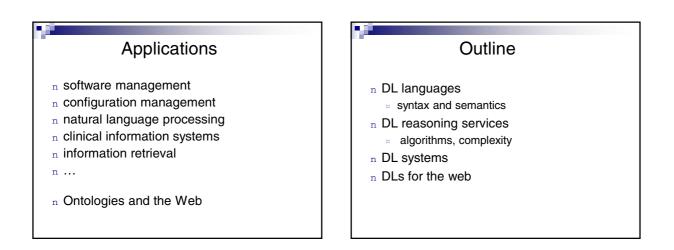
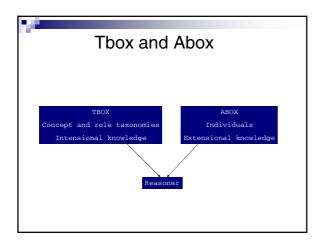
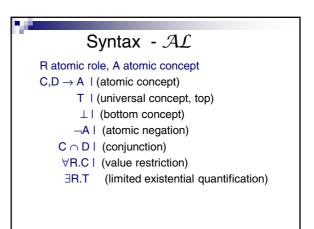


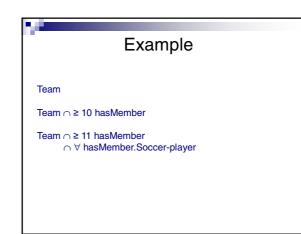
[Baader et al. 2002]



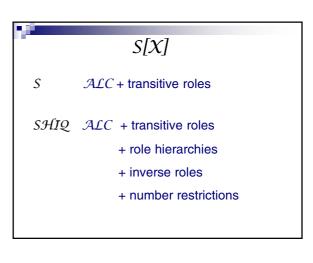


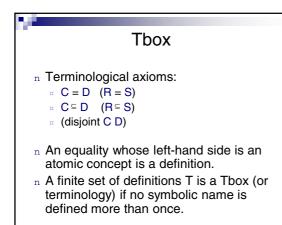


AL[X]
C ¬C (concept negation)
\mathcal{U} CUD (disjunction) \mathcal{E} $\exists R.C$ (existential quantification)
$\mathcal{N} \ge n R, \le n R$ (number restriction) $\mathcal{Q} \ge n R.C, \le n R.C$ (qualified number restriction)



 $\mathcal{AL}[X]$ $\mathcal{R} \ \mathsf{R} \cap \mathsf{S} \ (\text{role conjunction})$ $I \ \mathsf{R} \ (\text{inverse roles})$ $\mathcal{H} \ (\text{role hierarchies})$ $\mathcal{F} \ \mathsf{u}_1 = \mathsf{u}_2, \ \mathsf{u}_1 \neq \mathsf{u}_2 \ (\text{feature (dis)agreements})$





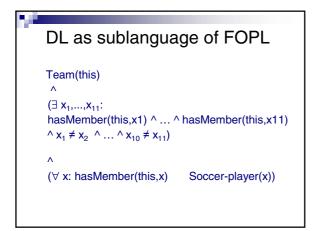
Example Tbox

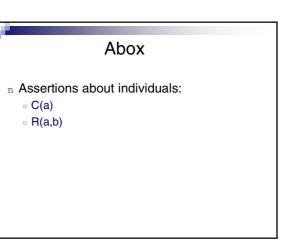
Soccer-player \subseteq T

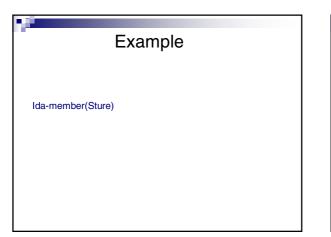
Team $\subseteq \geq 2$ hasMember

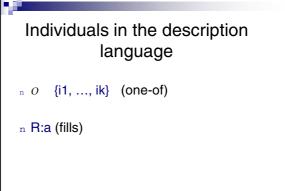
Large-Team = Team $\cap \ge 10$ hasMember

S-Team = Team $\cap \ge 11$ hasMember $\cap \forall$ hasMember.Soccer-player









Example

 $(S\text{-}Team \cap hasMember:Sture)(\mathsf{IDA}\text{-}\mathsf{FF})$

Knowledge base

A knowledge base is a tuple < T, A > where *T* is a Tbox and *A* is an Abox.

Example KB

Soccer-player \subseteq T Team \subseteq ≥ 2 hasMember Large-Team = Team \cap ≥ 10 hasMember S-Team = Team \cap ≥ 11 hasMember \cap \forall hasMember.Soccer-player

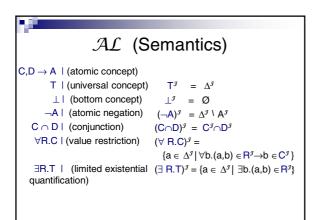
Ida-member(Sture)

 $(S\text{-}Team \cap hasMember:Sture)(\mathsf{IDA}\text{-}\mathsf{FF})$

AL (Semantics)

An interpretation *I* consists of a non-empty set $\Delta^{\mathcal{J}}$ (the domain of the interpretation) and an interpretation function $.^{\mathcal{J}}$ which assigns to every atomic concept A a set $A^{\mathcal{J}} \subseteq \Delta^{\mathcal{J}}$ and to every atomic role R a binary relation $R^{\mathcal{J}} \subseteq \Delta^{\mathcal{J}} \times \Delta^{\mathcal{J}}$.

The interpretation function is extended to concept definitions using inductive definitions.



$$\mathcal{ALC} \text{ (Semantics)}$$

$$(\neg C)^{g} = \Delta^{g} \setminus C^{g}$$

$$(C \cup D)^{g} = C^{g} \cup D^{g}$$

$$(\ge n R)^{g} = \{a \in \Delta^{g} | \# \{b \in \Delta^{g} | (a,b) \in R^{g}\} \ge n \}$$

$$(\le n R)^{g} = \{a \in \Delta^{g} | \# \{b \in \Delta^{g} | (a,b) \in R^{g}\} \le n \}$$

$$(\exists R.C)^{g} = \{a \in \Delta^{g} | \exists b \in \Delta^{g} : (a,b) \in R^{g} \land b \in C^{g} \}$$

Semantics

Individual i $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

Unique Name Assumption: if $i_1 \neq i_2$ then $i_1^{\mathcal{I}} \neq i_2^{\mathcal{I}}$

Semantics

An interpretation $.^{\mathcal{I}}$ is a model for a terminology \mathcal{T} iff

 $C^{\mathcal{I}} = D^{\mathcal{I}}$ for all C = D in T

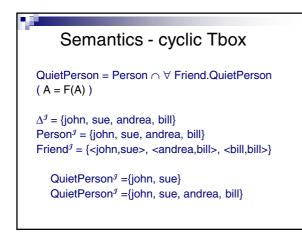
 $C^{\mathcal{J}} \subseteq D^{\mathcal{J}}$ for all a $C \subseteq D$ in T

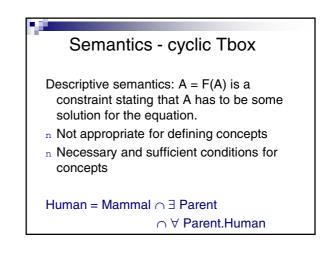
 $C^{\mathcal{J}} \cap D^{\mathcal{J}} = \mathcal{O}$ for all (disjoint C D) in T

Semantics

An interpretation J^{j} is a model for a knowledge base < T, A > iff

 J^{j} is a model for T $a^{j} \in C^{j}$ for all C(a) in A $\langle a^{j}, b^{j} \rangle \in \mathbb{R}^{j}$ for all R(a,b) in A Semantics - acyclic Tbox Bird = Animal $\cap \forall$ Skin.Feather $\Delta^{j} = \{tweety, goofy, fea1, fur1\}$ Animal^g = $\{tweety, goofy\}$ Feather^g = $\{fea1\}$ Skin^g = $\{<tweety, fea1>, <goofy, fur1>\}$ Bird^g = $\{tweety\}$





Semantics - cyclic Tbox

Least fixpoint semantics: A = F(A) specifies that A is to be interpreted as the smallest solution (if it exists) for the equation.

n Appropriate for inductively defining concepts

DAG = EmptyDAG U (Node $\cap \forall$ Arc.DAG)

 $\begin{array}{l} \mathsf{Human} = \mathsf{Mammal} \cap \exists \ \mathsf{Parent} \cap \forall \ \mathsf{Parent}.\mathsf{Human} \\ \mathsf{Human} = \bot \end{array}$

rse = Mammal \cap ∃ Parent $\cap \forall$ Paren Human = Horse

Open world vs closed world semantics

- Databases: closed world reasoning
 - database instance represents one interpretation absence of information interpreted as negative information
 - "complete information"
- query evaluation is finite model checking
- DL: open world reasoning
- Abox represents many interpretations (its models) absence of information is lack of information
- "incomplete information"
- query evaluation is logical reasoning

Open world vs closed world semantics

hasChild(Jocasta, Oedipus) hasChild(Jocasta, Polyneikes) hasChild(Oedipus, Polyneikes) hasChild(Polyneikes, Thersandros) patricide(Oedipus) ¬ patricide(Thersandros)

Does it follow from the Abox that ∃hasChild.(patricide ∩ ∃hasChild. ¬ patricide)(Jocasta) ?

Reasoning services

- n Satisfiability of concept
- n Subsumption between concepts
- n Equivalence between concepts
- n Disjointness of concepts
- n Classification
- n Instance checking
- n Realization
- n Retrieval
- n Knowledge base consistency

Reasoning services

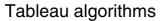
- n Satisfiability of concept
 - $\ \ \,$ C is satisfiable w.r.t. ${\cal T}$ if there is a model I of ${\cal T}$ such that C^I is not empty.
- n Subsumption between concepts
 - $\label{eq:constraint} \ensuremath{\mathbb{C}}\xspace$ C is subsumed by D w.r.t. $\ensuremath{\mathcal{T}}\xspace$ if $\ensuremath{\mathsf{C}}^I \subseteq \mathsf{D}^I$ for every model I of $\ensuremath{\mathcal{T}}\xspace$
- $\label{eq:constraint} \begin{array}{l} {\rm n} \quad \mbox{Equivalence between concepts} \\ {\rm u} \quad \mbox{C is equivalent to D w.r.t. } \ensuremath{\mathcal{T}} \ensuremath{\mbox{ if } C^I = D^I \mbox{ for every model } I \mbox{ of } \ensuremath{\mathcal{T}}. \end{array}$
- n Disjointness of concepts □ C and D are disjoint w.r.t. T if $C^{j} \cap D^{j} = \emptyset$ for every model I of T.

Reasoning services

- n Reduction to subsumption
 - ${\scriptscriptstyle \boxplus}$ C is unsatisfiable iff C is subsumed by \bot
 - $\final C$ and D are equivalent iff C is subsumed by D and D is subsumed by C
 - ${}^{_{\mbox{\tiny M}}}$ C and D are disjoint iff C \cap D is subsumed by \bot
- n The statements also hold w.r.t. a Tbox.

Reasoning services

- n Reduction to unsatisfiability
 - ${}^{\mbox{\tiny m}}$ C is subsumed by D iff C $\cap \neg D$ is unsatisfiable
 - - unsatisfiable
 - $\mbox{ \ \ } \ \ C$ and D are disjoint iff C \cap D is unsatisfiable
- n The statements also hold w.r.t. a Tbox.



- $\tt n$ To prove that C subsumes D:
 - If C subsumes D, then it is impossible for an individual to belong to D but not to C.
 - Idea: Create an individual that belongs to D and not to C and see if it causes a contradiction.
 - If always a contradiction (clash) then subsumption is proven. Otherwise, we have found a model that contradicts the subsumption.

Tableau algorithms

- n Based on constraint systems.
 - ${\tt x} \; S = \{ \; x : \neg C \cap D \; \}$
 - Add constraints according to a set of propagation rules
 - $\mbox{\tiny \ensuremath{\nnu}\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\en$

Tableau algorithms – de Morgan rules		
C C		
¬ (A ∩ B)	¬ A U ¬ B	
¬ (A U B)	$\neg A \cap \neg B$	
_ (∀ R.C)	∃ R.(¬ C)	
_ (∃ R.C)	∀ R.(¬ C)	

Tableau algorithms – constraint
propagation rulesn S $(x:C_1, x:C_2) \cup S$ if x: $C_1 \cap C_2$ in S
and either x: C_1 or x: C_2 is not in Sn S $(x:D) \cup S$

if x: C₁ U C₂ in S and neither x:C₁ or x:C₂ is in S, and D = C₁ or D = C₂

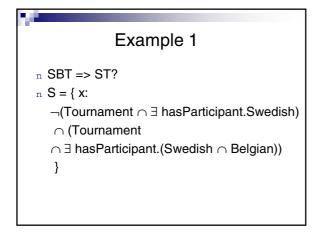
Tableau algorithms – constraint propagation rules

 $\ \ n \ \ S \quad \ _{\forall} \ \{y:C\} \ U \ S$

if x: \forall R.C in S and xRy in S and y:C is not in S

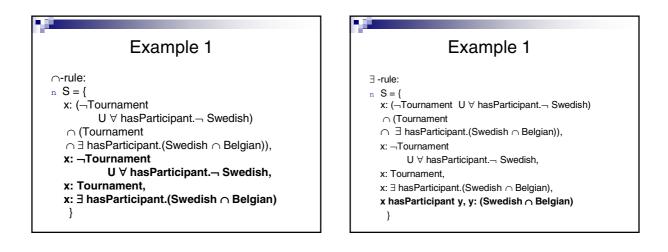
 $\ \ \ n \ \ S \quad \ \ _\exists \ \ \{xRy, \ y{:}C\} \ U \ S$

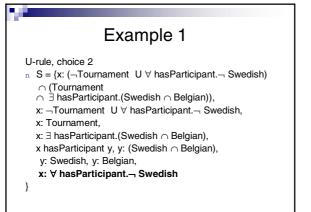
if $x: \exists R.C$ in S and y is a new variable and there is no z such that both xRz and z:C are in S

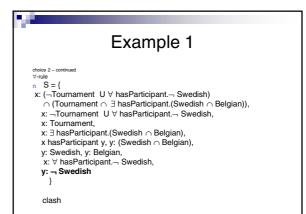


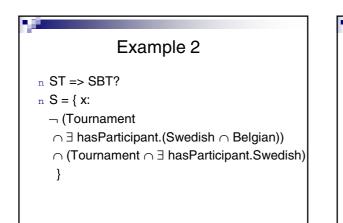
Example 1

n S = { x: (¬Tournament U ∀ hasParticipant.¬ Swedish) ∩ (Tournament ∩∃ hasParticipant.(Swedish ∩ Belgian)) }

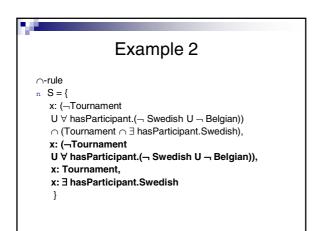








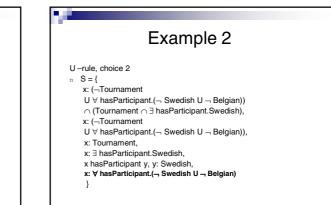
n S = { x: (¬Tournament U ∀ hasParticipant.(¬ Swedish U ¬ Belgian)) ∩ (Tournament ∩ ∃ hasParticipant.Swedish)

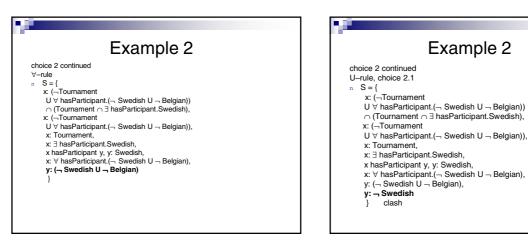


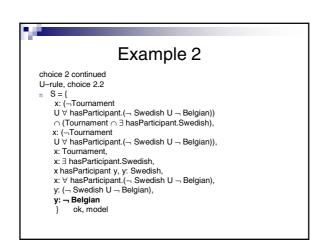
Example 2

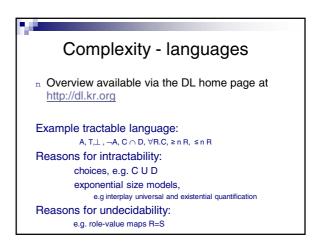
∃ -rule

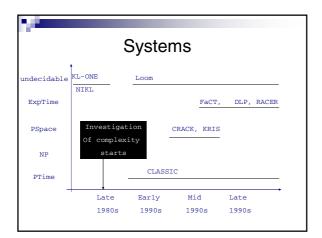
- n S = { x: (¬Tournament
 - U \forall hasParticipant.(¬ Swedish U ¬ Belgian))
 - \cap (Tournament $\cap \exists$ hasParticipant.Swedish),
 - x: (-Tournament
 - U v hasParticipant.(¬ Swedish U ¬ Belgian)),
 - x. Tournament,
 - x: ∃ hasParticipant.Swedish,
 - x hasParticipant y, y: Swedish

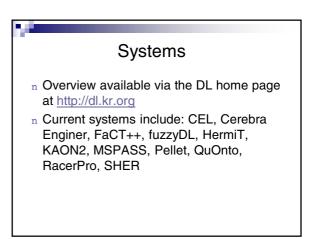


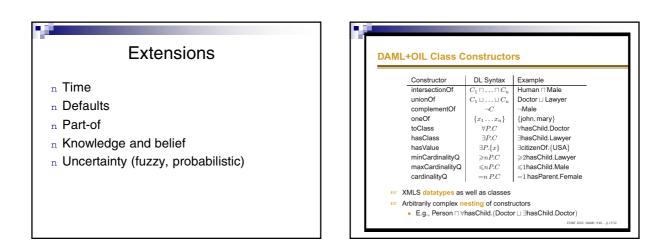


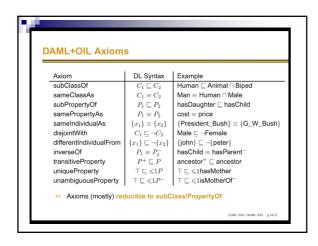












- n OWL-Lite, OWL-DL, OWL-Full: increasing expressivity
- n A legal OWL-Lite ontology is a legal OWL-DL ontology is a legal OWL-Full ontology
- $\tt n$ OWL-DL: expressive description logic, decidable $\tt n$ XML-based
- n RDF-based (OWL-Full is extension of RDF, OWL-Lite and OWL-DL are extensions of a restriction of RDF)

OWL-Lite

- n Class, subClassOf, equivalentClass
- n intersectionOf (only named classes and restrictions)
- n **Property**, subPropertyOf, equivalentProperty
- n domain, range (global restrictions)
- n inverseOf, TransitiveProperty (*), SymmetricProperty, FunctionalProperty, InverseFunctionalProperty
- n allValuesFrom, someValuesFrom (local restrictions)
- n minCardinality, maxCardinality (only 0/1)
- n Individual, sameAs, differentFrom, AllDifferent

(*) restricted

OWL-DL

- Type separation (class cannot also be individual or property, property cannot be also class or individual), Separation between DatatypeProperties objectProperties Class-complex classes, subClassOf, equivalentClass, disjointWith intersectionOf, unionOf, complementOf n
- n n
- Property, subPropertyOf, equivalentProperty n
- n
- domain, range (global restrictions) inverseOf. TransitiveProperty (*), SymmetricProperty, FunctionalProperty, InverseFunctionalProperty allValuesFrom, someValuesFrom (local restrictions), *oneOf, hasValue* n
- n
- n minCardinality, maxCardinality
- n Individual, sameAs, differentFrom, AllDifferent

(*) restricted

References

- Baader, Calvanese, McGuinness, Nardi, Pateln Schneider. The Description Logic Handbook. Cambridge University Press, 2003.
- Donini, Lenzerini, Nardi, Schaerf, Reasoning in n description logics. *Principles of knowledge representation*. CSLI publications. pp 191-236. 1996.
- n dl.kr.org
- www.daml.org n
- www.w3.org (owl) n

