cap \geq 11$ hasMember
$\cap \forall$ hasMember.Soccer-player

Ida-member(Sture)
(S-Team \cap hasMember:Sture)(IDA-FF)

Semantics

Individual i
$\mathrm{i}^{\mathcal{J}} \in \Delta^{\mathcal{J}}$

Unique Name Assumption:
if $i_{1} \neq i_{2}$ then $i_{1}{ }^{g} \neq \mathrm{i}_{2}{ }^{g}$

$\mathcal{A} \mathcal{L}$ (Semantics)

```
\(\mathrm{C}, \mathrm{D} \rightarrow \mathrm{A} \mid\) (atomic concept)
T I (universal concept) \(\mathrm{T}^{\mathfrak{J}}=\Delta^{\mathfrak{J}}\)
\(\perp\) l (bottom concept) \(\quad \perp^{\mathcal{I}}=\varnothing\)
\(\neg \mathrm{A} \mid\) (atomic negation) \(\quad(\neg \mathrm{A})^{\mathcal{J}}=\Delta^{\mathcal{J} \backslash \mathrm{A}^{\mathcal{J}}, ~}\)
\(\mathrm{C} \cap \mathrm{D} \mid\) (conjunction) \(\quad(\mathrm{C} \cap \mathrm{D})^{\boldsymbol{J}}=\mathrm{C}^{3} \cap \mathrm{D}^{3}\)
\(\forall\) R.C I (value restriction) \(\quad(\forall \text { R.C })^{3}=\)
\(\left\{\mathrm{a} \in \Delta^{\mathcal{J}} \mid \forall \mathrm{b} .(\mathrm{a}, \mathrm{b}) \in \mathrm{R}^{\mathcal{J}} \rightarrow \mathrm{b} \in \mathrm{C}^{\mathcal{J}}\right\}\)
\(\exists\) R.T I (limited existential \((\exists \mathrm{R} . \mathrm{T})^{\mathfrak{y}}=\left\{\mathrm{a} \in \Delta^{\mathfrak{y}} \mid \exists \mathrm{b} .(\mathrm{a}, \mathrm{b}) \in \mathrm{R}^{\boldsymbol{y}}\right\}\)
quantification)
```


$\mathcal{A} \mathcal{L}$ (Semantics)

An interpretation I consists of a non-empty set Δ^{3} (the domain of the interpretation) and an interpretation function. ${ }^{J}$ which assigns to every atomic concept A a set $A^{J} \subseteq \Delta^{\mathcal{J}}$ and to every atomic role R a binary relation

The interpretation function is extended to concept definitions using inductive definitions.
\qquad

Semantics

An interpretation ${ }^{J}$ is a model for a terminology T iff
$\mathrm{C}^{\mathcal{J}}=\mathrm{D}^{\mathcal{J}}$ for all $\mathrm{C}=\mathrm{D}$ in T

$\mathrm{C}^{J} \cap \mathrm{D}^{\boldsymbol{g}}=\varnothing$ for all (disjoint C) in T

Semantics

An interpretation.J is a model for a knowledge base $<T, A>$ iff
.3 is a model for T
$\mathrm{a}^{\mathcal{J}} \in \mathrm{C}^{\mathcal{I}} \quad$ for all $\mathrm{C}(\mathrm{a})$ in A
$\left.<a^{\mathcal{J}}, \mathrm{b}^{\mathcal{J}}\right\rangle \in \mathrm{R}^{\mathcal{J}}$ for all $\mathrm{R}(\mathrm{a}, \mathrm{b})$ in A

Semantics - acyclic Tbox

Bird $=$ Animal $\cap \forall$ Skin.Feather
$\Delta^{\mathcal{I}}=\{$ tweety, goofy, fea1, fur1\}
Animal ${ }^{\mathfrak{J}}=\{$ tweety, goofy $\}$
Feather $^{\mathcal{I}}=\{$ fea1 $\}$
Skin $^{\mathcal{J}}=\{<$ tweety,fea1>, <goofy,fur1>\}
$\operatorname{Bird}^{\mathfrak{J}}=\{$ tweety $\}$

Semantics - cyclic Tbox

QuietPerson $=$ Person $\cap \forall$ Friend.QuietPerson ($A=F(A)$)
$\Delta^{\mathcal{J}}=\{$ john, sue, andrea, bill $\}$
Person $^{\mathcal{I}}=\{$ john, sue, andrea, bill $\}$
$\Delta^{\mathcal{J}}=\{j o h n$, sue, andrea, bill $\}$
Person
J.
Friend $^{\mathcal{J}}=\{<$ john,sue>, <andrea,bill>, <bill,bill>\}
QuietPerson ${ }^{3}=\{j$ john, sue $\}$
QuietPerson ${ }^{\mathcal{J}}=\{j$ john, sue, andrea, bill $\}$

Semantics - cyclic Tbox

Descriptive semantics: $A=F(A)$ is a constraint stating that A has to be some solution for the equation.
n Not appropriate for defining concepts
${ }_{n}$ Necessary and sufficient conditions for concepts

Human $=$ Mammal $\cap \exists$ Parent
$\cap \forall$ Parent.Human

Semantics - cyclic Tbox

Least fixpoint semantics: $A=F(A)$ specifies that A is to be interpreted as the smallest solution (if it exists) for the equation.
${ }_{n}$ Appropriate for inductively defining concepts

DAG $=$ EmptyDAG U (Node $\cap \forall$ Arc.DAG)
Human $=$ Mammal $\cap \exists$ Parent $\cap \forall$ Parent.Human Human $=\perp$

Semantics - cyclic Tbox

Greatest fixpoint semantics: $A=F(A)$ specifies that A is to be interpreted as the greatest solution (if it exists) for the equation.
n Appropriate for defining concepts whose individuals have circularly repeating structure

FoB $=$ Blond $\cap \exists$ Child.FoB
Human $=$ Mammal $\cap \exists$ Parent $\cap \forall$ Parent. Human Horse $=$ Mammal $\cap \exists$ Parent $\cap \forall$ Parent. Horse Human = Horse

Open world vs closed world semantics

Databases: closed world reasoning database instance represents one interpretation absence of information interpreted as negative information
"complete information"
query evaluation is finite model checking
DL: open world reasoning
Abox represents many interpretations (its models)
absence of information is lack of information
"incomplete information"
query evaluation is logical reasoning

Open world vs closed world semantics

hasChild(Jocasta, Oedipus)
hasChild(Jocasta, Polyneikes)
hasChild(Oedipus, Polyneikes)
hasChild(Polyneikes, Thersandros)
patricide(Oedipus)
\neg patricide(Thersandros)
Does it follow from the Abox that
\exists hasChild.(patricide $\cap \exists$ hasChild. \neg patricide)(Jocasta) ?

Reasoning services

Satisfiability of concept
Subsumption between concepts
Equivalence between concepts
n Disjointness of concepts
n Classification
n Instance checking
n Realization
n Retrieval
n Knowledge base consistency

Reasoning services

n Satisfiability of concept
a C is satisfiable w.r.t. \mathcal{T} if there is a model I of \mathcal{T} such that C^{I} is not empty.
n Subsumption between concepts
$\sharp \mathrm{C}$ is subsumed by D w.r.t. \mathcal{T} if $\mathrm{C}^{I} \subseteq \mathrm{D}^{I}$ for every model I of \mathcal{T}.
n Equivalence between concepts
${ }_{\square} \mathrm{C}$ is equivalent to D w.r.t. \mathcal{T} if $\mathrm{C}^{I}=\mathrm{D}^{I}$ for every model I of \mathcal{T}.
n Disjointness of concepts
$=\underset{\mathcal{T}}{\mathrm{C}}$ and D are disjoint w.r.t. \mathcal{T} if $\mathrm{C}^{3} \cap \mathrm{D}^{3}=\varnothing$ for every model I of \mathcal{T}.

Reasoning services

n Reduction to subsumption
C is unsatisfiable iff C is subsumed by \perp
= C and D are equivalent iff C is subsumed by D and D is subsumed by C
a C and D are disjoint iff $\mathrm{C} \cap \mathrm{D}$ is subsumed by \perp
n The statements also hold w.r.t. a Tbox.

Reasoning services

Reduction to unsatisfiability
» C is subsumed by D iff $C \cap \neg D$ is unsatisfiable

* C and D are equivalent iff
both $(C \cap \neg D)$ and $(D \cap \neg C)$ are
unsatisfiable
\& and D are disjoint iff $C \cap D$ is unsatisfiable
n The statements also hold w.r.t. a Tbox.

Tableau algorithms

n To prove that C subsumes D :

* If C subsumes D, then it is impossible for an individual to belong to D but not to C.
a Idea: Create an individual that belongs to D and not to C and see if it causes a contradiction.
a If always a contradiction (clash) then subsumption is proven. Otherwise, we have found a model that contradicts the subsumption.

Tableau algorithms

n Based on constraint systems.

* $S=\{x: \neg C \cap D\}$
\# Add constraints according to a set of propagation rules
* Until clash or no constraint is applicable

Tableau algorithms de Morgan rules
$\neg \neg \mathrm{C} \quad \mathrm{C}$
$\neg(A \cap B) \quad \neg A U \neg B$
$\neg(A \cup B) \quad \neg A \cap \neg B$
\neg (\forall R.C) $\quad \exists$ R. $(\neg \mathrm{C})$
$\neg(\exists$ R.C) $\quad \forall$ R. $(\neg \mathrm{C})$

Tableau algorithms - constraint propagation rules

n S
$\cap\left\{x: C_{1}, x: C_{2}\right\} \cup S$
if $\mathrm{x}: \mathrm{C}_{1} \cap \mathrm{C}_{2}$ in S
and either $x: C_{1}$ or $x: C_{2}$ is not in S
n $S \quad u\{x: D\} \cup S$
if $x: C_{1} \cup C_{2}$ in S and neither $x: C_{1}$ or $x: C_{2}$ is in S, and $D=C_{1}$ or $D=C_{2}$

```
Tableau algorithms - constraint
propagation rules
    n S }\quad\forall{y:C}U
    if }x:\forall\mathrm{ R.C in S and xRy in S and y:C is not
    in S
    n S ョ {xRy, y:C} U S
    if }x\mathrm{ : }\exists\mathrm{ R.C in S and y is a new variable and
        there is no z such that both xRz and z:C
        are in S
```

n $S \quad$ ョ $\{x R y, y: C\} \cup S$
if $x: \exists$ R.C in S and y is a new variable and there is no z such that both $x R z$ and $z: C$ are in S
n ST: Tournament
$\cap \exists$ hasParticipant.Swedish
n SBT: Tournament
$\cap \exists$ hasParticipant.(Swedish \cap Belgian)

Example 1

n SBT => ST?
S = $\{\mathrm{x}:$
\neg (Tournament $\cap \exists$ hasParticipant.Swedish)
\cap (Tournament
$\cap \exists$ hasParticipant.(Swedish \cap Belgian)) \}

Example 1

n $\mathrm{S}=\{\mathrm{x}$:
$(\neg$ Tournament
U \forall hasParticipant. \neg Swedish)
\cap (Tournament
$\cap \exists$ hasParticipant.(Swedish \cap Belgian)) \}

Example 1

```
\cap-rule:
    n S = {
    x: (\negTournament
        U \forall hasParticipant.\neg Swedish)
    \cap (Tournament
    \cap\exists hasParticipant.(Swedish \cap Belgian)),
    x: TTournament
        U \forall hasParticipant.\neg Swedish,
    x: Tournament,
    x: \exists hasParticipant.(Swedish \cap Belgian)
    }
```


Example 1

\cap-rule:

n $S=\{x$: (\neg Tournament $U \forall$ hasParticipant. \neg Swedish) \cap (Tournament
$\cap \exists$ hasParticipant.(Swedish \cap Belgian)),
x : \neg Tournament $\mathrm{U} \forall$ hasParticipant. \neg Swedish,
x: Tournament,
$x: \exists$ hasParticipant.(Swedish \cap Belgian),
x hasParticipant y, y : (Swedish \cap Belgian),
y: Swedish, y: Belgian \}

Example 1

\exists-rule:
n $S=\{$
x: (\neg Tournament U \forall hasParticipant. \neg Swedish)
\cap (Tournament
$\cap \exists$ hasParticipant.(Swedish \cap Belgian)),
x: \neg Tournament
$\mathrm{U} \forall$ hasParticipant. \neg Swedish,
x: Tournament,
$x: \exists$ hasParticipant.(Swedish \cap Belgian),
x hasParticipant $y, y:(S w e d i s h \cap$ Belgian)
\}

Example 1

U-rule, choice 1

n $S=\{x$: (\neg Tournament $U \forall$ hasParticipant. \neg Swedish $)$ \cap (Tournament
$\cap \exists$ hasParticipant.(Swedish \cap Belgian)),
x : \neg Tournament $\mathrm{U} \forall$ hasParticipant. \neg Swedish,
x : Tournament,
$x: \exists$ hasParticipant.(Swedish \cap Belgian),
x hasParticipant y, y : (Swedish \cap Belgian),
y: Swedish, y: Belgian,
x: \neg Tournament
\}
clash

Example 1

U-rule, choice 2
n $S=\{x$: (\neg Tournament $U \forall$ hasParticipant. \neg Swedish)
\cap (Tournament
$\cap \exists$ hasParticipant.(Swedish \cap Belgian)),
$\mathrm{x}: \neg$ Tournament $\mathrm{U} \forall$ hasParticipant. \neg Swedish,
x : Tournament,
$x: \exists$ hasParticipant.(Swedish \cap Belgian),
x hasParticipant $\mathrm{y}, \mathrm{y}:($ Swedish \cap Belgian),
y : Swedish, y: Belgian,
$\mathrm{x}: \forall$ hasParticipant. \neg Swedish
\}

Example 1

choice 2 - continued
\forall-rule
n $S=\{$
x: (\neg Tournament $\mathrm{U} \forall$ hasParticipant. \neg Swedish)
\cap (Tournament $\cap \exists$ hasParticipant.(Swedish \cap Belgian)),
$\mathrm{x}: \neg$ Tournament $\mathrm{U} \forall$ hasParticipant. \neg Swedish,
x : Tournament,
$\mathrm{x}: \exists$ hasParticipant.(Swedish \cap Belgian),
x hasParticipant $y, y:(S w e d i s h \cap$ Belgian),
y: Swedish, y: Belgian,
$\mathrm{x}: \forall$ hasParticipant. \neg Swedish
$\mathbf{y}: \neg$ Swedish
\}
clash

Example 2

n ST => SBT?
${ }_{\mathrm{n}} \mathrm{S}=\{\mathrm{x}$:
\neg (Tournament
$\cap \exists$ hasParticipant.(Swedish \cap Belgian))
\cap (Tournament $\cap \exists$ hasParticipant.Swedish) \}

Example 2

h $S=\{x$:
(\neg Tournament
$\mathrm{U} \forall$ hasParticipant. $(\neg$ Swedish $U \neg$ Belgian))
\cap (Tournament $\cap \exists$ hasParticipant.Swedish)
\}

Example 2

\cap-rule

n $S=\{$
x : (\neg Tournament
U \forall hasParticipant.(\neg Swedish U \neg Belgian))
\cap (Tournament $\cap \exists$ hasParticipant.Swedish),
x: (\neg Tournament
U \forall hasParticipant.(\neg Swedish U \neg Belgian)),
x : Tournament,
x: \exists hasParticipant.Swedish
\}

Example 2

\exists-rule
n $S=\{$
x : (\neg Tournament
$\mathrm{U} \forall$ hasParticipant. (\neg Swedish $\mathrm{U} \neg$ Belgian))
\cap (Tournament $\cap \exists$ hasParticipant.Swedish),
x: (\neg Tournament
U \forall hasParticipant.(\neg Swedish U \neg Belgian)),
x: Tournament,
x: \exists hasParticipant.Swedish,
x hasParticipant y, y : Swedish
\}

Example 2

U-rule, choice 1
n $\mathrm{S}=\{$
x: (\neg Tournament
U \forall hasParticipant.(\neg Swedish $\mathrm{U} \neg$ Belgian))
\cap (Tournament $\cap \exists$ hasParticipant.Swedish)
x: (\neg Tournament
$\underset{\text { U }}{ } \forall$ hasParticipant. $(\neg$ Swedish $\mathrm{U} \neg$ Belgian)), x : Tournament,
$\mathrm{x}: \exists$ hasParticipant.Swedish,
x hasParticipant y , y : Swedish
$\mathrm{x}: \neg$ Tournament
\}

Example 2

U-rule, choice 2
n $\mathrm{S}=$ \{
x : (\rightarrow Tournament
U \forall hasParticipant.(\neg Swedish $\mathrm{U} \neg$ Belgian))
\cap (Tournament $\cap \exists$ hasParticipant.Swedish),
x : (\rightarrow Tournament
U \forall hasParticipant. (\neg Swedish $\mathrm{U} \neg$ Belgian)),
x : Tournament,
$\mathrm{x}: \exists$ hasParticipant.Swedish,
x hasParticipant y , y : Swedish,
$\mathrm{x}: \forall$ hasParticipant.(\neg Swedish $\mathrm{U} \neg$ Belgian)
\}
\}

Example 2

choice 2 continued
\forall-rule
$S=\{$
x: \neg Tournament
U \forall hasParticipant.(\neg Swedish $U \neg$ Belgian))
\cap (Tournament $\cap \exists$ hasParticipant.Swedish),
$x:(\neg$ Tournament
U \forall hasParticipant. (\neg Swedish $\mathrm{U} \neg$ Belgian)),
x : Tournament,
x : \exists hasParticipant.Swedish,
x hasParticipant y, y : Swedish,
x : \forall hasParticipant. (\neg Swedish $U \neg$ Belgian)
y: (\neg Swedish $\mathbf{U} \neg$ Belgian)
\}

Example 2

choice 2 continued

U-rule, choice 2.1
n $S=\{$
x : (\neg Tournament
U \forall hasParticipant.(\neg Swedish U \neg Belgian))
\cap (Tournament $\cap \exists$ hasParticipant.Swedish),
x : (\neg Tournament
\forall hasParticipant.(\neg Swedish U \neg Belgian)),
x: Tournament,
: \exists hasParticipant.Swedish,
x hasParticipant y, y : Swedish,
$\mathrm{x}: \forall$ hasParticipant.(\neg Swedish $\mathrm{U} \neg$ Belgian),
y: $(\neg$ Swedish $\mathrm{U} \neg$ Belgian)
$\mathrm{y}: \neg$ Swedish
\} clash

Example 2

choice 2 continued
-rule, choice 2.2
U-rule,
n \quad S $=\{$
x : (\neg Tournament
$\mathrm{U} \forall$ hasParticipant. \neg Swedish $\mathrm{U} \neg$ Belgian)
\cap (Tournament $\cap \exists$ hasParticipant.Swedish), x: (\neg Tournament
$U \forall$ hasParticipant.(\neg Swedish U \neg Belgian)),
x: Tournament,
x : \exists hasParticipant.Swedish,
x hasParticipant y, y : Swedish
$\mathrm{x}: \forall$ hasParticipant.(\neg Swedish $\mathrm{U} \neg$ Belgian)
y: $(\neg$ Swedish $U \neg$ Belgian $)$
$\mathrm{y}: \neg$ Belgian
\} ok, model

Complexity - languages

n Overview available via the DL home page at http://dl.kr.org

Example tractable language:

$$
\mathrm{A}, \mathrm{~T}, \perp, \neg \mathrm{~A}, \mathrm{C} \cap \mathrm{D}, \forall \mathrm{R} . \mathrm{C}, \geq \mathrm{nR}, \leq \mathrm{nR}
$$

Reasons for intractability:
choices, e.g. C U D
exponential size models,
e.g interplay universal and existential quantification

Reasons for undecidability:
e.g. role-value maps $\mathrm{R}=\mathrm{S}$

Systems

n Overview available via the DL home page at http://dl.kr.org
n Current systems include: CEL, Cerebra Enginer, FaCT++, fuzzyDL, HermiT, KAON2, MSPASS, Pellet, QuOnto, RacerPro, SHER

Extensions

n Time
n Defaults
n Part-of
n Knowledge and belief
n Uncertainty (fuzzy, probabilistic)
DAML+OIL Class Constructors

Constructor	DL Syntax	Example
intersectionOf	$C_{1} \sqcap \ldots \sqcap C_{n}$	Human \sqcap Male
unionOf	$C_{1} \sqcup \ldots \sqcup C_{n}$	Doctor \sqcup Lawyer
complementOf	$\neg C$	\neg Male
oneOf	$\left\{x_{1} \ldots x_{n}\right\}$	$\{$ john, mary $\}$
toClass	$\forall P . C$	\forall hasChild. Doctor
hasClass	$\exists P . C$	\exists hasChild. Lawyer
hasValue	$\exists P .\{x\}$	\exists GitizenOf. $\{$ USA $\}$
minCardinalityQ	$\geqslant n P . C$	$\geqslant 2$ hasChild. Lawyer
maxCardinalityQ	$\leqslant n P . C$	$\leqslant 1$ hasChild.Male
cardinalityQ	$=n P . C$	$=1$ hasParent.Female
XMLS datatypes as well as classes		

OWL

n OWL-Lite, OWL-DL, OWL-Full: increasing expressivity
n A legal OWL-Lite ontology is a legal OWL-DL ontology is a legal OWL-Full ontology
n OWL-DL: expressive description logic, decidable
n XML-based
n RDF-based (OWL-Full is extension of RDF, OWLLite and OWL-DL are extensions of a restriction of RDF)

OWL-Lite

n Class, subClassOf, equivalentClass
n intersectionOf (only named classes and restrictions)
n Property, subPropertyOf, equivalentProperty
n domain, range (global restrictions)
n inverseOf, TransitiveProperty (*), SymmetricProperty,
FunctionalProperty, InverseFunctionalProperty
n allValuesFrom, someValuesFrom (local restrictions)
n minCardinality, maxCardinality (only $0 / 1$)
n Individual, sameAs, differentFrom, AllDifferent
(*) restricted

OWL-DL

n Type separation (class cannot also be individual or property, property cannot be also class or individual), Separation between DatatypeProperties and ObjectProperties
n Class -complex classes, subClassOf, equivalentClass, disjointWith
n intersectionOf, unionOf, complementOf
n Property, subPropertyOf, equivalentProperty
domain, range (global restrictions)
inverseOf, TransitiveProperty (*), SymmetricProperty, FunctionalProperty,
InverseFunctionalProperty
n allValuesFrom, someValuesFrom (local restrictions), oneOf, hasValue
n minCardinality, maxCardinality
n Individual, sameAs, differentFrom, AllDifferent
(*) restricted

References

n Baader, Calvanese, McGuinness, Nardi, PatelSchneider. The Description Logic Handbook. Cambridge University Press, 2003.
n Donini, Lenzerini, Nardi, Schaerf, Reasoning in description logics. Principles of knowledge representation. CSLI publications. pp 191-236. 1996.
n dl.kr.org
n www.daml.org
n www.w3.org (owl)

