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Abstract

With the proliferation of ontologies and their use in semantically-enabled applications,
the issue of finding and repairing defects in ontologies has become increasingly im-
portant. Current work mostly targets debugging semantic defects in ontologies. In our
work, we focus on another kind of severe defects, modeling defects, which require do-
main knowledge to detect and resolve. In particular, we debug the missing structural
relations (is-a hierarchy) in a fundamental kind of ontologies, i.e. taxonomies. The con-
text of our study is an ontology network consisting of several taxonomies networked
by partial reference alignments. We use the ontology network as domain knowledge
to detect the missing is-a relations in these ontologies. Wealso propose algorithms to
generate possible repairing actions, rank missing is-a relations, recommend and exe-
cute repairing actions. Further, we discuss an implementedsystem RepOSE and exper-
iments on ontologies of the Ontology Alignment Evaluation Initiative and the Finnish
Ontology Library Service.
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1. Introduction

Developing ontologies is not an easy task and often the resulting ontologies are not
consistent or complete. Such ontologies, although often useful, also lead to problems
when used in semantically-enabled applications. Wrong conclusions may be derived
or valid conclusions may be missed. Semantically-enabled applications require high-
quality ontologies and mappings. A key step towards this is debugging, i.e., detecting
and repairing defects in, the ontologies and their alignment. It has been realized that
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this is an important issue and ontology debugging is currently establishing itself as a
sub-field of ontology engineering with the first workshop on debugging ontologies and
ontology mappings having been held in 2012 [40].

Defects in ontologies can take different forms (e.g. [35]).Syntactic defects are
usually easy to find and to resolve. Defects regarding style include such things as
unintended redundancy. More interesting and severe defects are the modeling defects
which require domain knowledge to detect and resolve, and semantic defects such as
unsatisfiable concepts and inconsistent ontologies. Most work up to date has focused
on detecting and repairing the semantic defects in an ontology (e.g. [35, 34, 33, 54]).
Recent work has also started looking at repairing semantic defects in a set of mapped
ontologies [30, 29] or the mappings between ontologies themselves [44, 63, 52]. In
this work we tackle the problem of repairing modeling defects and in particular, the
repairing of the is-a structure of ontologies.

In addition to its importance for the correct modeling of a domain, the structural in-
formation in ontologies is also important in semantically-enabled applications. For in-
stance, the is-a structure is used in ontology-based searchand annotation. In ontology-
based search, queries are refined and expanded by moving up and down the hierarchy of
concepts. Incomplete structure in ontologies influences the quality of the search results.
As an example, suppose we want to find articles in the MeSH (Medical Subject Head-
ings [45], controlled vocabulary of the National Library ofMedicine, US) Database
of PubMed [51] using the termScleral Diseasesin MeSH. By default the query will
follow the hierarchy of MeSH and include more specific terms for searching, such as
Scleritis. If the relation betweenScleral DiseasesandScleritisis missing in MeSH, we
will miss 738 articles in the search result, which is about 55% of the original result. The
structural information is also important information in ontology engineering research.
For instance, most current ontology alignment systems use structure-based strategies
to find mappings between the terms in different ontologies (e.g. overview in [41]) and
the modeling defects in the structure of the ontologies havean important influence on
the quality of the ontology alignment results [1].

As the ontologies grow in size, it is difficult to ensure the correctness and complete-
ness of the structure of the ontologies. Some structural relations may be missing or
some existing or derivable relations may be unintended. Detecting and resolving these
defects requires, in contrast to semantic defects, the use of domain knowledge. One
interesting kind of domain knowledge is the other ontologies and information about
connections between these ontologies. For instance, in thecase of the Anatomy track in
the 2008 and 2009 Ontology Alignment Evaluation Initiative(OAEI) two ontologies,
Adult Mouse Anatomy Dictionary [3] (MA, 2744 concepts) and the NCI Thesaurus
anatomy [46] (NCI-A, 3304 concepts), and a partial reference alignment (PRA, a set
of correct mappings between the terms of the ontologies) containing 988 mappings are
given. Using one ontology and the mappings as domain knowledge for the other on-
tology (and vice versa), it was shown in [38] that at least 121is-a relations in MA and
83 in NCI-A are missing and should be repaired. This is not an uncommon case. It is
well-known that people that are not expert in knowledge representation often misuse
and confuse equivalence, is-a and part-of (e.g. [10]), which leads to problems in the
structure of the ontologies.

Once the missing is-a relations are found, the structure of the ontology can be
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Figure 1: A part of MA concerning the conceptjoint.

repaired by adding the missing is-a relations themselves, but this is not always the
most interesting solution for a domain expert. For instance, Figure 1 shows a part of
MA regarding the conceptjoint (is-a relations shown with arrows). Using NCI-A and
the PRA as domain knowledge, 7 missing is-a relations are found. The ontology could
be repaired by adding these missing is-a relations themselves. However, for the missing
is-a relation “wrist joint is-a joint”, knowing that there is an is-a relation betweenwrist
joint and limb joint, a domain expert will most likely prefer to add the is-a relation
“ limb joint is-a joint” instead. This is correct from a modeling perspective as well as
more informative and would lead to the fact that the missing is-a relation betweenwrist
joint andjoint can be derived. In this particular case, using “limb joint is-ajoint” would
actually also lead to the repairing of the other 6 missing is-a relations, as well as others
that were not found before (e.g. “hand joint is-a joint”). In general, such a decision
should be made by domain experts.

In this paper, we deal with detecting and repairing the missing is-a structure in
ontologies in the context of domain knowledge represented by the ontology network.
Assuming that the existing is-a relations in the ontologiesare correct, as well as the
mappings in the PRAs, we use them as domain knowledge to detect the missing is-a
relations in these ontologies. We also develop algorithms to generate and recommend
possible ways of repairing, which are relevant for domain experts, as well as algorithms
to rank missing is-a relations and execute the repairing. Further, we develop the system
RepOSE (Repair of OntologicalStructureEnvironment), which allows a domain expert
to debug the missing is-a structure of ontologies in a semi-automatic way.

Before we introduce our work, we note that the ’is-a relation’ is still not well-
understood and/or used. For instance, in [6], an analysis oflinks in semantic networks,
different kinds of is-a were identified including set/superset, generalization/specialization
(based on predicates), ’a kind of’, and conceptual containment (related to lambda-
abstraction). In [31] the authors argue for four kinds of is-a: genus-subsumption,
determinable-subsumption, specification and specialization. For the genus-subsumption
the classes in the is-a relation have monadic qualities by which they can be character-
ized (e.g. classification of trees). Determinable-subsumption deals with qualities and
characterization is based on similarity relations to otherqualities (e.g. scarlet is-a red).
Specification covers things such as ’careful painting’ is-a’painting’ while specializa-
tion covers ’house painting’ is-a ’painting’. In this case multiple inheritance does not
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make sense for all kinds of is-a relations and in many information systems the different
kinds are mixed. The latter is also addressed in [19] where the author discusses the
problem of is-a overloading. Based on the notions of identity, rigidity and dependence,
it is shown that not all is-a relations in existing ontologies make sense. These difficul-
ties are not always recognized by ontology builders, while some may decide to use one
kind of is-a relation. For instance, the Relation Ontology [58] for OBO defined the is-a
relation for OBO ontologies, but is now superseded by RO [53]in which no more defi-
nition for is-a is given, but instead the subclass constructof OWL is used. The work in
this paper is based on logic and we assume that the is-a relation is reflexive, antisym-
metric and transitive. The detection and repairing of missing is-a relations in our work
is based on logical reasoning on the ontologies and their PRAs. Our debugging tool
does not take into account different kinds of is-a relation.Instead, it provides support
for detecting and repairing missing structure that logically follows from decisions that
were made by the developers of the ontologies and the PRAs.

The remainder of this paper is organized as follows. In Section 2 we present the
theory for our debugging approach. The overview of the wholeprocess is given in
Section 3. Section 4 introduces the algorithms for the detection process, while Section
5 explains the algorithms for the repairing process which involves generating repairing
actions, ranking missing is-a relations, recommending andexecuting repairing actions.
Our system RepOSE and its use are described in Section 6. Further, we describe exper-
iments in Section 7 and discuss lessons learned and advantages and limitations of our
approach in Section 8. Related work is presented in Section 9and the paper concludes
in Section 10.

2. Theory

Our approach for debugging missing is-a relations in an ontology network contains
two parts, i.e. detecting and repairing. The former deals with the identification of the
missing is-a relations in the networked ontologies, while the latter deals with repairing
the structure of the ontologies.

2.1. Preliminaries
The setting that we study is the case where the ontologies aredefined using named

concepts and subsumption axioms. Most ontologies contain this case and many of the
most well-known and used ontologies, e.g. in the life sciences, are covered by this
setting.

Definition 1. An ontologyO is represented by a tuple(C, I) with C its set of named
concepts andI ⊆ C × C a representation of its is-a structure.

A PRA between two ontologies contains a set of correct mappings between the
concepts of different ontologies. In this paper we considerequivalent(≡), subsumed-
by (→) and subsumes(←) mappings.1 We assume that concepts can participate in
multiple mappings.

1We note that for a PRA betweenOi andOj , there is a corresponding PRA betweenOj andOi, such
that there is a mappingcircj in the former iff there is a corresponding mappingcjr

-1
ci in the latter, where
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Definition 2. A Partial Reference Alignment (PRA) betweenOi andOj , is repre-
sented by a setPij of pairs representing is-a relations, such that for each mapping in
the PRA withci a concept inOi and cj a concept inOj : ci → cj is represented by
(ci, cj) in Pij ; ci ← cj is represented by(cj , ci); and ci ≡ cj is represented by both
(ci, cj) and(cj , ci).

An ontology network contains ontologies and PRAs between ontologies. The do-
main knowledge of an ontology network is represented by itsinduced ontology.

Definition 3. An ontology network N is a tuple(O, P) with O = {Ok}n
k=1 where

Ok = (Ck, Ik), the set of the ontologies in the network (called the networked ontolo-
gies) andP = {Pij}

n
i,j=1;i<j the set of representations for the PRAs between these

ontologies. Further, theinduced ontology ON for N is an ontologyON = (CN , IN )
such thatCN = ∪n

k=1Ck andIN = ∪n
k=1Ik ∪ ∪n

i,j=1;i<jPij .

In the remainder of the paper we assume that the sets of named concepts for the
different ontologies in the network are disjoint.

2.2. Theory for detecting

Given an ontology network, assuming that all existing is-a relations in the ontolo-
gies are correct, we use the domain knowledge of the ontologynetwork to detect the
missing is-a relations in these networked ontologies. For each ontology in the net-
work, the set of missing is-a relations derivable from the ontology network consists of
is-a relations between two concepts of the ontology, which can be inferred using log-
ical derivation from the induced ontology of the network, but not from the networked
ontology alone.

Definition 4. Given an ontology networkN = (O, P) whereO = {Ok}
n
k=1 and

Ok = (Ck, Ik). Then, the set ofmissing is-a relations for the networked ontology
Ok derivable from the ontology network N , denoted byMk, is the set of is-a rela-
tions{(a, b) ∈ Ck × Ck| ON |= a → b ∧ Ok 6|= a → b}. Further, the set ofmissing
is-a relations for the networked ontologies O derivable from the ontology network
N , denoted byMN , is the set of is-a relations∪n

k=1Mk.

As an example, consider the ontology network in Figure 2. It contains two on-
tologies with their is-a hierarchies (marked by the solid arrows), which are related via
3 mappings with equivalence relations (marked by the dashedlines). According to
the definition above, there are two missing is-a relations derivable from the network,
(ankle joint1, joint1) in ontology 1 and(ankle joint2, limb joint2) in ontology 2
(marked by the dashed arrows). Domain experts may argue thatsome is-a relations,
such as(knee joint1, joint1) and (hip joint2, limb joint2), are also missing is-a
relations. However, these cannot be found using logical derivation within the network

r
-1 denotes the inverse relation ofr. The inverse relation forequivalentis equivalent, andsubsumesand

subsumed-byare each other’s inverse relation.
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and are thus not missing is-a relationsderivablefrom the network as defined in Def-
inition 4. From now on in this paper, whenever missing is-a relations are mentioned,
we mean the missing is-a relations derivable from the network, unless explicitly stated
otherwise.2

Figure 2: An example ontology network.

2.3. Theory for repairing

Our goal for repairing is to repair the original ontologies by adding a set of is-a
relations, called astructural repair, to each ontology such that the missing is-a rela-
tions can be derived from the ontology extended with the newly-added is-a relations.
Therefore, the structural repair only contains is-a relations between concepts within the
same ontology. The elements in a structural repair are called repairing actions.

Definition 5. LetMN = ∪n
k=1Mk be the set of missing is-a relations for an ontology

networkN = (O, P) whereO = {Ok}
n
k=1, Ok = (Ck, Ik) andMk the set of missing

is-a relations forOk derivable fromN . Then, astructural repair for the networked
ontology Ok with respect toMk, denoted byRk, is a set of is-a relations such that
Rk ⊆ Ck × Ck and for each missing is-a relation(a, b) ∈ Mk, (Ck, Ik ∪Rk) |= a →
b. Further, astructural repair for the networked ontologies O with respect toMN ,
denoted byRN , is a set of is-a relations such thatRN = ∪n

k=1Rk, whereRk is a
structural repair forOk with respect toMk.

An immediate consequence of the definition is that, for the networked ontologies,
the set of missing is-a relations is in itself a structural repair. Another consequence is
that adding is-a relations between concepts of any single ontology in the network to a
structural repair for the networked ontologies also constitutes a structural repair.

As mentioned in Section 1, not all structural repairs are equally useful or interest-
ing for a domain expert. Therefore, we define a number of heuristics and preference
relations between structural repairs for the networked ontologies.

Not all repairing actions are always needed in a structural repair. For example, in
the case of Figure 2,{(ankle joint1, joint1), (knee joint1, joint1), (ankle joint2,-
limb joint2)} is a structural repair, but repairing action(knee joint1, joint1) is not

2For an overview of the terminology in this paper regarding ’missing is-a relation’, see Table 19 in the
appendix.
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needed for repairing the missing is-a relations. Therefore, {(ankle joint1, joint1),
(ankle joint2, limb joint2)} which is also a structural repair, is preferred to
{(ankle joint1, joint1), (knee joint1, joint1), (ankle joint2, limb joint2)}. Fur-
ther, as we saw before in relation to the example in Figure 1, it may also happen that
several missing is-a relations can be repaired by the same repairing action. For in-
stance, for a network including the ontology in Figure 1, a structural repair that in-
cludes repairing action(limb joint, joint) would repair both(wrist joint, joint)
and (knee joint, joint). Therefore, in a structural repair that includes both the re-
pairing actions(limb joint, joint) and (knee joint, joint) the latter is redundant
although it does repair a missing is-a relation. The first preference relation that we
define prefers to use structural repairs where every repairing action is needed within
the structural repair. If a subset of a structural repair is also a structural repair, then the
subset is preferred to its superset.

Definition 6. Given an ontology networkN = (O, P), let RN and R′

N be struc-
tural repairs for the networked ontologiesO with respect toMN , thenRN is axiom-
preferred toR′

N (notationRN ≪A R′

N ) iff RN ⊆ R′

N .

The set of missing is-a relations is not always the most interesting structural re-
pair for the domain expert. For instance, in the case of Figure 2, the structural repair
{(limb joint1, joint1), (ankle joint2, limb joint2)} is, for a domain expert, a more
preferred way to repair the ontologies than the structural repair{(ankle joint1, joint1),
(ankle joint2, limb joint2)} which only contains the missing is-a relations. The for-
mer also repairs the ontologies, is correct according to thedomain and is more in-
formative. We define the notion of ’more informative than’ for repairing actions as
follows.

Definition 7. Let (x1, y1) and(x2, y2) be two different repairing actions for the same
ontologyO (i.e. x1 6≡ x2 or y1 6≡ y2), then we say that(x1, y1) is moreinformative
than(x2, y2) iff O |= x2 → x1 ∧ y1 → y2.

This definition implies that if(x1, y1) is more informative than(x2, y2), then adding
(x1, y1) to the ontology will also allow us to derive(x2, y2) (and possibly more). In-
deed, when(x1, y1) is added, then we know that in the extended ontologyx2 → x1

(from (x1, y1) is more informative than(x2, y2)), x1 → y1 (added) andy1 → y2 (from
(x1, y1) is more informative than(x2, y2)), and thusx2 → y2.

By using more informative repairing actions, we are able to add more (and some-
times within the network previously unknown) knowledge to our ontology. For in-
stance, in the case of Figure 2,(limb joint1, joint1) is more informative than(ankle joint1,

joint1), and by addinglimb joint1 → joint1, we have also introducedankle joint1 →
joint1 as well asknee joint1 → joint1 (which was also missing, but could not be
derived from the network).

Another example is that(hinderlimb joint2, wrist joint2) is more informative
than(ankle joint2, limb joint2). Indeed, addinghinderlimb joint2 → wrist joint2

3

3Note that, although this is a possible repairing action, it is not correct according to the domain. See also
our comment immediately after Definition 8.
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to the ontology will lead to the derivation ofankle joint2 → limb joint2.
Our second preference relation is based on this notion.

Definition 8. Given an ontology networkN = (O, P), let RN andR′

N be structural
repairs for the networked ontologiesO with respect toMN . ThenRN is information-
preferred toR′

N (notationRN ≪I R
′

N ) iff ∃ (x1, y1) ∈ RN , (x2, y2) ∈ R′

N : (x1, y1)
is more informative than(x2, y2).

We note, however, that the most preferred structural repairs according to≪I are not
necessarily correct according to the domain. For instance,{(ankle joint1, joint1),
(hinderlimb joint2, wrist joint2)} is more preferred according to≪I than{(ankle -
joint1, joint1), (ankle joint2, limb joint2)}, but the former structural repair con-
tains a repairing action that is not correct according to thedomain (i.e. a hinderlimb
joint is not a wrist joint). Therefore, in contrast to≪A where minimality is desired,
≪I only gives a preference between different structural repairs, but the domain expert
will need to decide on the correctness and essentially will choose the most preferred
structural repairs among the correct ones.

Further, some structural repairs may introduce equivalence relations between con-
cepts in some ontology which are only connected by an is-a relation in the original
ontology. For example, in the case of Figure 2, the structural repair{(bone1, joint1),
(ankle joint2, limb joint2)} will change the original is-a relation(joint1, bone1) in
ontology 1 into an equivalence relation. Although such a structural repair may result
in a consistent ontology, this is usually not desired from a modeling perspective. The
third preference relation prefers not to change is-a relations in an original ontology into
equivalence relations.

Definition 9. Given an ontology networkN = (O, P), letRN = ∪n
k=1Rk andR′

N =
∪n

k=1R
′

k be structural repairs for the networked ontologiesO = {Ok}
n
k=1 with respect

to MN , where for everyk, Ok = (Ck, Ik). ThenRN is strict-hierarchy-preferred to
R′

N (notationRN ≪SH R′

N ) iff ∃Oi ∈ O and (a, b) ∈ Ii : Oi 6|= a ≡ b and (Ci,
Ii ∪Ri) 6|= a ≡ b and (Ci, Ii ∪R′

i) |= a ≡ b.

We note that, according to our definitions, it is possible that one structural repair
is preferred to a second structural repair, while at the sametime the second structural
repair is preferred to the first one. For example, in the case of Figure 2, letR1 be the
structural repair{(limb joint1, joint1), (ankle joint2, limb joint2)} andR2 be the
structural repair{(ankle joint1, joint1), (hinderlimb joint2, limb joint2)}. Then
R1 ≪I R2 andR2 ≪I R1. The first preference is based on the fact that(limb joint1,

joint1) is more informative than(ankle joint1, joint1), while the second preference
is based on the fact that(hinderlimb joint2, limb joint2) is more informative than
(ankle joint2, limb joint2). In this case it is, however, possible to find a third struc-
tural repair, e.g{(limb joint1, joint1), (hinderlimb joint2, limb joint2)}, that is
strictly more information-preferred than both.

As explained in [14],≪A is one way to capture Occam’s razor. Another way to
introduce a notion of simplicity of the solutions is the following heuristic ofsingle
relations. We assume that it is more likely that the ontology developers have missed
to add single is-a relations, rather than a chain of is-a relations. For instance, it is
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more likely that(ankle joint2, limb joint2) is missing than(ankle joint2, x1) and
(x1, x2), and ... and(xk, limb joint2).

3. Overview of the approach

Figure 3: Approach for debugging missing is-a structure in ontologies networked by PRAs.

In this section, we give an overview of our debugging approach. As illustrated in
Figure 3, the process consists of 5 phases (of which phases 3 and 4 are optional) and is
driven by a domain expert. The input is a set of ontologies networked by a set of PRAs.

The user4 starts with detecting missing is-a relations for all the networked ontolo-
gies(Phase 1). The algorithm for detecting missing is-a relations is described in Sec-
tion 4.

A naive way of repairing would be to compute all possible structural repairs for
the networked ontologies. This is in practice infeasible asit involves all the ontologies
and all the missing is-a relations in the network. It is also hard for domain experts to
choose between structural repairs containing large sets ofrepairing actions for all the
ontologies at once. Therefore, in our approach, we repair ontologies one at a time.
After one ontology is chosen for repairing, we generate a setof possible repairing
actions for each missing is-a relation in the chosen ontology (Phase 2)so that the user
can repair the missing is-a relations one by one. The algorithm for generating possible
repairing actions takes into account the preferences defined in Section 2.3. In general,
there will be many missing is-a relations that need to be repaired and some of them
may be easier to start with such as the ones with fewer repairing actions. Therefore,

4As for most ontology engineering tools, our aim is that a domainexpert with ontology engineering
expertise can use tools based on our approach without much introduction. Otherwise, an ontology engineer
may assist a domain expert (or vice versa). The domain expert needs to make the final decisions on the
repairing, while the ontology engineer may help with understanding is-a (e.g. as opposed to part-of) and
understanding the consequences of the repairing. In work for the Swedish National Food Agency [26] the
domain expert had some expertise in ontology engineering and few help from us was needed.
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as an extra aid, we rank them with respect to the number of possible repairing actions
(Phase 3).

After this, the user can select a missing is-a relation to repair and choose between
possible repairing actions. As an option, to facilitate this process, the user can ask for
recommendations for repairing actions. We developed a method that recommends the
most informative repairing actions supported by domain knowledge(Phase 4). Once
the user chooses a repairing action to execute, the chosen repairing action is then added
to the ontology and the consequences are computed(Phase 5). Some missing is-a
relations may be repaired by the executed repairing action.Some missing is-a relations
may have their repairing actions changed. Further, some newmissing is-a relations
may be found.

At any time during the process, the user can switch to anotherontology or start
earlier phases.

4. Detecting the missing is-a relations

The missing is-a relations derivable from the network couldbe found by checking
the is-a relations between all concepts in every single ontology. If an is-a relation is
not derivable from the ontology but derivable from the network, it is a missing is-a
relation. However, some of these missing is-a relations areredundant in the sense
that they can be repaired by the repairing of other missing is-a relations. It can be
shown that only the missing is-a relations whose concepts appear in the mappings of
the PRAs are necessary for repairing. (As a shorthand, we call the concepts appearing
in the mappings of the PRAsPRA concepts.)

Proposition 1. For each missing is-a relation in the network, there must exist a missing
is-a relation whose concepts are PRA concepts, such that therepairing of the latter also
repairs the former.

PROOF. Suppose in an ontology networkN as defined in Definition 3, there is a miss-
ing is-a relation(a, b) in an ontologyO. According to Definition 4, the relationa → b

is not derivable fromO but derivable from the ontology network. So, there must exist
at least one concept from another ontology in the network, for instancez, such that
ON |= a → z → b. Because conceptsa andz reside in different ontologies, the
relationa → z must be supported by a mapping between a concept inO and a con-
cept in another ontology in the network, for instancex → x′ (or x ≡ x′), satisfying
ON |= a → x → x′ → z, wherex is a PRA concept in ontologyO. Likewise, for
conceptsz andb, the relationz → b must also be supported by a mapping between a
concept inO and a concept in another ontology in the network, for instancey′ → y (or
y′ ≡ y), satisfyingON |= z → y′ → y → b, wherey is a PRA concept in ontology
O. We can then deduce thatx → y is derivable from the ontology network because
ON |= a → x → x′ → z → y′ → y → b. Sincea → b is not inferrable fromO,
the relationx → y can not be inferred fromO either. This means that(x, y) is also
a missing is-a relation in the network, and the repairing of missing is-a relation(x, y)
also repairs(a, b). ♣
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Based on Proposition 1, repairing the missing is-a relations between PRA con-
cepts also repairs all other missing is-a relations derivable from the ontology network.
Therefore, our algorithm in Figure 4 considers only missingis-a relations between PRA
concepts.

Input
The ontology networkN = (O, P), the induced ontologyON ,
the set of missing is-a relationsMN , the set of is-a relations to checkM⋆

N .
Output
The updated set of missing is-a relationsMN ,
the updated set of is-a relations to checkM⋆

N .
Algorithm
For each ontologyO ∈ O whereO = (C, I):

For every(a, b) ∈ M⋆
N anda, b ∈ C:

If O |= a → b then remove(a, b) fromM⋆
N ;

If O 6|= a → b andON |= a → b then:
Add (a, b) as a missing is-a relation toMN ;
Remove(a, b) fromM⋆

N .

Figure 4: Algorithm for detecting missing is-a relations.

In the algorithm in Figure 4, the global variableMN represents the set of missing
is-a relations. Before the algorithm is run for the first time, MN is initialized to be the
empty set. The global variableM⋆

N represents the set of is-relations which we need to
check to find missing is-a relations in the networked ontologies. Before the algorithm
is run for the first time,M⋆

N is initialized to be the set of pairs(a, b) wherea andb

are PRA concepts in the same ontology. For each element(a, b) in M⋆
N we then check

whethera → b can be derived in the ontology to whicha andb belong. If so, then this
is not a missing is-a relation and(a, b) is removed fromM⋆

N . Otherwise, we check
whethera → b can be derived from the network. If so, then it is a missing is-a relation
and we add(a, b) to MN , and remove it fromM⋆

N . Otherwise,a → b can neither
be derived from the ontology nor from the network. It then remains inM⋆

N as it may
become derivable later when we have repaired part of the network. As all pairs of PRA
concepts are checked, our algorithm ensures that all missing is-a relations between
PRA concepts that can be derived from the current network will be found.

After the missing is-a relations are found, they will be repaired in later phases of the
debugging process and this will bring changes to the is-a structures of the repaired on-
tologies and the induced ontology. Therefore, it is possible that some new is-a relations
become derivable from the network and thus generate new missing is-a relations. For
example, in the case of Figure 2, suppose we repair(ankle joint1, joint1) by adding
the is-a relation(limb joint1, joint1) in ontology 1. Then, when re-running the de-
tection algorithm, we find a new missing is-a relation(limb joint2, joint2), since
(limb joint2, joint2) has now become inferrable from the induced ontology and it is
still not inferrable from ontology 2. Therefore, after executing repairing actions, we
need to re-run the detection algorithm to find new missing is-a relations. The initial
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value ofM⋆
N when re-running the detection algorithm is the same as the final value of

M⋆
N in the previous run. This is because we do not change the mappings between the

ontologies when repairing. Therefore, the set of PRA concepts does not change and
thus there are no additions toM⋆

N .

5. Repairing the missing is-a relations

As explained in Section 3, our approach deals with the networked ontologies one at
a time. For the ontology under repair, possible repairing actions are generated for all its
missing is-a relations. After ranking these missing is-a relations, the user can select a
missing is-a relation to repair, and we provide an algorithmthat recommends repairing
actions. Further, we developed an algorithm that, upon the repairing of a missing is-a
relation, detects for which missing is-a relations the set of repairing actions needs to be
updated, and updates these.

5.1. Generating repairing actions

5.1.1. Basic algorithm
In our basic algorithm (see Figure 5), when generating repairing actions for a miss-

ing is-a relation, we take into consideration that all missing is-a relations will be re-
paired (least informative repairing action), but we do not take into account the conse-
quences of the actual (possibly more informative) repairing actions that will be per-
formed for other missing is-a relations.

Input
The ontology under repairO, its set of missing is-a relationsM.
Output
Repairing actions.
Algorithm
1. Initialize KB with ontology;
2. For every missing is-a relation(a, b) ∈ M: add the axioma → b to the KB;
3. For each(a, b) ∈ M:

Source(a, b) := super-concepts(a) − super-concepts(b);
Target(a, b) := sub-concepts(b) − sub-concepts(a);

4. Missing is-a relation(a, b) can be repaired by choosing
an element fromSource(a, b) × Target(a, b).

Figure 5: Basic algorithm for generating repairing actions.

In this algorithm, we store the ontology in a knowledge base and add the missing
is-a relations. As we know that these missing is-a relationsare derivable from the
network, adding them will introduce the desired connections. It guarantees that, for the
ontology under repair, all inferrable is-a relations between its concepts in the network
will also become inferrable from the ontology. Essentially, this conforms to a structural
repair containing the least informative repairing actionsfor each of the missing is-a
relations in the ontology. Then, for each missing is-a relation, we generate its possible
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repairing actions by computing two sets of concepts, calledSource and Target sets. A
possible repairing action regarding missing is-a relation(a, b) is an is-a relation(s, t)
wheres is an element from its Source set andt is an element from its Target set.

The algorithm computes repairing actions for each of the missing is-a relations.
Structural repairs can be constructed by selecting one repairing action per missing
is-a relation (and this conforms to the single relation heuristic in Section 2.3). The
computation of Source and Target sets ensures that an element from Source(a, b) ×
Target(a, b) repairs missing is-a relation(a, b).5 Therefore, a set consisting of one
element fromSource(a, b) × Target(a, b) for each missing is-a relation(a, b) is a
structural repair. The algorithm terminates as we assume that there are a finite number
of concepts in the ontologies and the computation of the Source and Target sets is based
on computing super-concepts and sub-concepts in a finite taxonomy.

Further, every repairing action in such a structural repairrepairs at least one miss-
ing is-a relation (preference≪A in Definition 6). We note, however, that these may
not always be the most preferred structural repairs according to≪A. It may happen
that a repairing action selected for a missing is-a relationalso repairs several other
missing is-a relations. Therefore, the repairing actions related to these other missing
is-a relations are redundant and when these repairing actions are removed from the
structural repair, we have a structural repair that is more preferred according to≪A

than the original structural repair. The algorithm could easily be adapted to construct
these most preferred structural repairs by for every structural repair generated by the
algorithm, checking whether the subsets are still structural repairs and taking the min-
imal subsets. This is an expensive step and in our implemented system, we have not
implemented this. However, as we repair one missing is-a relation at the time in our
implemented system (Section 6), this is not a problem in practice. When a repairing
action repairs several missing is-a relations, then all repaired missing is-a relations will
be marked as repaired and will not be considered further.

Every possible repairing action(s, t) computed by the algorithm satisfiesa → s

andt → b. This means that for every missing is-a relation(a, b) the selected repairing
action fromSource(a, b) × Target(a, b) in the structural repair is(a, b) itself or a
repairing action that is more informative than(a, b). Thus, the generated structural
repairs are the set of missing is-a relations itself as well as structural repairs that are
more preferred according to≪I (Definition 8) than the set of missing is-a relations.
We note that the algorithm does not only compute the most preferred structural repairs
according to≪I . As explained in Section 2.3, although in general, we prefermore
informative repairing actions, these should still be validated by a domain expert. When
a domain expert rejects a more informative repairing actionfor a missing is-a relation,
a less informative will still repair the missing is-a relation. For instance, the least
informative repairing action that will repair a missing is-a relation is the missing is-a
relation itself.

Further, it is guaranteed that for missing is-relation(a, b) repairing actions of the
form (a, t) or (s, b) do not introduce new equivalence relations, where in the source

5Observe that we consider that all missing is-a relations willbe repaired, and it is under this consideration
that it is guaranteed that the repairing action repairs the missing is-a relation.
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ontology6 we have only is-a relations (preference≪SH in Definition 9). Let us prove
this for repairing actions of the form(a, t). Assume a new equivalence relation has
been introduced by(a, t) where previously there was only an is-a relation. This means
that there exist au andv such thatu → v in the source ontology and after adding
a → t, we now also havev → u. As addinga → t leads tov → u, we have thatv → a

andt → u in the source ontology. This would mean that in the source ontology t → u,
u → v andv → a, and thust → a. However, this would maket a sub-concept ofa
in the source ontology and thus, according to the algorithm,t could not have been in
the Target set for(a, b). This yields a contradiction and thus(a, t) does not introduce
new equivalence relations. Similar reasoning leads to the fact that repairing actions
of the form(s, b) do not introduce new equivalence relations. We note, however, that
a choice of repairing action(s, t) wheret → s in the source ontology, will lead to
the introduction of equivalence relations. It is easy to adapt the algorithm in step 4
to check this for each chosen repairing action. In the implemented system (Section
6) we have not implemented this to make the visualization ofall generated repairing
actions for a missing is-a relation at the same time (using Source and Target sets) as
simple as possible. However, when a user selects a repairingaction we check whether
an equivalence is introduced and in such case a notification is given to the user.

Figure 6: Generating repairing actions - Example 1 - Ontologyand missing is-a relations.

Figure 7: Generating repairing actions - Example 1 - Source and Target sets for (5,4) and (3.2).

As an example, consider the case presented in Figure 6, whereO = (C, I) is
an ontology with conceptsC = {1, 2, 3, 4, 5, 6, 7} and is-a relations (shown in full
lines in Figure 6)I = {(7, 5), (7, 6), (5, 3), (2, 1), (6, 4), (4, 1)}. (I represents the is-a
hierarchy and thus also all is-a relations derived from the elements inI.) The set of
missing is-a relations (shown in dashed lines in Figure 6) isM = {(5, 4), (3, 2)}. The
algorithm then generates the following Source and Target sets.

Source(5, 4) = {5, 3, 2, 1, 4} − {4, 1} = {5, 3, 2}

6with missing is-a relations added.
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Target(5, 4) = {4, 6, 7, 5} − {5, 7} = {4, 6}
Source(3, 2) = {3, 2, 1} − {2, 1} = {3}
Target(3, 2) = {2, 3, 5, 7} − {3, 5, 7} = {2}

These sets are visualized in Figure 7. On the left hand side ofFigure 7 the Source and
Target sets are shown for missing is-a relation (5,4) and on the right hand side we have
the Source and Target sets for the missing is-a relation (3,2). The missing is-a relation
under consideration is highlighted in bold. Elements in a Source set are annotated with
’s’, while elements in a Target set are annotated with ’t’. For missing is-a relation
(3, 2) the only generated repairing action is(3, 2). For missing is-a relation(5, 4) any
of the repairing actions(5, 4), (5, 6), (3, 4), (3, 6), (2, 4), (2, 6) together with (any of)
the generated repairing action(s) for(3, 2) leads to the derivation of the missing is-
a relation(5, 4) in the extended ontology. The example also shows the importance of
initially adding the missing is-a relations to the knowledge base. The possible repairing
action(2, 4) for missing is-a relation(5, 4) would not be generated when we do not take
into account that missing is-a relation(3, 2) will be repaired.7 Further, the example also
shows that we do not introduce repairing actions that would turn is-a relations in the
original ontology into equivalence relations. For instance, adding(1, 4) would lead to
the fact that missing is-a relation(5, 4) would be derivable in the extended ontology,
but also leads to making1 and4 equivalent.

Input
The ontology under repairO, its set of missing is-a relationsM.
Output
Repairing actions.
Algorithm
1. Initialize KB with ontology ;
2. For every missing is-a relation(a, b) ∈ M:

Create two new conceptsx andy in the KB;
Add the axiomsa → x, x → y, y → b to the KB;

3. For each(a, b) ∈ M:
Source-ext(a, b) := super-concepts(a) − super-concepts(x);
Target-ext(a, b) := sub-concepts(b) − sub-concepts(y);

4. Missing is-a relation(a, b) can be repaired by choosing an original ontology element
from Source-ext(a, b) and an original ontology element fromTarget-ext(a, b).

Figure 8: Extended algorithm for generating repairing actions.

7So this means that repairing one is-a relation may influence therepairing actions for other missing is-a
relations. However, whengeneratingrepairing actions in the algorithm in Figure 5 the only influence that
is taken into consideration is the fact that missing is-a relations are or will be repaired (least informative
repairing action), but not the actual (possibly more informative) repairing actions that will be performed.
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5.1.2. Extended algorithm
Our extended algorithm (see Figure 8) for finding repairing actions for a particular

missing is-a relation takes into account influences of othermissing is-a relations that are
valid for all possible choices for repairing actions for theother missing is-a relations.
Before computing the Source and Target sets, we introduce two new conceptsx andy

for each missing is-a relation(a, b) in the knowledge base as well as the axiomsa → x,
x → y, y → b. (x, y) satisfies the requirements that each possible repairing action for
(a, b) should satisfy. As they are new concepts in the knowledge base, the properties
and relations ofx, respectivelyy, to other concepts in the knowledge base represent the
properties and relations that are common to the Source concepts, respectively Target
concepts, of the possible repairing actions for(a, b). The Source and Target sets are
now computed relative to thex andy.

Consider the case presented in Figure 9, whereO = (C, I) is an ontology with con-
ceptsC = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and is-a relations (shown in full lines in Figure
9) I = {(7, 6), (6, 5), (5, 2), (2, 1), (7, 4), (10, 4), (10, 9), (9, 8), (8, 3), (3, 1), (4, 1)}.
(As before,I represents the is-a hierarchy and thus also all is-a relations derived from
the elements inI.) The set of missing is-a relations (shown in dashed lines inFigure
9) isM = {(5, 4), (8, 4)}.

Figure 9: Generating repairing actions - Example 2 - Ontologyand missing is-a relations.

Figure 10: Generating repairing actions - Example 2 - Source and Target sets for (5,4) and (8,4).

The basic algorithm in Figure 5 generates the following Source and Target sets.
Source(5, 4) = {5, 4, 1, 2} − {4, 1} = {5, 2}
Target(5, 4) = {4, 8, 9, 10, 5, 6, 7} − {5, 6, 7} = {4, 8, 9, 10}
Source(8, 4) = {8, 4, 1, 3} − {4, 1} = {8, 3}
Target(8, 4) = {4, 8, 9, 10, 5, 6, 7} − {8, 9, 10} = {4, 5, 6, 7}

The extended algorithm in Figure 8 adds the conceptsx1, y1, x2, y2 and the is-a rela-
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tions5 → x1, x1 → y1, y1 → 4, 8 → x2, x2 → y2 andy2 → 4 (shown in dotted lines
in Figure 9) in the knowledge base. It then generates the following Source and Target
sets (Figure 10).

Source-ext(5, 4) = {5, 4, 1, 2, x1, y1} − {4, 1, x1, y1} = {5, 2}
Target-ext(5, 4) = {4, 8, 9, 10, 5, 6, 7, x1, y1, x2, y2} − {5, 6, 7, x1, y1}

= {4, 8, 9, 10, x2, y2}
Source-ext(8, 4) = {8, 4, 1, 3, x2, y2} − {4, 1, x2, y2} = {8, 3}
Target-ext(8, 4) = {4, 8, 9, 10, 5, 6, 7, x1, y1, x2, y2} − {8, 9, 10, x2, y2}

= {4, 5, 6, 7, x1, y1}
The sets generated by the extended algorithm indicate that there is an influence be-
tween the two missing is-a relations. Indeed, when a choice is made for repairing
the first missing is-a relation, we have essentially added equivalence relations between
x1, respectivelyy1, and concepts in the ontology. The appearance ofx1 andy1 in
the Target-ext set for the second missing is-a relation indicates that the concept cho-
sen to be equivalent tox1 (and all concepts between this concept and5) are now also
candidates for the Target-ext for the second missing is-a relation. For example, when
choosing(2, 4) as a repairing action for missing is-a relation(5, 4) then (3, 2) is a
possible repairing action for missing is-a relation(8, 4).

Similarly to the basic algorithm, the proposed repairing actions for a missing is-a
relation(a, b) all lead to the derivation of(a, b) in the extended ontology. In general,
a user may repair the ontology by choosing for each missing is-a relation(a, b) an
original ontology element fromSource-ext(a, b) and an original ontology element
from Target-ext(a, b). However, as the algorithm only takes into account influences
that are common to all possible choices for repairing actions, a user may want to repair
one missing is-a relation and recompute repairing actions for the other missing is-a
relations.

5.2. Ranking repairing actions
In general, there may be many missing is-a relations that need to be repaired. Al-

though it is possible to repair the missing is-a relations inany order, some orders may
be more important or make it easier for the user. For instance, it may be important to
first repair is-a structure in the top level of the ontology, or it may be easiest to deal
with the missing is-a relations with the fewest repairing choices. In this paper we use a
ranking algorithm that allows the user to start with the is-arelations where there are the
fewest choices. These are usually easiest to visualize and resolve. Therefore, our rank-
ing algorithm ranks the missing is-a relations according tothe number of their possible
repairing actions. For a missing is-a relation, this is calculated as the product of the
Source set size and Target set size for the basic algorithm. For the extended algorithm,
it is calculated in the same manner but without counting the extra-added new concepts.
The user can choose to use the ranking or ignore it.

5.3. Recommending repairing actions
For a missing is-a relation under repair, there may be many possible repairing ac-

tions to choose from. Therefore, as an option, the user can ask for recommendations
for repairing actions. We developed an algorithm that recommends the most informa-
tive repairing actions (see Definition 7) that are supportedby some external domain
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Input:
The ontologyO and the missing is-a relation(a, b) under repair,
Source(a, b) andTarget(a, b) computed by the basic algorithm.
Output
Recommended repairing actions.
Algorithm
Global Variable visited: stores already processed repairing actions.
Global Variable recommended: stores recommended repairing actions.
1. Setvisited = {(a, b)};
2. Setrecommended = {(a, b)};
3. SetXe = {xe : xe ∈ Source(a, b)

∧
∀x ∈ Source(a, b): if xe → x thenx = xe};

4. SetYe = {ye : ye ∈ Target(a, b)
∧

∀ y ∈ Target(a, b): if y → ye theny = ye};
5. For each pair(xe, ye) ∈ Xe × Ye: call FindRec(xe, ye);
6. Returnrecommended;
Function FindRec(concept x, concept y)
i. If (x, y) ∈ visited then return;
ii. Add (x, y) to visited;
iii. If ∃ (xr, yr) ∈ recommended: x → xr ∧ yr → y then return;
iv. If x is a sub-concept ofy according to the domain knowledge, then

Remove all(xr, yr) from recommended for whichxr → x andy → yr;
Add (x, y) to recommended;

else
Let Ysup be the set of direct super-concepts ofy;
For eachys ∈ Ysup ∩ Target(a, b): call FindRec(x, ys);
Let Xsub be the set of direct sub-concepts ofx;
For eachxs ∈ Xsub ∩ Source(a, b): call FindRec(xs, y);

Figure 11: Algorithm for recommending repairing actions.

knowledge. We assume that there is domain knowledge which wecan query regarding
subsumption between concepts. There are several such sources such as general the-
sauri (e.g. WordNet) or specialized domain-specific sources (e.g. the Unified Medical
Language System).

Essentially, the recommendation algorithm selects, amongthe structural repairs
computed by the algorithm that generates repairing actions(Section 5.1), the structural
repairs that contain the most informative repairing actions (preference≪I in Definition
8) that are also supported by domain knowledge. The user can choose to accept the
recommendations or not.

In our algorithm (see Figure 11) we generate recommended repairing actions for
a missing is-a relation starting from the Source and Target sets generated by the algo-
rithm in Figure 58. The algorithm selects the most informative repairing actions that are

8We have also extended the algorithm in Figure 11 to deal with Source-ext and Target-ext sets derived by
the algorithm in Figure 8.
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supported by evidence in the domain knowledge. The variablevisited keeps track of
already processed repairing actions. The variablerecommended stores recommended
repairing actions at each step and its final value is returnedas output. It is initialized
with the repairing action from the missing is-a relation itself. This is the least informa-
tive repairing action which is ensured to be correct. Steps 3and 4 compute the setXe

of maximal elements with respect to the is-a relation in the Source set and the setYe of
minimal elements with respect to the is-a relation in the Target set. The elements from
Xe × Ye are then the most informative repairing actions. For each ofthese elements
(x, y) we check whether there is support in the domain knowledge in step 5. Steps i and
ii in the functionFindRec do bookkeeping regarding the already processed repairing
actions. Step iii assures that we do not recommend is-a relations that are less informa-
tive than others already recommended. In step iv we check whether there is support
in the domain knowledge for the repairing action. If so, thenthe repairing action is
recommended and all less informative repairing actions areremoved from the recom-
mendation set. If not, then we check whether there is supportin the domain knowledge
for the repairing actions that are less informative than(x, y). Among these we start
with the most informative repairing actions.

5.4. Executing repairing actions

For a missing is-a relation under repair, the user selects from the generated repairing
actions, possibly based on a recommendation, a repairing action to repair the missing
is-a relation. We note that, whenever the user selects a moreinformative repairing
action than the missing is-a relation itself, we have actually also detected a missing
is-a relation (i.e. the more informative repairing action)that could not be derived from
the ontology network. When a user executes a repairing actionfor a particular missing
is-a relation, it may influence the set of possible repairingactions for other missing is-a
relations. Therefore, the repairing actions for the other missing is-a relations need to
be recomputed based on the ontology extended with the chosenrepairing action.

Figure 12: Updating repairing actions - Example 2 - Ontology,missing is-a relations and Source and Target
sets for (8,4); before and after repairing missing is-a relation (5,4) using repairing action (2,9).

For instance, Figure 12 shows on the left hand side the original situation of the
example in Figure 9, and on the right hand side the new situation after having repaired
missing is-a relation(5, 4) using repairing action(2, 9) (shown in thick line). In this
case the Source and Target sets for missing is-a relation(8, 4) become the following
for the basic algorithm:

Source(8, 4) = {8, 4, 1, 3} − {4, 1} = {8, 3}
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Target(8, 4) = {4, 8, 9, 10, 2, 5, 6, 7} − {8, 9, 10, 2, 5, 6, 7} = {4}
and the following for the extended algorithm:

Source-ext(8, 4) = {8, 4, 1, 3, x2, y2} − {4, 1, x2, y2} = {8, 3}
Target-ext(8, 4) = {4, 8, 9, 10, 2, 5, 6, 7, x2, y2} − {8, 9, 10, 2, 5, 6, 7, x2, y2}

= {4}
When we compare the computed repairing actions after the choice of(2, 9) for repair-
ing (5, 4) with the repairing actions computed before the choice (see Section 5.1), we
note that the repairing actions that introduce equivalencerelations (e.g.(3, 5), (3, 6),
(3, 7), (8, 5), (8, 6) and(8, 7) for the basic algorithm) are removed after the choice of
(2, 9) (preference≪SH in Definition 9). However, before(2, 9) is chosen these repair-
ing actions do not necessarily introduce equivalence relations. For instance, we could
have repaired(8, 4) first using one of these repairing actions, and afterwards repaired
(5, 4).

Input
The ontology under repairO, the repaired missing is-a relation(ar, br), the repairing
action(xr, yr) taken for(ar, br), the set of non-repaired missing relationsMr.
Output
Updated Source and Target sets.
Algorithm
1. Add(xr, yr) to the KB;
2. For each missing is-a relation(a, b) ∈ Mr:

If a → xr then recompute super-concepts(a);
If b → xr then recompute super-concepts(b);
If a → xr or b → xr thenSource(a, b) := super-concepts(a) − super-concepts(b);
If yr → a then recompute sub-concepts(a);
If yr → b then recompute sub-concepts(b);
If yr → a or yr → b thenTarget(a, b) := sub-concepts(b) − sub-concepts(a);

Figure 13: Algorithm for updating Source and Target sets.

For small ontologies, computing the repairing actions doesnot take much time and
the approach is feasible in a real setting. For large ontologies the computation time
may not be small enough to guarantee immediate updates in an implemented tool for
repairing. Therefore, in the algorithm9 in Figure 13 we introduced a way to keep track
of the influences between different missing is-a relations.The missing is-a relations
for which the Source or Target sets can change are the missingis-a relations for which
at least one of the concepts is a sub-concept or super-concept of at least one of the
concepts in the chosen repairing action for the repaired missing is-a relation. We only
update the Source and Target sets for these missing is-a relations. In addition, we
also remove the other missing is-a relations that have been repaired by the current
repairing action. This is essentially updating the global variableMN as described in

9Like the algorithm in Figure 11, this algorithm is applicable for cases using the basic algorithm. We also
have a version with similar strategy for when we use the extended algorithm.
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the detection algorithm in Figure 4.

6. Implemented System

We implemented a system RepOSE (Repair of OntologicalStructureEnvironment)
in Java based on our approach described in the previous section. We use a framework
and reasoner provided by Jena (version 2.5.7) [28]. Here, weshow its use using pieces
of MA and NCI-A regarding the conceptjoint, as well as a PRA with 8 equivalence
mappings.

Figure 14: User interface of RepOSE.

As input our system takes a set of ontologies in OWL format as well as a set of
PRAs in RDF format. The ontologies and PRAs can be imported using theLoad On-
tologies and PRAsbutton. The user can see the list of ontologies in theOntologies
menu (see Figure 14). Once theDetect Missing IS-A Relationsbutton is clicked, miss-
ing is-a relations are detected in all ontologies. Then, theuser can select an ontology to
repair, and theMissing IS-A Relationsmenu shows the missing is-a relations of the cur-
rently selected ontology. In this case the ontologyjoint mouseanatomy.owlis selected
and it contains 7 missing is-a relations (same as the case in Figure 1).

21



Clicking on theGenerate Repairing Actionsbutton, results in the computation of
repairing actions for the missing is-a relations of the ontology under repair, which is
preceded by a two-stage preprocessing step. During the preprocessing, one stage is to
identify and repair the missing is-a relations which are actually equivalence relations.
This refers to cases where in the original ontology there is an is-a relationa → b,
and according to the networkb → a is missing, as well as cases where botha → b

andb → a are missing according to the network. As the structure in theontologies
and the mappings are assumed to be correct, this means thata andb are equivalent.
These missing is-a relations are therefore immediately repaired by adding them to the
ontology and essentially introducing an equivalence between the concepts. The other
stage is to identify and remove the redundant missing is-a relations which are derivable
from the ontology extended with other missing is-a relations. After preprocessing,
repairing actions for each missing is-a relation are computed and presented as Source
and Target sets. The selection of theuseExtendedAlgcheckbox makes the computation
use our extended algorithm, otherwise our basic algorithm is used.

Once the Source and Target sets are computed, the missing is-a relations are ranked
with respect to the number of possible repairing actions. The first missing is-a relation
in the list has the fewest possible repairing actions, and may therefore be a good starting
point. When the user chooses a missing is-a relation, the Source and Target sets for the
repairing actions are shown in the panels on the left and the right, respectively (as
shown in Figure 14). Both these panels have zoom control and could be opened in
a separate window by double clicking. The concepts in the missing is-a relation are
highlighted in red. In this case, the repairing actions of the missing is-a relations are
generated using the basic algorithm. The selection of the missing is-a relation “wrist
joint is-a joint” displays its Source and Target sets in the panels. They contain 3 and
26 concepts respectively.

For the selected missing is-a relation, the user can also askfor recommended re-
pairing actions by clicking theRecommend Repairing Actionsbutton. For the query of
domain knowledge, we currently implemented two methods. The first method is based
on WordNet, making use of the WordNet senses and hypernym relations to verify the
subsumption relation between concepts. The second one is based on UMLS Knowl-
edge Source Server, checking whether one concept is defined as an ancestor of another
in UMLS Metathesaurus. On the interface, the two checkboxesallow the user to spec-
ify the external domain knowledge used for generating recommendations. In our case,
the system usesWordNetand recommends to add an is-a relation betweenlimb joint
and joint. In general, the system presents a list of recommendations.By selecting an
element in the list, the concepts in the recommended repairing action are identified by
round boxes in the panels. The user can repair the missing is-a relation by selecting
a concept in the Source panel and a concept in the Target paneland clicking on the
Repairbutton. The repairing action is then added to the ontology, and other missing
is-a relations are updated, as well as the set of missing is-arelations of every ontology
in the network.

At all times during the process the user can inspect the ontology under repair by
clicking theShow Ontologybutton. The is-a structure of the repaired ontology will be
shown in a separate window with newly added is-a relations being highlighted. The
user can save the repaired ontology into an OWL file by clickingthe Savebutton,
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or select another ontology to repair. At all times the user can also switch to another
ontology in the network. The whole debugging process runs semi-automatically until
no more missing is-a relations are found or unrepaired in thenetwork.

7. Experiments

In this section, we present experiments using our debuggingapproach. We use dif-
ferent cases for which we run complete debugging sessions. In the ’OAEI Anatomy’
experiments we debug a network in the biomedical domain consisting of the two anatomy
ontologies and a PRA in the OAEI Anatomy track. We use both thebasic and extended
algorithms for the generation of repairing actions. In the ’OAEI Bibliography’ exper-
iments we use 5 ontologies of the OAEI Benchmark track with four PRAs. We run
debugging sessions on the full network of 5 ontologies and 4 PRAs, as well as on sub-
networks consisting of 2 ontologies and 1 PRA. In the ’ONKI’ experiment we debug
two ontologies from the Finnish Ontology Library Service ONKI, a maritime ontology
and an ontology which is an integrated ontology based on several core ontologies and
domain extensions, and a PRA.

The experiments for OAEI Anatomy and OAEI Bibliography wereperformed on
an AMD Dual Core Processor 2.90GHZ desktop machine with 4 GB DDR2 memory
under Windows Vista Business operating system (SP2) and Java 1.6 compiler. The
ONKI experiment was run on an Intel Xeon Processor 3.46Ghz server with 12 GB
DDR3 memory under Debian 6.0.6 and Java 1.6 compiler.

7.1. OAEI Anatomy

In the OAEI Anatomy experiments we debug a network consisting of the two on-
tologies and the PRA from the 2008 Anatomy track in OAEI. As described before, the
two ontologies, MA and NCI-A, contain 2744 and 3304 conceptsrespectively, while
the PRA between them contains 988 equivalence mappings (seeTable 1). Our debug-
ging leads to the detection of 205 missing is-a relations in MA and 177 in NCI-A.
These were repaired by the addition of 101 is-a relations in MA and 87 in NCI-A.

number of PRA - total PRA - equivalence PRA - subsumption
concepts mappings mappings mappings

MA 2744 - - -
NCI-A 3304 - - -

- 988 988 0

Table 1: Anatomy ontologies network.

The test runs for this experiment were done by the authors. Aswe are not domain
experts for this experiment, we have used [15] to decide on possible choices and used
the recommendation algorithm.
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7.1.1. Run with basic algorithm for generation of repairingactions
The total debugging session took about 3 hours. This includes the computation

by RepOSE, the user interaction with RepOSE as well as the looking up of domain
knowledge by the user.

As a first step in the session the two ontologies and the PRA were loaded. Then
the detection algorithm was run. This took about 2 minutes. As a result we found 199
missing is-a relations in MA and 167 in NCI-A. This is shown inTable 2 where the col-
umn ’total’ shows the total number of detected missing is-a relations during the whole
debugging session and in parentheses the number of initially detected missing is-a rela-
tions. As discussed before, all these missing is-a relations are between PRA concepts.
A further check shows that some missing is-a relations are actually equivalence rela-
tions (column ’equivalence’), and some are redundant (column ’redundant). When all
these missing is-a relations are preprocessed before generating repairing actions, we
have 115 missing is-a relations in MA and 80 in NCI-A (column ’to repair’).

total equivalence redundant to repair
MA 205 (199) 6 (6) 79 (78) 120 (115)
NCI-A 177 (167) 3 (3) 87 (84) 87 (80)

Table 2: Anatomy - Missing is-a relations detected during thewhole debugging session. In parentheses the
missing is-a relations that are initially detected.

The next step is to generate repairing actions for the remaining missing is-a re-
lations in all ontologies. For MA, our basic algorithm generates for 9 missing is-a
relations only 1 repairing action (which is then the missingis-a relation itself). This
means that these could be immediately repaired. For NCI-A this number is 5. Of the
remaining missing is-a relations there are 61 missing is-a relations for MA that have
only 1 element in the Source set and 2 missing is-relations that have 1 element in the
Target set. For NCI-A these numbers are 20 and 3, respectively. These are likely to be
good starting points for repairing. Tables 3 and 4 show for different ranges how many
Source and Targets sets had a size in that range. For most of the missing is-a relations
these sets are small and thus can be easily visualized in the panels of our system.

total 1 2-10 11-20 21-30 31-40 41-50 51-100
MA - Source 115 70 45 0 0 0 0 0
MA - Target 115 11 50 5 9 4 6 5
NCI-A - Source 80 25 55 0 0 0 0 0
NCI-A - Target 80 8 52 6 2 0 0 5

Table 3: Anatomy - Sizes of Source and Target sets when generating repairing actions for the first time - part
1.

Table 5 shows the results of the repairing. Most of the missing is-a relations were
repaired explicitly by the user through interaction with RepOSE (column ’explicitly
repaired’), while some in MA were repaired as a result of the repairing of others (col-
umn ’repaired by others’). In some cases it was immediately clear which repairing
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total 101-200 201-300 301-400 >400
MA - Source 115 0 0 0 0
MA - Target 115 18 3 0 4
NCI-A - Source 80 0 0 0 0
NCI-A - Target 80 4 1 2 0

Table 4: Anatomy - Sizes of Source and Target sets when generating repairing actions for the first time - part
2.

action to use. The chosen repairing action in this case was always the missing is-a
relation itself (columns ’obvious choice self’ and ’obvious choice more informative’).
For the other cases the recommendation algorithm was used. RepOSE generated rec-
ommendations using WordNet. The running time was circa 4 minutes for MA and
circa 2 minutes for NCI-A. The results are shown in Table 6. Inmost cases, there was
only 1 recommendation for repairing a missing is-a relation. Sometimes, there were
2 or 3 recommendations. The recommendations can come from small sets of repair-
ing actions or from large sets. For instance, for MA the system recommends for the
missing is-a relation(mandible, bone)the following three repairing actions(oral region
cartilage/bone, bone), (viscerocranium bone, bone), and(mandible, lower jaw). The
repairing actions are recommended from a Source set of 177 concepts and a Target set
of 3 concepts. In almost all cases the recommendation by RepOSE was used (columns
with ’use recommended’ in Table 6) and in some cases the recommendation was ig-
nored (columns with ’ignore recommended’). In many cases the missing is-a relation
itself was used as repairing action (columns with ’self’) but for 18 missing is-a rela-
tions in MA and 7 in NCI-A a more informative repairing actionwas used (columns
with ’more informative’)10 thereby adding new knowledge to the network.

total explicitly repaired obvious obvious ask
repaired by others choice choice recommendation

self more informative
MA 120 101 19 28 0 73
NCI-A 87 87 0 7 0 80

Table 5: Anatomy - Repaired missing is-a relations.

After repairing the initially detected missing is-a relations we started a new round of
detection. We found 6 new missing is-a relations (of which 5 needed to be repaired) in
MA and 10 (of which 7 needed to be repaired) in NCI-A. Every newly derived missing
is-a relation was caused by the repairing of a missing is-a relation in the other ontology
for which the repairing action was more informative than themissing is-a relation itself.
Among these new missing is-a relations, 4 in MA and 4 in NCI-A appear separately

10An expert in the anatomy domain might have been able to find additional more informative repairing
actions.
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total use use ignore ignore
recommended recommended recommended recommended
self more informative self more informative

MA 73 52 16 3 2
NCI-A 80 73 6 0 1

Table 6: Anatomy - Recommendations.

after the execution of the relevant repairing action. Common to these new missing is-a
relations is that each concept in the new missing is-a relation in one ontology is equiv-
alent to a concept in the executed repairing action in the other ontology. For instance,
the new missing is-a relation(ThoracicAorta, Artery) in NCI-A was caused by the
execution of repairing action(thoracic aorta, artery)in MA, and the new missing is-a
relation (venule endothelium, vein endothelium)in MA was caused by the execution
of (VenuleEndothelium, VeinEndothelium)in NCI-A. Other new missing is-a rela-
tions appeared together in the respective ontology, of which 1 and 3 were redundant in
MA and NCI-A, respectively. For example, in NCI-A, after themissing is-a relation
(Myocardium, Muscle)in MA was repaired by(StriatedMuscleTissue, Muscle), the
new missing is-a relations(skeletal muscle tissue, muscle)and(striated muscle tissue,
muscle)appeared together, in which the former was redundant with respect to the latter.

After these missing is-a relations were repaired, no more were detected and the
debugging session was concluded.

7.1.2. Using the extended algorithm for generation of repairing actions
We have also experimented with the extended algorithm for generating repairing

actions. Table 7 shows the influences between different missing is-a relations that can
be computed using our extended algorithm. The last column (ST) shows the num-
ber of missing is-a relations where x’s and y’s of other missing is-a relations occur
in both Source and Target sets. For the other columns the x’s and y’s only occur
in Source or Target, but not in both. For instance, for MA there are 22 missing is-
a relations whose Source or Target set contain x and y from oneother missing is-a
relation. We see that for a majority of the missing is-a relations detected initially
(94/115 for MA and 67/80 for NCI-A) there are influences. An interesting observa-
tion is that in several cases missing is-a relations that have the same number of influ-
ences from other missing is-a relations, actually influenceeach other. For instance, in
NCI-A we find missing is-a relations between each ofBronchusBasementMembrane,
BronchusCartilage, BronchusLaminaPropria, BronchusSubmucosa, and the con-
ceptBronchusConnectiveTissue. Repairing one of these missing is-a relations influ-
ences the repairing actions of all the others. We found several such clusters, among
others for instance, in MA concerningbody cavity/lining, lymphoid tissue, andbrain
nucleuswith 7, 4 and 6 missing is-a relations, respectively.

7.2. OAEI Bibliography
The OAEI Bibliography experiments deal with ontologies from the 2010 Bench-

mark track in OAEI. We use the ontologies in the bibliographydomain called 101, 301,
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total 1 2 3 4 5 6 7 8 9 10 11-15 16-35 ST
MA 94 22 5 3 5 19 10 8 0 4 0 14 0 4
NCI-A 67 14 22 3 1 2 0 0 0 0 0 6 6 13

Table 7: Influence between repairing actions of different missing is-a relations - in Source or Target.

302, 303 and 304 and retain from these ontologies only the taxonomic part11. There are
mappings (equivalence and subsumption) between 101 and theother ontologies. The
number of concepts and mappings is shown in Table 8.

number of PRA - total PRA - equivalence PRA - subsumption
concepts mappings with 101 mappings with 101 mappings with 101

101 33 - - -
301 15 22 14 8
302 13 23 12 11
303 54 18 16 2
304 39 30 28 2

Table 8: Bibliography ontologies network.

We consider 2 cases. In the first case we debug 4 small networks, each consisting
of 101 and one other ontology and their PRA. This led to the detection of 2, 18, 1
and 9 missing is-a relations for the respective networks andthese were repaired by the
addition of 2, 7, 1 and 7 is-a relations, respectively. In thesecond case we consider
the five ontologies and the four PRAs as one network. This leadto the detection of 48
missing is-a relations in the ontologies and these were repaired by the addition of 16
is-a relations.

The test runs for this experiment were done by the second author. As he is familiar
with the domain, we considered him as a domain expert. As it was obvious which
repairing actions to choose, the recommendation algorithmwas not used. The largest
session for this case took less than 5 minutes.

7.2.1. Case 1 - four small networks
For the first case, the running time for the detection algorithm was around 10 sec-

onds per network. The results for this case are given in Table9. Information about the
sizes of the Source and Target sets for the missing is-a relations to repair is given in
Table 10. Many of the Source and Target sets only contain one element. For 4 of the
missing is-a relations there is only 1 repairing action. Table 11 shows the results of the
repairing. All missing is-a relations except one in 101 wererepaired explicitly. More
informative repairing actions were used for 101 in network 101-302 and for 101 and

11This means we only keep internal concepts and the subClassOf statements. Further, we only retain
mappings between concepts (but not between relations).
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304 in network 101-304. After having repaired these missingis-a relations, no more
were detected and the debugging session was concluded.

total equivalence redundant to repair
101 1 (1) 0 (0) 0 (0) 1 (1)
301 1 (1) 0 (0) 0 (0) 1 (1)
101 17 (17) 0 (0) 11 (11) 6 (6)
302 1 (1) 0 (0) 0 (0) 1 (1)
101 0 (0) 0 (0) 0 (0) 0 (0)
303 1 (1) 0 (0) 0 (0) 1 (1)
101 4 (4) 0 (0) 0 (0) 4 (4)
304 5 (5) 0 (0) 1 (1) 4 (4)

Table 9: Bibliography case 1 - Missing is-a relations detected during the whole debugging session. In
parentheses the missing is-a relations that are initially detected.

total 1 2-10 11-20 >20
101 - Source 1 1 0 0 0
101 - Target 1 1 0 0 0
301 - Source 1 1 0 0 0
301 - Target 1 1 0 0 0
101 - Source 6 6 0 0 0
101 - Target 6 1 0 5 0
302 - Source 1 1 0 0 0
302 - Target 1 1 0 0 0
101 - Source 0 0 0 0 0
101 - Target 0 0 0 0 0
303 - Source 1 1 0 0 0
303 - Target 1 1 0 0 0
101 - Source 4 1 3 0 0
101 - Target 4 0 4 0 0
304 - Source 4 3 1 0 0
304 - Target 4 0 4 0 0

Table 10: Bibliography case 1 - Sizes of Source and Target sets when generating repairing actions for the
first time.

7.2.2. Case 2 - one network
The running time for the detection algorithm for case 2 was around 40 seconds. For

this case (Table 12) for 101 we find 22 missing is-a relations of which 12 are redundant.
Of the remaining 10 we have 2 that according to the network areequivalence relations
((Chapter:BookPart, InBook:InBook)and (InBook:InBook, Chapter:BookPart)). For
301, 302 and 303 we find 1 missing is-a relation each. For 304 wefind 23 missing
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total explicitly repaired obvious obvious
repaired by others choice choice

self more informative
101 1 1 0 1 0
301 1 1 0 1 0
101 6 6 0 3 3
302 1 1 0 1 0
101 0 0 0 0 0
303 1 1 0 1 0
101 4 3 1 2 1
304 4 4 0 3 1

Table 11: Bibliography case 1 - Repaired missing is-a relations.

is-a relations of which 13 are redundant12. Information about the sizes of the Source
and Target sets for the missing is-a relations to repair is given in Table 13. For each
of 301, 302 and 303 there is a missing is-a relation with only 1repairing action. Table
14 shows the results of the repairing. All missing is-a relations except two in 101 were
repaired explicitly. More informative repairing actions appear in 101 and 304. After
having repaired these missing is-a relations, we found 3 newmissing is-a relations of
which 1 needed to be repaired.

total equivalence redundant to repair
101 22 (22) 2 (2) 12 (12) 8 (8)
301 1 (1) 0 (0) 0 (0) 1 (1)
302 1 (1) 0 (0) 0 (0) 1 (1)
303 1 (1) 0 (0) 0 (0) 1 (1)
304 23 (20) 0 (0) 15 (13) 7 (7(*))

Table 12: Bibliography case 2 - Missing is-a relations detected during the whole debugging session. In
parentheses the missing is-a relations that are initially detected.

7.3. ONKI

In the ONKI experiment we debug a network consisting of two ontologies and
their PRA as available in the Finnish Ontology Library Service ONKI [48, 25]. The
maritime ontology MERO contains ca 1400 concepts and is maintained by the Finnish
Transport Agency. KOKO is Finnish national resource created by aligning an upper
ontology and several domain ontologies. It contains ca 32,000 concepts. The PRA
between KOKO and MERO contains 266 equivalence mappings. (See Table 15.)

12The (*) in Table 12 marks the fact that of the 7 missing is-a relations to repair initially, one will become
redundant later on in the debugging process. Further, an additional missing is-a relation will be found later
on in the debugging process.
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total 1 2-10 11-20 >20
101 - Source 8 5 3 0 0
101 - Target 8 0 4 4 0
301 - Source 1 1 0 0 0
301 - Target 1 1 0 0 0
302 - Source 1 1 0 0 0
302 - Target 1 1 0 0 0
303 - Source 1 1 0 0 0
303 - Target 1 1 0 0 0
304 - Source 7 5 2 0 0
304 - Target 7 0 4 3 0

Table 13: Bibliography case 2 - Sizes of Source and Target sets when generating repairing actions for the
first time.

total explicitly repaired obvious obvious
repaired by others choice choice

self more informative
101 8 6 2 4 2
301 1 1 0 1 0
302 1 1 0 1 0
303 1 1 0 1 0
304 7 7 0 6 1

Table 14: Bibliography case 2 - Repaired missing is-a relations.
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Our debugging leads to the detection of 25 missing is-a relations in KOKO and 37
in MERO . These were repaired by the addition of 23 is-a relations in KOKO and 34 in
MERO.

number of PRA - total PRA - equivalence PRA - subsumption
concepts mappings mappings mappings

KOKO 32044 - - -
MERO 1448 - - -

- 266 266 0

Table 15: ONKI ontologies network.

The loading of the ontologies and PRA took ca 12 minutes. The running time for
the detection algorithm was 140 seconds. Initially, we find 24 missing is-a relations for
KOKO and MERO each (Table 16). The running time for the generation of repairing
actions was ca 100 seconds for KOKO and 1 second for MERO. Table 18 shows the
results of the repairing. Most missing is-a relations were repaired by using the missing
is-a relation itself, 5 were repaired by a more informative repairing action and 2 were
repaired by repairing of others. After having repaired these missing is-a relations, we
found 1 new missing is-a relation for KOKO and 13 for MERO. Allnew missing is-a
relations for MERO were between a sub-concept ofship andship itself. Most were
repaired by using the missing is-a relation itself and 2 wererepaired by a more infor-
mative repairing action. The 2 more information repairing actions(cargo-ship, ship)
and(special-purpose ship, ship)led to the repairing of 3 other missing is-a relations.
No more new missing is-a relations were detected after this.

Information about the sizes of the Source and Target sets forthe missing is-a re-
lations to repair is given in Table 17. Many of the larger Source and Target sets were
related to is-a relations between a sub-concept ofshipandship itself. For 10 missing
is-a relations in MERO and 1 in KOKO there was only 1 repairingaction. We used the
recommendation for all missing is-a relations. In 2 cases a more informative repairing
action was recommended and these were accepted.

total equivalence redundant to repair
KOKO 25 (24) 0 (0) 0 (0) 25 (24)
MERO 37 (24) 0 (0) 0 (0) 37 (24)

Table 16: ONKI - Missing is-a relations detected during the whole debugging session. In parentheses the
missing is-a relations that are initially detected.

8. Discussion

8.1. Detecting missing is-a relations
In general, detecting defects in ontologies without the support of a dedicated sys-

tem is cumbersome and unreliable. In the experiments outlined in this paper RepOSE
clearly provided a necessary support.
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total 1 2-10 11-20 >20
KOKO - Source 23 4 19 0 0
KOKO - Target 23 6 14 2 1
MERO - Source 34 26 8 0 0
MERO - Target 34 11 9 4 10

Table 17: ONKI - Sizes of Source and Target sets

total explicitly repaired self more
repaired by others informative

KOKO 25 23 2 21 2
MERO 37 34 3 31 5

Table 18: ONKI - Repaired missing is-a relations.

The detection of missing is-a relations as proposed in this paper is based on the
knowledge inherent in the network. This is both an advantageand a limitation. It
is advantageous that no external knowledge is needed. However, there are also other
methods that may identify missing is-a relations. As we notein Section 9, these ap-
proaches are complementary to our approach and could be integrated in a future version
of RepOSE.

Another advantage of our logic-based approach is, that it isguaranteed that all
missing is-a relations derivable from the network are found. Further, the detection
algorithm is fast, with a running time of only 2 minutes for the Anatomy case.

A limitation of the approach described in this paper in practice is the assumption
that the existing structure in the ontologies and the mappings are correct. In general,
this assumption may not be satisfied. In this case missing is-a relations may be derived
based on wrong information in the ontologies. For instance,in the Anatomy and ONKI
experiments we found several missing is-a relations that may not be correct. A solution
to this limitation is to consider the computed missing is-a relations ascandidatemissing
is-a relations and introduce a validation step where a domain expert classifies these as
missing or wrong. The missing is-a relations are then treated in the same way as in
our approach, while the wrong is-a relations would lead to a debugging opportunity for
removing wrong information from the ontologies or alignments.

8.2. Generating repairing actions

As generating all possible structural repairs in general isinfeasible, our algorithms
support a number of heuristics. In Section 5.1 we have shown how our algorithms
for generating repairing actions support≪A, ≪SH and the single relation heuristic.
Further, by showing the is-a relations between the conceptsin the Source and Target
sets, we have implicitly ordered the solutions for a missingis-a relation with respect to
≪I .
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8.3. Executing repairing actions

RepOSE stores information about all changes made, and computes and stores the
consequences. Again, without the support of a dedicated system this is cumbersome
and unreliable.

Repairing influenced the number of repairing actions for other missing is-a rela-
tions. For Anatomy, during the repairing process, for 25 missing is-a relations in MA
and 11 in NCI-A the number of repairing actions changed. For each of these missing
is-a relations the size of the Target sets increased while the Source sets remained the
same. The increase of the number of possible repairing actions ranged from 1 to 35
with average 8 in MA, and from 4 to 24 with average 12 in NCI-A. For Bibliogra-
phy case 1, there were no changes in the number of repairing actions for missing is-a
relations. For Bibliography case 2, in 101, for 1 missing is-a relation the Target set de-
creased. For 304, for 1 missing is-a relation the Target set decreased and for 1 missing
is-a relation the Target set increased. The Source sets remained the same.

Repairing also influenced the set of missing is-a relations.In Anatomy for MA 19
missing is-a relations were repaired due to the repairing ofother missing is-a relations,
in Bibliography case 2, there were 2 such is-a relations in 101, and in ONKI there were
2 such relations for KOKO and 3 for MERO. For Bibliography case 1, there were no
changes in this respect.

Further, repairing leads to the further detection of missing is-a relations. Regarding
Anatomy, we found 6 new missing is-a relations (of which 5 needed to be repaired) in
MA and 10 (of which 7 needed to be repaired) in NCI-A. In Bibliography case 2 we
found 3 new missing is-a relations of which 1 needed to be repaired. In ONKI we found
1 new missing is-a relation for KOKO and 13 for ONKI. No new missing is-a relations
were found in Bibliography case 1. New missing is-a relations may be derived when
more informative repairing actions are used and thus new information is added to the
network. If the missing is-a relation itself is used for repairing, the induced ontology
for the ontology network does not change and thus no new missing is-a relations would
be derived from the ontology network. A new round of detection therefore only needs
to be started when more informative repairing actions are used.

8.4. Recommending repairing actions

The recommendation algorithm computes the most informative repairing actions
that are supported by domain knowledge. We used the recommendation in the Anatomy
and ONKI experiments. In almost all cases the recommendation was used.

8.5. User interface

For the experiments described in this paper, RepOSE was veryresponsive and in-
teraction with the user was easy.

The Source and Target set panels seem to be a convenient way toshow all possible
computed choices for repairing a missing is-a relations with implicit ordering with
respect to≪I . For small ontologies all Source and Target sets are small enough to
have a good visualization in the tool (e.g Bibliography experiment). However, for
larger ontologies there will likely be some missing is-a relations for which these sets
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are too large for a good visualization. For instance, in the Anatomy experiment, this
happened for 27 missing is-a relations in MA and 10 in NCI-A.

Further, the visualization of the results of the recommendation algorithm is inte-
grated in the Source and Targets panels.

Visualization of the justifications (derivation paths) of possible defects would be
helpful to have at hand as well as a graphical display of the possible defects within their
contexts in the ontologies addressed. This has been added toa later version of RepOSE
and the usefulness was confirmed in work for the Swedish National Food Agency [26]
in which we debugged a toxicology ontology created by the Swedish National Food
Agency based on an alignment to MeSH [45].

An identified constraint of RepOSE is the fact that adding is-a relations not ap-
pearing in the computations in RepOSE can be a demanding undertaking. This could
happen, for instance, when a domain expert has identified a missing is-a relation man-
ually. Currently, these changes need to be conducted in the ontology files, but it would
be useful to allow a user to do this via the system.

8.6. Influence of additional ontologies and PRAs in the network

The Bibliography experiment allows us to investigate the influence of additional
ontologies and PRAs in the network. Indeed, the small networks in Bibliography case
1 are sub-networks of the network in Bibliography case 2.

When we compare the results of Bibliography cases 1 and 2, we notice that for
301, 302 and 303 the same missing is-a relations are found. The additional information
given by the connections to the other ontologies than 101, had no influence in this case.
For 304, however, we find 3 additional missing is-a relationsin case 2. For 101, we
find for the four networks in case 1 together, 11 missing is-a relations that need to be
repaired. For case 2 we have 2 equivalence relations and 8 missing is-a relations that
need to be repaired. Of the 11 missing is-a relations in case 1, there are 2 corresponding
equivalence relations in case 2. Of the remaining 9, 8 also appear in case 2. The last
missing is-a relation in case 1 (that was found in 101-302) isredundant in case 2 as it
can be derived by combining knowledge from 304 with knowledge from 101 and 302.
The experiment shows thus that debugging a network (e.g. thefive ontologies in the
experiment) gives better results than debugging only part of the network (e.g. two of
the ontologies).

9. Related Work

9.1. Debugging missing is-a relations

There is not much work on debugging is-a relations in networked ontologies.

9.1.1. Detecting missing is-a relations
The work closest to our own is [4], in which the authors deal with the missing is-

a relations as ontology nonalignments in the context of ontology enrichment. Given
two pairs of terms between two ontologies which are linked bythe same kind of re-
lationship, if the two terms in one ontology are linked by an is-a relation while the
corresponding terms in the other are not, it is deemed as a nonalignment. However,
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the authors note that, depending on the specific relationship, not all nonalignments are
defects and there is no conclusive solution for repairing. Further, in [38] the use of a
PRA in the setting of ontology alignment is discussed. One ofthe approaches includes
detecting missing is-a relations by using the structure of the ontologies and the PRA.
Missing is-a relations are found by looking at pairs of equivalence mappings. If there
is an is-a relation between the terms in the mappings belonging to one ontology, but
there is no is-a relation between the corresponding terms inthe other ontology, then it
is concluded that an is-a relation is missing in the second ontology. The detected miss-
ing is-a relations are then added to the ontologies before starting the actual alignment
process.

Detecting missing is-a relations may be seen as a special case of detecting relations.
There is much work on finding relationships between terms in the ontology learning
area [7]. In this setting, new ontology elements are derivedfrom text using knowledge
acquisition techniques. There is, however, also work specifically focused on the dis-
covery of is-a relations. One paradigm is based on linguistics using lexico-syntactic
patterns. The pioneering research conducted in this line isin [23], which defines a set
of patterns indicating is-a relationships between words inthe text. However, depend-
ing on the chosen corpora, these patterns may occur rarely. Thus, though the approach
has a reasonable precision, its recall is very low. To overcome this, an approach pro-
posed in [9] collects a corpus from the World Wide Web using Google and identifies
patterns from this collective knowledge. An evaluation andextension of this work is in
[62]. In [12] the authors propose an approach for detecting defects within an ontology
based on patterns and antipatterns. Another paradigm is based on machine learning
and statistical methods, such as k-nearest neighbors approach [42], association rules
[43], bottom-up hierarchical clustering techniques [64],supervised classification [60]
and formal concept analysis [8]. In contrast to the approachdescribed in this paper,
these detection approaches using knowledge external to thenetwork, while our detec-
tion method uses the ontology network itself as the domain knowledge for the detection
of is-a relations. Our approach is also able to deal with multiple ontologies at the same
time rather than a single ontology. However, these detection approaches are comple-
mentary to ours, and results from them, after validation, could be used as supplement
to the domain knowledge or for repairing.

9.1.2. Repairing missing is-a relations
Most approaches just add the detected missing is-a relations to the ontologies. This

is, in our context, the simplest kind of structural repair. It essentially means that after
removing redundancy the least information-preferred (≪I ) solution is chosen.

The work in [39] focused on repairing a given set of missing is-a relations in asingle
ontology. The work contains algorithms for generating, recommending and executing
repairing actions. However, there is no investigation on how to detect missing is-a
relations using networked ontologies and no attempt to find new missing is-a relations
during the repairing. The work in this paper can be seen as an extension of the work in
[39] in two ways. A first extension is that we deal with a network of ontologies. The
second extension is that the algorithms for generating, recommending and executing
repairing actions described in this paper are extensions ofthe algorithms in [39] that
can be used for single ontologies when a set of missing is-a relations is given.
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In [37] algorithms are proposed to generate different ways to repair the missing is-
a structure in single ontologies that can be represented asALC acyclic terminologies.
The algorithms are based on a tableau-based algorithm for satisfiability checking with
unfolding on demand as well as our Source and Target sets approach. The current
implementation is, however, only feasible for small ontologies.

9.2. Other relevant topics

In this subsection we describe work that addresses related topics, although not the
actual problem described in this paper.

9.2.1. Debugging semantic defects
Most of the work in ontology debugging has addressed semantic defects and aims at

identifying and removing logical contradictions, i.e. inconsistencies and incoherencies,
from an ontology. Standard reasoners are used to identify the existence of a contradic-
tion, and provide support for resolving and eliminating it [16]. Most work focuses on
single and isolated ontologies, and there is little supportfor ontologies connected by
mappings [20].

In [54] minimal sets of axioms are identified which need to be removed to render
an ontology coherent. In [35, 34, 33] strategies are described for repairing unsatisfiable
concepts detected by reasoners, explanation of errors, ranking erroneous axioms, and
generating repair plans. Strategies for reducing the set ofpossible solutions are given in
[47, 5]. In [21] the focus is on maintaining the consistency as the ontology evolves. It
formalized the semantics of change for the OWL ontologies andproposed methods for
detecting and resolving inconsistency at three different levels. An interactive approach
for ontology debugging is presented in [56]. Complexity issues are discussed in [50].

In [44] and [29] the setting is extended to repairing ontologies connected by map-
pings. In this case, semantic defects may be introduced by integrating ontologies. Both
works assume that ontologies are more reliable than the mappings and try to remove
some of the mappings to restore consistency. The solutions are often based on the
computation of minimal unsatisfiability-preserving sets or minimal conflict sets. The
work in [52] further characterizes the problem as mapping revision. Another approach
for debugging mappings is proposed in [63] where the authorsfocus on the detection
of certain kinds of defects and redundancy. Using the theoryof belief revision [22],
it gives a rationality analysis for the logical properties of the revision algorithms. The
approach in [30] deals with the inconsistencies introducedby the integration of on-
tologies, and unintended entailments validated by the user. Further, the work in [27]
addresses the detection and repair of missing and wrong is-arelations and mappings.
The repairing of missing is-a relations in that system is based on the basic algorithm in
this paper. The approach was used for the alignment and debugging of ontologies for
the Swedish National Food Agency [26].

There has been some work in the area of modular ontologies, that is relevant for the
problem discussed in this paper. Modular ontologies can be seen as a set of local on-
tologies that are connected by directional mappings, whichare called bridge rules, and
where the intuition is that an ontology can import knowledgefrom another ontology.
The mappings are often equivalence and subsumption relations. The main difference
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with the mappings in our ontology networks is that these bridge rules are directional.
This means that knowledge propagation only occurs in one direction. Regarding the
detection of semantic defects, within a framework based on distributed description log-
ics, it is possible to restrict the propagation of local inconsistency to the whole set of
ontologies (e.g. [55]).

9.2.2. Debugging modeling defects
The properties of is-a can be used for detecting modeling defects. For instance,

as mentioned in the introduction, based on the notions of identity, rigidity and depen-
dence, not all is-a relations in existing ontologies make sense [19]. These is-a relations
can be detected by checking these properties. In [59] shallow semantic representations
are constructed for the concepts in the ontologies and four hypotheses regarding the
semantic representations and the is-a relation are proposed and tested. Three of the hy-
potheses were confirmed in the tests. The authors claim that the proposed hypotheses
can be used for detection of inappropriate is-a relations.

In [36] two reasoning services are proposed for detecting flaws in OWL property
expressions. The defects relate to the property is-a hierarchy, domain and range axioms
and property chains.

9.2.3. Logic-based approaches
Logic-based abduction.The generation of repairing actions in this paper can be

seen as an abductive problem. A general description of the problem of logic-based
abduction is the following [13]. Given a logical theory T formalizing a domain, a
set M of atomic formula describing manifestations and a set Hof formulae containing
possible hypotheses, find an explanation S for M such that S⊆H and T∪S is consistent
and logically entails M. In our case, the domain theory T would be represented by the
union of the ontologies. The manifestations in M are the missing is-a relations. The
set H contains all is-a relations between concepts within the same ontology that are not
derivable from the ontology network. Further, preference≪A is essentially the subset
or irredundancy criterion that is often used in logic-basedabduction.

In general, finding all or multiple solutions is a hard problem [14]. In our set-
ting, for generating repairing actions, we compute multiple solutions that satisfy the
constraint that for every element in M, this element occurs in S or there is a more infor-
mative element in S (single relation heuristic in Section 2.3). This constraint disallows
solutions for which a missing is-a relation(a, b) would be repaired by the combination
of new is-a relations(a, x1), (x1, x2), ..., (xk, b); and thus reduces the search space
drastically. For our application, this is, however, a reasonable assumption. Further,
we do not require minimality according to≪A and≪SH during the generation, but
do an additional check when it is needed. A consequence of these choices is that our
algorithms perform well in practice and response times in RepOSE are low.

Recently, for single ontologies it has been shown in [37] that the problem of finding
possible ways to repair the missing is-a structure in an ontology in general can be
formalized as a generalized version of the TBox abduction problem as follows. Given
a knowledge base KB in languageL, concepts Ci, Di for 1≤ i ≤ m, that are satisfiable
w.r.t. KB, and such that KB∪ { Ci → Di | 1 ≤ i ≤ m} is coherent. Then a solution
to the generalized TBox abduction problem for (KB,{(Ci, Di) | 1 ≤ i ≤ m}) is any
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finite set SGT = {Gj → Hj | j ≤ n} of TBox assertions inL′ such that∀ i: KB ∪ SGT

|= Ci → Di. In our setting the languagesL andL′ only allow namedconcepts and we
only consider is-a relations between those concepts. The (Ci, Di) are the missing is-a
relations within the ontology. A solution SGT is a structural repair.

There is very few work related to TBox abduction. The work in [24] proposes an
automata-based approach to TBox abduction using abducilesrepresenting axioms that
can appear in solutions. It is based on a reduction to the axiom pinpointing problem
which is then solved with automata-based methods. A PTIME algorithm is proposed
for the languageEL.

Belief revision. From the perspective of belief revision [2, 17], our repairing ap-
proach could be deemed as an instantiation of belief expansion. It accommodates the
structural repair as a new piece of information, and adds it to the ontology without
checking consistency. Since in our setting the ontologies contain only named concepts
and subsumption axioms, our repairing approach does not introduce logical contradic-
tions.

9.2.4. Ontology engineering
Ontology engineering deals with the ontology development process, the ontology

life cycle, and the methodologies, tools and languages for building ontologies [18]13.
There are several ontology engineering methodologies and several of these are re-
viewed in, for instance, [32, 11, 57]. The methodologies have been developed based
on experiences in different areas. There are also methods for modular ontology devel-
opment (e.g. [49]).

According to [18] a methodology should define the activitiesmanagement (which
includes a feasibility study - pre-development), development (which includes domain
analysis, conceptualization and implementation) and support (which includes mainte-
nance and use of the ontology - post-development). Several of the methodologies are
developed with a particular application in mind [32, 11] andthe feasibility study would,
for instance, answer the question whether the application would benefit from using an
ontology. Most of the methodologies cover the development process, although the
actual instantiation of the different steps may differ. Domain analysis may cover such
things as developing scenarios and competency questions. In the conceptualization step
domain terms are identified and possibly definitions from other ontologies can be inte-
grated. The implementation phase can include a formalization. The post-development
activities include adaptation of the ontology according tonew requirements and using
the ontology in applications. Unfortunately, although there has been work on method-
ologies for several years, the existing methodologies are not yet mature from a software
engineering point of view [11]. They lack some project management processes, ontol-
ogy development-oriented processes or integral processes.

As discussed in [32], many of the existing methodologies have separate stages in
which first an informal description of the ontology is developed and then the ontology
is represented in a formal knowledge representation language. The debugging that we
propose in this paper would take place after the representation of the ontology in a

13In this book the term ’ontological engineering’ is used.
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formal knowledge representation language. We would argue that debugging should be
an iterative and integrated part of the implementation stepof the development phase.

The study in [57] collected data using interviews and questionnaires from 148 on-
tology engineering projects from industry and academia in different areas such as in-
formation systems, commerce, multimedia and tourism. Theyfound that the larger
projects used a methodology and among those METHONTOLOGY was most popular.
Two of the major findings in the study were that there is not yetmuch tool support
and tool support for the different steps in the methodologies was deemed necessary
both for the development of ontologies as well as for gainingmore acceptance for the
methodologies. Further, quality of the developed ontologies is a major concern. Most
projects did minor testing but tools for aiding in ontology evaluation may result in
major efficiency gains. The work in this paper addresses these concerns at their core.

10. Conclusion

Semantically-enabled applications require high-qualityontologies and a key step
towards this is the debugging of the ontologies. In this paper we have focused on
one of the important kinds of defects in ontologies, namely the modeling defects, and
in particular, defects in the is-a structure of ontologies.In Section 1 we have shown
the influence of missing is-a relations on the quality of the results of semantically-
enabled applications. We have also shown that missing is-a relations are a common
problem (e.g. our experiments) even in small ontologies, although this has not received
much attention yet. It is clear that tool support for debugging is needed and this paper
presents a first step towards this. Later, ontology debugging may become an integrated
part of ontology engineering and become a natural part of steps in ontology engineering
methodologies.

In this paper we have proposed an approach for debugging the missing is-a struc-
ture of ontologies that are networked by a set of PRAs. We defined important notions
and developed algorithms for detection and repair of missing is-a structure of ontolo-
gies. We also implemented a system and described and discussed experiments using
ontologies from the OAEI and ONKI. We have shown that system support for detec-
tion and repairing of missing is-a relations is needed. Our approach is logic-based
using knowledge that is inherent in the ontology network. The approach guarantees
to find all logically derivable missing is-a relations. Further, as generating all possible
structural repairs is infeasible and not very useful, our approach finds structural repairs
that satisfy reasonable heuristics (≪A, ≪SH and the single relation heuristic). The
extended algorithm also shows influences between the missing is-a relations and their
solutions. Further, the solutions for a missing is-a relation are ordered with respect to
≪I and our recommendation algorithm recommends among these the most informa-
tive that are supported by domain knowledge. Our approach isthe first that allows to
add new knowledge to the ontologies in the repairing phase byusing more informative
repairing actions. The visualization of the possible repairing actions, their ranking and
the recommendation was very useful.

The approach and system have, however, some limitations which require further
work. Our detection algorithm is based on the knowledge inherent in the network, but,

39



there are methods that use external knowledge. As these approaches are complemen-
tary to our approach, they could be integrated in a future version of RepOSE. Further,
we assume that the existing structure and mappings are correct. In the case where
this does not hold, we need to deal with semantic defects bothin the structure and in
the mappings. As discussed before, the detection algorithmwould generate candidate
missing is-a relations which need to be validated by a domainexpert. A candidate
missing is-a relation validated to be correct would be treated in the same way as in
this paper. A candidate missing is-a relation validated to be wrong would be based on
wrong information in the ontologies or PRAs and lead to the detection and repairing
of semantic defects. We would also need to investigate possible influences between
semantic defects and modeling effects. Regarding visualization we want to add justifi-
cations of missing is-a relations as well as the possibilityfor users to add their manually
detected missing is-a relations.

Further, we are interested in investigating the following issues. One issue is to deal
with ontologies represented in more expressive representation languages. The tech-
niques described in this paper may be partly used for these ontologies, but a number of
side conditions (such as the consequences of negation and disjointness) will need to be
taken into account. Further, with the availability of more and more Linked Open Data
(LOD), it is interesting to investigate how this can be used in the debugging process. It
would be possible to use the LOD as instances of concepts in the ontologies for detec-
tion of missing is-a relations. The detection could be basedon set inclusion or based on
similarities between concepts that take into account the instances (e.g. [61]). The LOD
could also be used for validation. We also want to find ways to optimize the generation
of results. For instance, for large ontologies the generation of structural repairs may
take a lot of time, and we want to investigate ways to partition the set of missing is-a
relations into subsets that can be processed independently. We also want to study the
influence between repairing actions. For instance, it may bemore important to repair
the top level in the ontology first and in this case, the ranking approach should reflect
this.
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Electronic Press, 2012.

[41] P Lambrix, L Str̈omb̈ack, and H Tan. Information integration in bioinformatics
with ontologies and standards. In Bry and Maluszynski, editors,Semantic Tech-
niques for the Web: The REWERSE perspective, pages 343–376. Springer, 2009.

[42] A Maedche, V Pekar, and S Staab. Ontology learning part one - on discovering
taxonomic relations from the web. In Zhong, Liu, and Yao, editors,Web Intelli-
gence, pages 301–320. Springer, 2003.

[43] A Maedche and S Staab. Discovering conceptual relations from text. In14th
European Conference on Artificial Intelligence, pages 321–325, 2000.

[44] C Meilicke, H Stuckenschmidt, and A Tamilin. Repairingontology mappings. In
20th National Conference on Artificial Intelligence, pages 1408–1413, 2007.

[45] MeSH. Medical subject headings. http://www.nlm.nih.gov/mesh/.

43



[46] NCI-A. National cancer institute - anatomy.
http://www.cancer.gov/cancerinfo/terminologyresources/.

[47] T Nguyen, R Power, P Piwek, and S Williams. Measuring theunderstandabil-
ity of deduction rules for OWL. In1st International Workshop on Debugging
Ontologies and Ontology Mappings, pages 1–12, 2012.

[48] ONKI. http://onki.fi/en/.
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Appendix

Missing is-a relation:is-a relation that should be in the ontology according to
the domain model, but is not. Only used when explicitly stated.

Missing is-a relation derivable from the ontology network:missing is-a relation
that is detected by using the domain knowledge inherent in the ontology network
(see Definition 4). Unless explictly mentioned, when using ’missing is-a relation’
in the paper, we mean this kind.

Regarding detection, we refer to:
Initially detected missing is-a relation:missing is-a relation detected by running
the detection algorithm before any repairing is done.
Additionally detected missing is-a relationor missing is-a relation detected later
in the debugging process: missing is-a relation detected by running the detection
algorithm after some repairing is done.

Regarding repairing, we refer to:
Missing is-a relation for which the domain expert explicitly selected a repairing
action: the repairing is done by the domain expert through the selection of a
solution from Source× Target.
Missing is-a relation that was repaired through repairing actions of other missing
is-a relations:the missing is-a relation became derivable after other missing
is-a relations were repaired, and therefore did not need to be explicitly repaired.

Table 19: Missing is-a relations - terminology.
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