
 

732A54 - Big Data Analytics 

Lab compendium 
(Spark and Spark SQL) 

Description and Aim 
In the lab exercises you will work with the historical meteorological data from the Swedish               

Meteorological and Hydrological Institute (SMHI). Specifically, you will work with air temperature            

readings and precipitation readings from 812 meteorological stations in Sweden . In these exercises,             1

you will work with both Spark and Spark SQL.  

 

After completing these two labs you will have basic knowledge of the programing environment,              

techniques and APIs for running both Spark and Spark SQL. You will work on exercises with Spark and                  

Spark SQL and thus will be able to compare the differences between the two approaches. 

Data 
The data includes air temperature and precipitation readings from 812 stations in Sweden. The              

stations include both currently active stations as well readings from historical stations that have been               

closed down. The latest readings available for active stations are from October 10, 2016.  

 

The air temperature/precipitation readings are hourly readings, however some stations provide only            

one reading every three hours.  

 

The provided files are prepared csv files with removed headers (zip file available at:              

https://www.ida.liu.se/~732A54/lab/data.zip ). Values are separated with ;. Some files are too big to            2

be read using some text editors. Therefore use either python to read the files or bash commands such                  

as ​tail ​ and ​more ​ to get an overview of a file’s content. Provided files: 

● temperature-readings.csv​  - ca 2 GB 

● precipitation-readings.csv​  - ca 660 MB 

● stations.csv 

● stations-Ostergotland.csv 

● temperatures-big.csv​  - ca 16 GB 

○ already available on ​hdfs ​ under:​ ​/user/common/732A54/temperatures-big.csv 

1 If interested in other readings please check: ​http://opendata-catalog.smhi.se/explore/ 
2 ​To unzip the files, use:​ ​unzip -a data.zip 

https://www.ida.liu.se/~732A54/lab/data.zip
http://opendata-catalog.smhi.se/explore/


 

Headers for ​temperature-readings.csv 

Station number Date Time Air temperature (in ​°​C) Quality  3

 

Headers for ​precipitation-readings.csv 

Station number Date Time Precipitation (in ​mm​) Quality​3 

 

Headers for ​stations.csv 

Station 
number 

Station 
name 

Measurement 
height 

Latitude Longitude Readings 
from 
(date and 
time) 

Readings to 
(date and 
time) 

Elevation 

 

Headers for ​stations-Ostergotland.csv  
These are the same as in stations.csv. The file contains only stations in Östergotland. 

Headers for ​temperatures-big.csv  
These are the same as in temperature-readings.csv. The file is essentially a concatenation of 8 copies                

of ​temperature-readings.csv​  files. 

 

If you notice any mistakes in the dataset/lab compendium or have any comments please contact the                

course assistants. 

  

3 ​G - controlled and confirmed values, Y - suspected or aggregated values 



 

Working on your labs 

Cluster setup and logging in 

In the labs you will work on the Hadoop cluster set up at the National Supercomputer Centre (NSC).                  

NSC’s experimental Heffa lab cluster was built from old nodes from the NSCs 'matter' supercomputer,               

which was decommissioned. Some details about the nodes are provided below. 

 

 

System server: Compute / Login / Analysis nodes: 

Hardware: ProLiant DL180 G6 
CPU: 2 x 4-core Intel(R) Xeon(R) CPU E5520  @ 
2.27GHz 
Hadoop software: 
- hadoop hdfs namenode 
- yarn resource manager 
- yarn proxyserver 
- mapreduce historyserver 
- spark history server 

Number of nodes: 11 (of which 2 are login nodes) 
Hardware: HP SL170z G6 
CPUs: 2 x 4-core Intel Xeon E5520 @ 2.2GHz 
Interconnect: gigabit ethernet 
Hadoop distributed storage: 9 x 500 GB. 
Memory: 9 x 4 GB 
Hadoop software: 
- hadoop hdfs datanode 
- hadoop client software (map reduce, etc.) 
- hadoop yarn nodemanager 
- spark client software 

 

In the labs you will work with Spark and Spark SQL v. 1.6.0. We will make use of Spark Python API                     

(PySpark) which provides a python programming environment for Spark and Spark SQL. Make use of               

PySpark’s programming guide and API’s documentation to get an overview of available functions.   4

 

The server is available at ​heffa.nsc.liu.se (log in using your NSC accounts). There are two ways                

of working on your labs. The first one is by combining ​ssh and ​scp ​. In this case, you work on your                     

files locally, then using ​scp you copy the files to heffa, and finally using ​ssh you run the jobs. ​The                    

first time you log in after receiving your account details, you must log in using ssh. To do this, use                    

the following command in the terminal: 

 

ssh ​username@heffa.nsc.liu.se ​ ​where username is your NSC username (not the LiU one) 

 

Another easier and recommended approach is to make use of ThinLinc which is a remote desktop                5

solution. NSC has set up a ThinLinc server available at ​heffa-thinlinc.nsc.liu.se ​. In this             

way, you can get a graphical environment on the cluster and given that you work directly on the                  

cluster there is no need to use ssh or scp (unless you want to copy files to your local machine). Please                     

remember to log out when done working on the labs so that the server does not keep open sessions.                   

4  http://spark.apache.org/docs/1.6.0/programming-guide.html 
5 ​https://www.cendio.com/thinlinc/what-is-thinlinc 

mailto:username@heffa.nsc.liu.se
http://spark.apache.org/docs/1.6.0/programming-guide.html
https://www.cendio.com/thinlinc/what-is-thinlinc


 

ThinLinc is available on machines in the lab rooms. If you want to work on another machine,                 

download the client from: ​https://www.cendio.com/thinlinc/download​. 
 

It is always a good practice to verify that one has kerberos tickets before starting to work with                  

Hadoop, and if not, obtain them. You list kerberos tickets by running ​klist in the terminal, and get                  

new ones with ​kinit ​. An example of a ticket is given below: 

 
Default principal: zladr41@HEFFA.NSC.LIU.SE 
 
Valid starting       Expires              Service principal 
11/21/2016 13:56:46  11/22/2016 13:56:46  krbtgt/HEFFA.NSC.LIU.SE@HEFFA.NSC.LIU.SE 
        renew until 11/28/2016 13:56:46 

 

You should get the ticket automatically at login, but, if one uses ssh public key login, one may not get                    

it. Check that you have acquired kerberos tickets ​every time before starting your work with the                

Hadoop server. 

 

You can use Geany as text editor for writing your python scripts. 

Running your scripts 

To submit the jobs to the cluster using pyspark use: 

 

spark-submit --deploy-mode cluster --master yarn --num-executors 9  
--driver-memory 2g --executor-memory 2g --executor-cores 4 job.py   

where ​job.py ​ is your python script in your current folder. In this command, we use Yarn for 

resource management and use the cluster deploy mode. We have 9 worker nodes with 4 cores each 

with allocated 2GB of memory each. 

 

To make the calling of your python scripts easier, you can download a bash script which includes all                  

the settings (​https://www.ida.liu.se/~732A54/lab/scripts/runYarn.sh​). In this case, to run your         

job.py ​ you will need to run: 

 
./runYarn.sh job.py  
 

You can change the settings by editing the ​runYarn.sh file. You might need to add the execute                 

permissions to the script before you run it. To do this run: 
 
chmod u+x runYarn.sh  
 

During the execution of the job Spark starts SparkUI which is a web user interface for monitoring the                  

job execution (more information available at: ​http://spark.apache.org/docs/latest/monitoring.html​).       

However, the monitoring will only be available during the execution. In order to be able to access the                  

logs after the execution you will need to set the spark.eventLog.enabled flag when running your job: 

https://www.cendio.com/thinlinc/download
https://www.ida.liu.se/~732A54/lab/scripts/runYarn.sh
http://spark.apache.org/docs/latest/monitoring.html


 

 

spark-submit --conf spark.eventLog.enabled=true --deploy-mode cluster  
--master yarn --num-executors 9 --driver-memory 2g --executor-memory  
2g --executor-cores 4 job.py  
 

The script which includes the configuration for running the history server is provided here              

https://www.ida.liu.se/~732A54/lab/scripts/runYarn-withHistory.sh​. To run your jobs use: 

 
./runYarn-withHistory.sh job.py  

 

To access the logs visit ​http://heffa-head.local:18088 with a web browser (only if using the ThinLinc               

approach). Similar as with runYarn.sh you might need to add the execute permissions. 

 

Scheduling 

Given the number of course participants and limited resources it may happen that you experience               

delays in executing your programs using Yarn. More specifically, you will notice that in some cases                

your application will be in the ACCEPTED state for few minutes until it reaches the RUNNING state.                 

The reason for this is that there are already running tasks on the cluster which were submitted before.  

To check the up-to-date information about running/scheduled tasks visit: 

http://heffa-head.local:8088/cluster  

 

The exercises should not require a lot of time to run, and long running times might imply that there is                    

something wrong with your code. So if you experience long run-times and you do not see other more                  

running jobs please terminate your application (Ctrl-C) to save the resources.  

SparkContext 

When working with pyspark you will first need to acquire a SparkContext. SparkContext is the entry                

point to all functionality in Spark. Do this by including the following: 

 

from pyspark import SparkContext  
sc = SparkContext()  
 
SparkContext accepts a number of parameters, such as the application name, number of             

executors, etc. For more information, check the documentation. When working with Spark SQL (for              

BDA2), in addition to SparkContext you will also need to acquire the SQLContext by: 

 

from pyspark.sql import SQLContext  
sqlContext = SQLContext(sc)  
 

Where ​sc ​ is your ​SparkContext ​. 

https://www.ida.liu.se/~732A54/lab/scripts/runYarn-withHistory.sh
http://heffa-head.local:18088/
http://heffa-head.local:8088/cluster


 

 

In some exercises you will be required to copy files from/to hdfs. In these cases you will need to make                    

use of hdfs commands. Check available commands by running ​hdfs dfs in the terminal. Some               

useful commands: 

hdfs dfs -copyFromLocal file.txt data/ ​- copies local file file.txt to folder data on hdfs 

hdfs dfs -mkdir data - make a folder called data 

hdfs dfs -rm file.txt  - remove the file file.txt 

hdfs dfs -ls  - check the content of the folder 

hdfs dfs -rm -r folder  - remove the folder and its content 

hdfs dfs -copyToLocal results/ .  - copy the results/ folder to the current        
folder 
 

 

When referencing files on hdfs (e.g. with ​sc.textFile(path) ​) you will need to provide the full               

path on hdfs. For example, if you created a file ​file.txt under folder ​data in your home directory                  

on hdfs, the full path will be: 

 

/user/{username}/data/file.txt  
 

where ​{username} ​ is your username. 

Reports 
For each lab hand in a lab-report that includes the name and LiU-id for each group-member. For each                  

exercise provide your program, results from the program execution (a snippet of the results is enough                

if the results contain many rows) and written answers to questions in exercises. In cases where a plot                  

of your results is asked, you can include the figure directly in the report. You can use a tool of your                     

preference to produce the plots (e.g. R, Excel, matplotlib in Python, etc.). Comment each step in your                 

program to provide a clear picture of your reasoning when solving the problem.  

  



 

BDA1 - Spark - Exercises 
In this set of exercises you will work exclusively with Spark. This means that in your programs, you                  

only need to create the ​SparkContext ​. 
In a number of exercises you will be asked to calculated temperature averages (daily and monthly).                

These are not always computed according to the standard definition of ‘average’. In this domain the                

daily average temperature is calculated by averaging the daily measured maximum and the daily              

measured minimum temperatures. The monthly average is calculated by averaging the daily            

maximums and minimums for that month. For example, to get the monthly average for October, take                

maximums and minimums for each day, sum them up and divide by 62 (which is the same as taking                   

the daily averages, summing them up and divide by the number of days).  6

Assignments 

1) What are the lowest and highest temperatures measured each year for the period 1950-2014.              

Provide the lists sorted in the descending order with respect to the maximum temperature. In               

this exercise you will use the ​temperature-readings.csv​  file. 

a) Extend the program to include the station number (​not the station name​) where the              

maximum/minimum temperature was measured.  

b) (not for the SparkSQL lab) Write the non-parallelized program in Python to find the              

maximum temperatures for each year without using Spark. In this case you will run              

the program using:  

python script.py  

This program will read the local file (not from HDFS) so you will need to copy the                 

temperatures-big.csv ​ to the local drive. 

How does the runtime compare to the Spark version? Use logging (add the --conf              

spark.eventLog.enabled=true flag) to check the execution of the Spark program.          

Repeat the exercise, this time using ​temperatures-big.csv file available on hdfs. Explain            

the differences and try to reason why such runtimes were observed. 

 

2) Count the number of readings for each month in the period of 1950-2014 which are higher                

than 10 degrees. ​Repeat the exercise, this time taking only distinct readings from each station.               

That is, if a station reported a reading above 10 degrees in some month, then it appears only                  

once in the count for that month.  

In this exercise you will use the ​temperature-readings.csv​  file. 

The output should contain the following information: 

Year, month, count 

6 Note: In many countries in the world, the averages are calculated as discussed. However, in Sweden, daily and                   
monthly averages are calculated using Ekholm-Modéns formula which in addition to minimum and maximum daily               
temperature also takes into account readings at specific timepoints, the month as well as the longitude of the station.                   
For more information check (in Swedish):  
http://www.smhi.se/kunskapsbanken/meteorologi/hur-beraknas-medeltemperatur-1.3923 

http://www.smhi.se/kunskapsbanken/meteorologi/hur-beraknas-medeltemperatur-1.3923


 

 

3) Find the average monthly temperature for each available station in Sweden. Your result             

should include average temperature for each station for each month in the period of              

1960-2014. Bear in mind that not every station has the readings for each month in this                

timeframe.  

In this exercise you will use the ​temperature-readings.csv​  file. 

The output should contain the following information: 

Year, month, station number, average monthly temperature 

 

4) Provide a list of stations with their associated maximum measured temperatures and            

maximum measured daily precipitation. Show only those stations where the maximum           

temperature is between 25 and 30 degrees and maximum daily precipitation is between 100              

mm and 200 mm. 

In this exercise you will use the ​temperature-readings.csv​  and ​precipitation-readings.csv​  file. 

The output should contain the following information: 

Station number, maximum measured temperature, maximum daily precipitation 

 

5) Calculate the average monthly precipitation for the Östergotland region (list of stations is             

provided in the separate file) for the period 1993-2016. In order to do this, you will first need                  

to calculate the total monthly precipitation for each station before calculating the monthly             

average (by averaging over stations).  

In this exercise you will use the ​precipitation-readings.csv and ​stations-Ostergotland.csv files.           

HINT (not for the SparkSQL lab): Avoid using joins here! stations-Ostergotland.csv is small and              

if distributed will cause a number of unnecessary shuffles when joined with precipitation RDD.              

If you distribute ​precipitation-readings.csv then either repartition your stations RDD to 1            

partition or make use of the collect to acquire a python list and broadcast function to                

broadcast the list to all nodes. 

The output should contain the following information: 

Year, month, average monthly precipitation 

 

6) Compare the average monthly temperature (find the difference) in the period 1950-2014 for             

all stations in Östergotland with long-term monthly averages in the period of 1950-1980.             

Make a plot of your results. 

HINT: The first step is to find the monthly averages for each station. Then, you can average                 

over all stations to acquire the average temperature for a specific year and month. This               

RDD/Data Frame can be used to compute the long-term average by averaging over all the               

years in the interval. 

The output should contain the following information: 

Year, month, difference 

  



 

BDA2 - Spark SQL - Exercises 

Assignments 

Redo the above exercises using Spark SQL whenever possible. The initial processing of csv files (such                

as splitting on ;) can be done using Spark’s map.  

 

There are two ways to write queries in SparkSQL - using built-in API functions or running SQL-like                 

queries. You can choose which method to use, however ​to pass this lab you need to use the other                   

way for at least one of the exercises​. 
 

For each exercise include the following data in the report and sort it as shown: 

 

1. 

year, station with the max, maxValue ORDER BY maxValue DESC 

year, station with the min, minValue ORDER BY minValue DESC 

 

2. 

year, month, value ORDER BY value DESC 

year, month, value ORDER BY value DESC 

 

3. 

year, month, station, avgMonthlyTemperature ORDER BY avgMonthlyTemperature DESC 

 

4. 

station, maxTemp, maxDailyPrecipitation ORDER BY station DESC 

 

5. 

year, month, avgMonthlyPrecipitation ORDER BY year DESC, month DESC 

 

6. 

Year, month, difference ORDER BY year DESC, month DESC 

  



 

BDA3 - Machine Learning with Spark - Exercises 
Implement in Spark (PySpark) a kernel method to predict the hourly temperatures for a date and                7

place in Sweden. To do so, you should use the files ​temperature-readings.csv and ​stations.csv​ .              

Specifically, the forecast should consist of the predicted temperatures from 4 am (04:00) to 12 am                

(00:00) in an interval of 2 hours for a date and place in Sweden. Use a kernel that is the sum of three                       

Gaussian kernels:  

● The first to account for the distance from a station to the point of interest.  

● The second to account for the distance between the day a temperature measurement was              

made and the day of interest.  

● The third to account for the distance between the hour of the day a temperature               

measurement was made and the hour of interest.  

Choose an appropriate smoothing coefficient or width for each of the three kernels above. You do not                 

need to use cross-validation. 

Questions 

1) Show that your choice for the kernels’ width is sensible, i.e. it gives more weight to closer 

points. Discuss why your definition of closeness is reasonable. 

2) Repeat the exercise using a kernel that is the product of the three Gaussian kernels above. 

Compare the results with those obtained for the additive kernel. If they differ, explain why.  

Help 

● Note that the file ​temperature-readings.csv may contain temperature measurements that are           

posterior to the day and hour of your forecast. You must filter such measurements out, i.e.                

they cannot be used to compute the forecast.  

● Cache the data you will reuse by using ​rdd.cache() ​. Check the course slides. 

● Avoid joining two RDDs. Instead, broadcast the smallest, if small enough. Check the course              

slides. 

● My program takes 5-6 minutes (wallclock) on the whole ​temperature-readings.csv​ . However,           

you may want to use a sample when implementing and testing different settings. Then, do               

rdd.sample(False, 0.1) ​ to obtain a sample without replacement of size 10 %.  

● Feel free to use the template below to solve the assignment. 

  

7 Do not use SparkSQL 



 

Template 

from __future__ import division  
from math import radians, cos, sin, asin, sqrt, exp  
from datetime import datetime  
from pyspark import SparkContext  
 
sc = SparkContext(appName="lab_kernel")  
 
def haversine(lon1, lat1, lon2, lat2):  

""" 
Calculate the great circle distance between two points  
on the earth (specified in decimal degrees)  
""" 
# convert decimal degrees to radians  
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])  
# haversine formula  
dlon = lon2 - lon1  
dlat = lat2 - lat1  
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2  
c = 2 * asin(sqrt(a))  
km = 6367 * c 
return km 

 
h_distance = # Up to you  
h_date = # Up to you  
h_time = # Up to you  
a = 58.4274 # Up to you  
b = 14.826 # Up to you  
date = "2013-07-04" # Up to you  
 
stations = sc.textFile("data/stations.csv")  
temps = sc.textFile("data/temps.csv")  
 
# Your code here  
  


