
1

Description logics

Description Logics

q A family of KR  formalisms, based on FOPL         
decidable, supported by automatic reasoning 
systems

q Used for modelling of application domains
q Classification of concepts and individuals                

concepts (unary predicates), subconcept 
(subsumption), roles (binary predicates), 
individuals (constants), constructors for building 
concepts, equality …

[Baader et al. 2002]

Applications

n software management
n configuration management
n natural language processing
n clinical information systems
n information retrieval 
n …

n Ontologies and the Web

Outline

n DL languages
¤ syntax and semantics

n DL reasoning services
¤ algorithms, complexity

n DL systems
n DLs for the web

Tbox and Abox

TBOX

Concept and role taxonomies

Intensional knowledge

ABOX

Individuals

Extensional knowledge

Reasoner

Syntax  - AL
R atomic role, A atomic concept
C,D → A  | (atomic concept)

T | (universal concept, top) 
⊥ |  (bottom concept) 

¬A |  (atomic negation) 
C ∩ D |  (conjunction)
∀R.C |  (value restriction) 
∃R.T (limited existential quantification)
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AL[X]

C ¬C   (concept negation)

U C U D   (disjunction)
E ∃R.C   (existential quantification)

N     ≥ n R,  ≤ n R        (number restriction)
Q     ≥ n R.C,  ≤ n R.C  (qualified number restriction)

Example

Team

Team ∩ ≥ 10 hasMember

Team ∩ ≥ 11 hasMember 
∩ ∀ hasMember.Soccer-player

AL[X]

R R ∩ S  (role conjunction)
I R- (inverse roles)
H (role hierarchies)
F u1 = u2, u1 ≠ u2 (feature (dis)agreements)

S[X]

S          ALC + transitive roles

SHIQ   ALC  + transitive roles

+ role hierarchies

+ inverse roles

+ number restrictions

Tbox

n Terminological axioms:
¤ C = D (R = S) 
¤ C ⊆ D (R ⊆ S) 
¤ (disjoint C D) 

n An equality whose left-hand side is an 
atomic concept is a definition.

n A finite set of definitions T is a Tbox (or 
terminology) if no symbolic name is 
defined more than once.

Example Tbox

Soccer-player ⊆ T

Team ⊆ ≥ 2 hasMember

Large-Team = Team ∩ ≥ 10 hasMember

S-Team = Team ∩ ≥ 11 hasMember 
∩ ∀ hasMember.Soccer-player
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DL as sublanguage of FOPL

Team(this) 
^

(∃ x1,...,x11: 
hasMember(this,x1) ^ … ^ hasMember(this,x11) 
^ x1 ≠ x2 ^ … ^ x10 ≠ x11)

^
(∀ x: hasMember(this,x) Soccer-player(x))

Abox

n Assertions about individuals:
¤ C(a)
¤ R(a,b)

Example

Ida-member(Sture)

Individuals in the description 
language

n O {i1, …, ik} (one-of) 

n R:a (fills)

Example

(S-Team ∩ hasMember:Sture)(IDA-FF)

Knowledge base

A knowledge base is a tuple < T, A > 
where T is a Tbox and A is an Abox.



4

Example KB

Soccer-player ⊆ T
Team ⊆ ≥ 2 hasMember
Large-Team = Team ∩ ≥ 10 hasMember
S-Team = Team ∩ ≥ 11 hasMember 

∩ ∀ hasMember.Soccer-player

Ida-member(Sture)

(S-Team ∩ hasMember:Sture)(IDA-FF)

AL  (Semantics)
An interpretation I consists of a non-empty set 
∆I (the domain of the interpretation) and an 
interpretation function .I which assigns to 
every atomic concept A a set AI ⊆ ∆I and to 
every atomic role R a binary relation 
RI⊆ ∆I× ∆I.

The interpretation function is extended to 
concept definitions using inductive definitions.

AL  (Semantics)
C,D → A  | (atomic concept)  

T | (universal concept) 
⊥ | (bottom concept)

¬A | (atomic negation)
C ∩ D | (conjunction)
∀R.C | (value restriction)

∃R.T | (limited existential 
quantification)

TI =   ∆I

⊥I        =   Ø
(¬A)I = ∆I  \ AI

(C∩D)I =  CI∩DI

(∀ R.C)I =  
{a ∈ ∆I|∀b.(a,b) ∈RI→b ∈CI } 

(∃ R.T)I = {a ∈ ∆I| ∃b.(a,b) ∈RI}

ALC  (Semantics)

(¬ C)I = ∆I  \ CI 

(C U D)I = CI  U DI 

(≥ n R)I = {a ∈ ∆I| # {b ∈ ∆I | (a,b) ∈RI } ≥ n }

(≤ n R)I = {a ∈ ∆I| # {b ∈ ∆I | (a,b) ∈RI } ≤ n }

(∃ R.C)I = {a ∈ ∆I| ∃b ∈ ∆I : (a,b) ∈RI ^ b ∈ CI} 

Semantics
Individual i

iI ∈ ∆I

Unique Name Assumption:
if i1 ≠ i2 then i1I ≠ i2I

Semantics

An interpretation .I is a model for a 
terminology T iff

CI = DI for all C = D in T

CI ⊆ DI for all a C ⊆ D in T

CI∩ DI = Ø for all (disjoint C D) in T
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Semantics

An interpretation .I is a model for a 
knowledge base <T, A > iff 

.I is a model for T

aI ∈ CI for all C(a) in A
<aI,bI> ∈ RI for all R(a,b) in A

Semantics - acyclic Tbox

Bird = Animal ∩ ∀ Skin.Feather

∆I = {tweety, goofy, fea1, fur1}
AnimalI = {tweety, goofy}
FeatherI = {fea1}
SkinI = {<tweety,fea1>, <goofy,fur1>}

BirdI = {tweety}

Semantics - cyclic Tbox

QuietPerson = Person ∩ ∀ Friend.QuietPerson
( A = F(A) )

∆I = {john, sue, andrea, bill}
PersonI = {john, sue, andrea, bill}
FriendI = {<john,sue>, <andrea,bill>, <bill,bill>}

QuietPersonI ={john, sue}
QuietPersonI ={john, sue, andrea, bill}

Semantics - cyclic Tbox

Descriptive semantics: A = F(A) is a 
constraint stating that A has to be some 
solution for the equation.

n Not appropriate for defining concepts
n Necessary and sufficient conditions for 

concepts

Human = Mammal ∩ ∃ Parent                
∩ ∀ Parent.Human

Semantics - cyclic Tbox

Least fixpoint semantics: A = F(A) specifies that A 
is to be interpreted as the smallest solution (if it 
exists) for the equation.

n Appropriate for inductively defining concepts

DAG = EmptyDAG U (Node ∩ ∀ Arc.DAG)

Human = Mammal ∩ ∃ Parent ∩ ∀ Parent.Human 
Human = ⊥

Semantics - cyclic Tbox

Greatest fixpoint semantics: A = F(A) specifies that 
A is to be interpreted as the greatest solution (if it 
exists) for the equation.

n Appropriate for defining concepts whose 
individuals have circularly repeating structure

FoB = Blond ∩ ∃ Child.FoB

Human = Mammal ∩ ∃ Parent ∩ ∀ Parent.Human
Horse = Mammal ∩ ∃ Parent ∩ ∀ Parent.Horse

Human = Horse
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Open world vs closed 
world semantics

Databases: closed world reasoning
database instance represents one interpretation

absence of information interpreted as negative 
information
“complete information”

query evaluation is finite model checking
DL: open world reasoning

Abox represents many interpretations (its models)   
absence of information is lack of information

“incomplete information”
query evaluation is logical reasoning

Open world vs closed 
world semantics

hasChild(Jocasta, Oedipus)
hasChild(Jocasta, Polyneikes)
hasChild(Oedipus, Polyneikes)
hasChild(Polyneikes, Thersandros)
patricide(Oedipus)
¬ patricide(Thersandros)

Does it follow from the Abox that
∃hasChild.(patricide ∩ ∃hasChild. ¬ patricide)(Jocasta) ?

Reasoning services

n Satisfiability of concept
n Subsumption between concepts 
n Equivalence between concepts 
n Disjointness of concepts

n Classification

n Instance checking
n Realization
n Retrieval 
n Knowledge base consistency

Reasoning services

n Satisfiability of concept
¤ C is satisfiable w.r.t. T  if there is a model I of T such that CI

is not empty.

n Subsumption between concepts 
¤ C is subsumed by D w.r.t. T  if CI ⊆ DI for every model I of T.

n Equivalence between concepts 
¤ C is equivalent to D w.r.t. T  if CI = DI for every model I of T.

n Disjointness of concepts
¤ C and D are disjoint w.r.t. T  if CI∩ DI = Ø for every model I of

T.

Reasoning services

n Reduction to subsumption

¤ C is unsatisfiable iff C is subsumed by ⊥
¤ C and D are equivalent iff C is subsumed by D 

and D is subsumed by C

¤ C and D are disjoint iff C ∩ D is subsumed by ⊥

n The statements also hold w.r.t. a Tbox.

Reasoning services

n Reduction to unsatisfiability
¤ C is subsumed by D iff C ∩ ¬D is unsatisfiable
¤ C and D are equivalent iff 

both (C ∩ ¬D) and  (D ∩ ¬C) are 
unsatisfiable 

¤ C and D are disjoint iff C ∩ D is unsatisfiable

n The statements also hold w.r.t. a Tbox.
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Tableau algorithms

n To prove that C subsumes D:
¤ If C subsumes D, then it is impossible for an 

individual to belong to D but not to C.
¤ Idea: Create an individual that belongs to D 

and not to C and see if it causes a 
contradiction.

¤ If always a contradiction (clash) then 
subsumption is proven. Otherwise, we have 
found a model that contradicts the 
subsumption.

Tableau algorithms

n Based on constraint systems.

¤ S = { x: ¬C ∩ D }

¤ Add constraints according to a set of 
propagation rules

¤ Until clash or no constraint is applicable

Tableau algorithms –
de Morgan rules

¬ ¬ C C

¬ (A ∩ B) ¬ A U ¬ B

¬ (A U B) ¬ A ∩ ¬ B

¬ (∀ R.C) ∃ R.(¬ C)
¬ (∃ R.C) ∀ R.(¬ C)

Tableau algorithms – constraint 
propagation rules

n S ∩ {x:C1, x:C2} U S

if x: C1 ∩ C2 in S 

and either x:C1 or x:C2 is not in S

n S U {x:D} U S

if x: C1 U C2 in S and neither x:C1 or x:C2

is in S, and D = C1 or D = C2

Tableau algorithms – constraint 
propagation rules

n S ∀ {y:C} U S

if x: ∀ R.C in S and xRy in S and y:C is not 
in S

n S ∃ {xRy, y:C} U S

if x: ∃ R.C in S and y is a new variable and 
there is no z such that both xRz and z:C 
are in S 

Example

n ST: Tournament 

∩ ∃ hasParticipant.Swedish
n SBT: Tournament 

∩ ∃ hasParticipant.(Swedish ∩ Belgian)
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Example 1

n SBT => ST?
n S = { x: 

¬(Tournament ∩ ∃ hasParticipant.Swedish)
∩ (Tournament 
∩ ∃ hasParticipant.(Swedish ∩ Belgian))
}

Example 1

n S = { x: 

(¬Tournament 
U ∀ hasParticipant.¬ Swedish)

∩ (Tournament 
∩ ∃ hasParticipant.(Swedish ∩ Belgian))
}

Example 1

∩-rule:
n S = { 

x: (¬Tournament 
U ∀ hasParticipant.¬ Swedish)

∩ (Tournament 
∩ ∃ hasParticipant.(Swedish ∩ Belgian)),
x: ¬Tournament 

U ∀ hasParticipant.¬ Swedish,
x: Tournament, 
x: ∃ hasParticipant.(Swedish ∩ Belgian)
}

Example 1

∃ -rule:
n S = {                                                                                     

x: (¬Tournament  U ∀ hasParticipant.¬ Swedish)
∩ (Tournament                                                                        
∩ ∃ hasParticipant.(Swedish ∩ Belgian)),

x: ¬Tournament 
U ∀ hasParticipant.¬ Swedish,

x: Tournament, 
x: ∃ hasParticipant.(Swedish ∩ Belgian),
x hasParticipant y, y: (Swedish ∩ Belgian)

}

Example 1

∩-rule:
n S= {x: (¬Tournament  U ∀ hasParticipant.¬ Swedish)

∩ (Tournament                                                                        
∩ ∃ hasParticipant.(Swedish ∩ Belgian)),
x: ¬Tournament  U ∀ hasParticipant.¬ Swedish,
x: Tournament, 
x: ∃ hasParticipant.(Swedish ∩ Belgian),
x hasParticipant y, y: (Swedish ∩ Belgian),
y: Swedish, y: Belgian }

Example 1

U-rule, choice 1
n S = { x: (¬Tournament  U ∀ hasParticipant.¬ Swedish)

∩ (Tournament                                                                        
∩ ∃ hasParticipant.(Swedish ∩ Belgian)),
x: ¬Tournament  U ∀ hasParticipant.¬ Swedish,
x: Tournament, 
x: ∃ hasParticipant.(Swedish ∩ Belgian),
x hasParticipant y, y: (Swedish ∩ Belgian),
y: Swedish, y: Belgian,
x: ¬Tournament

}

clash



9

Example 1
U-rule, choice 2
n S = {x: (¬Tournament  U ∀ hasParticipant.¬ Swedish)

∩ (Tournament                                                                        
∩ ∃ hasParticipant.(Swedish ∩ Belgian)),
x: ¬Tournament  U ∀ hasParticipant.¬ Swedish,
x: Tournament, 
x: ∃ hasParticipant.(Swedish ∩ Belgian),
x hasParticipant y, y: (Swedish ∩ Belgian),
y: Swedish, y: Belgian,
x: ∀ hasParticipant.¬ Swedish

}

Example 1
choice 2 – continued
∀-rule

n S = { 
x: (¬Tournament  U ∀ hasParticipant.¬ Swedish)

∩ (Tournament ∩ ∃ hasParticipant.(Swedish ∩ Belgian)),
x: ¬Tournament  U ∀ hasParticipant.¬ Swedish,
x: Tournament, 
x: ∃ hasParticipant.(Swedish ∩ Belgian),
x hasParticipant y, y: (Swedish ∩ Belgian),
y: Swedish, y: Belgian,
x: ∀ hasParticipant.¬ Swedish,
y: ¬ Swedish

}

clash

Example 2

n ST => SBT?
n S = { x: 

¬ (Tournament 
∩ ∃ hasParticipant.(Swedish ∩ Belgian))
∩ (Tournament ∩ ∃ hasParticipant.Swedish)
}

Example 2

n S = { x: 
(¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
∩ (Tournament ∩ ∃ hasParticipant.Swedish)
}

Example 2

∩-rule
n S = {

x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
∩ (Tournament ∩ ∃ hasParticipant.Swedish),
x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
x: Tournament,
x: ∃ hasParticipant.Swedish
}

Example 2

∃ -rule
n S = { 

x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
∩ (Tournament ∩ ∃ hasParticipant.Swedish),
x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
x: Tournament,
x: ∃ hasParticipant.Swedish,
x hasParticipant y, y: Swedish
}
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Example 2

U –rule, choice 1
n S = { 

x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
∩ (Tournament ∩ ∃ hasParticipant.Swedish),
x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
x: Tournament,
x: ∃ hasParticipant.Swedish,
x hasParticipant y, y: Swedish,
x: ¬Tournament
}

clash

Example 2

U –rule, choice 2
n S = { 

x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
∩ (Tournament ∩ ∃ hasParticipant.Swedish),
x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
x: Tournament,
x: ∃ hasParticipant.Swedish,
x hasParticipant y, y: Swedish,
x: ∀ hasParticipant.(¬ Swedish U ¬ Belgian)
}

Example 2
choice 2 continued
∀–rule
n S = { 

x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
∩ (Tournament ∩ ∃ hasParticipant.Swedish),

x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
x: Tournament,
x: ∃ hasParticipant.Swedish,
x hasParticipant y, y: Swedish, 
x: ∀ hasParticipant.(¬ Swedish U ¬ Belgian),
y: (¬ Swedish U ¬ Belgian)
}

Example 2
choice 2 continued
U–rule, choice 2.1
n S = { 

x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
∩ (Tournament ∩ ∃ hasParticipant.Swedish),
x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
x: Tournament,
x: ∃ hasParticipant.Swedish,
x hasParticipant y, y: Swedish, 
x: ∀ hasParticipant.(¬ Swedish U ¬ Belgian),
y: (¬ Swedish U ¬ Belgian),
y: ¬ Swedish
}  clash

Example 2
choice 2 continued
U–rule, choice 2.2
n S = { 

x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian))
∩ (Tournament ∩ ∃ hasParticipant.Swedish),
x: (¬Tournament 
U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)),
x: Tournament,
x: ∃ hasParticipant.Swedish,
x hasParticipant y, y: Swedish, 
x: ∀ hasParticipant.(¬ Swedish U ¬ Belgian),
y: (¬ Swedish U ¬ Belgian),
y: ¬ Belgian
}  ok, model

Complexity - languages

n Overview available via the DL home page at 
http://dl.kr.org

Example tractable language: 
A, T,⊥ , ¬A, C ∩ D, ∀R.C, ≥ n R,  ≤ n R 

Reasons for intractability: 
choices, e.g. C U D
exponential size models, 

e.g interplay universal and existential quantification

Reasons for undecidability:
e.g. role-value maps R=S
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Systems

Late 

1980s

Early 

1990s

Mid 

1990s

Late 

1990s

undecidable

ExpTime

PSpace

NP

PTime

KL-ONE

NIKL

CLASSIC

Loom

CRACK, KRIS

FaCT,   DLP, RACER

Investigation

Of complexity 

starts

Systems

n Overview available via the DL home page 
at http://dl.kr.org

n Current systems include: CEL, Cerebra 
Enginer, FaCT++, fuzzyDL, HermiT, 
KAON2, MSPASS, Pellet, QuOnto, 
RacerPro, SHER

Extensions

n Time
n Defaults

n Part-of
n Knowledge and belief
n Uncertainty (fuzzy, probabilistic)

OWL

n OWL-Lite, OWL-DL, OWL-Full: increasing 
expressivity

n A legal OWL-Lite ontology is a legal OWL-DL 
ontology is a legal OWL-Full ontology

n OWL-DL: expressive description logic, decidable
n XML-based
n RDF-based (OWL-Full is extension of RDF, OWL-

Lite and OWL-DL are extensions of a restriction of 
RDF)
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OWL-Lite

n Class, subClassOf, equivalentClass
n intersectionOf (only named classes and restrictions)
n Property, subPropertyOf, equivalentProperty
n domain, range (global restrictions)
n inverseOf, TransitiveProperty (*), SymmetricProperty, 

FunctionalProperty, InverseFunctionalProperty
n allValuesFrom, someValuesFrom (local restrictions)
n minCardinality, maxCardinality (only 0/1)
n Individual, sameAs, differentFrom, AllDifferent

(*) restricted

OWL-DL

n Type separation (class cannot also be individual or property, property 
cannot be also class or individual), Separation between DatatypeProperties 
and ObjectProperties

n Class –complex classes, subClassOf, equivalentClass, disjointWith
n intersectionOf, unionOf, complementOf
n Property, subPropertyOf, equivalentProperty
n domain, range (global restrictions)
n inverseOf, TransitiveProperty (*), SymmetricProperty, FunctionalProperty, 

InverseFunctionalProperty
n allValuesFrom, someValuesFrom (local restrictions), oneOf, hasValue
n minCardinality, maxCardinality
n Individual, sameAs, differentFrom, AllDifferent

(*) restricted
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