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Introduction to Bayesian networks

. e

[Probability theory ]

= Biological network over genes, proteins, ... =
probability distribution over genes, proteins, ...

o P il ey Measurements —>T&/EE GeneA | GeneB | GeneC
=Probability theory zrobahility 0 0 0
-B . tW k istribution
aYesSIea;:niic;r ) = Deterministic relations ?4 1 1 1
';2;‘;2 = Probabilistic relations ? = ? 1 (1)
=Dynamic Bayesian networks = Noise ? 0 1 0
=Gaussian networks \- ] 0 1
=Markov networks
[Probability theory ] [Probability theory ]
= p(X=x, Y=y) >=0 for all x and y. p(X,Y) [Y=0 |Y=1
m ey p(X=x, Y=y) = 1.
= Marginal: X=0 0.3 0.3 X=0 0.6
p(X=x) = X, p(Xsx, Y=y). X=1 102 |02 X=1 0.4
= Conditional:
p(X=X | Y=y) = piX=x, Y=y) / p(Y=y). Y=0 [Y=1 |[pXIV)[Y=0 Y=t
= Independence:

p(X=x | Y=y) = p(X=x) for all x and y, or
p(X=x, Y=y) = p(X=x)p(Y=y) for all x and y.
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[Bayesian networks: Semantics ]

= p(X,Y.Z) = p(X,Y)p(ZIX,Y) = p(X)p(YIX)P(ZIX,Y).

&

= Drop the edge from X to Y, then
P(X,Y.Z) = p(X)p(Y)p(ZIX.Y).

= Ingeneral: p(Xy,...,X;) = My, p(X|Parents(X))).
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[Bayesian networks: Semantics ]

= A Bayesian network (BN) over X;,...,X, consists of
o adirected acyclic graph (DAG) over X;,...,X, and
o probability distributions p(X|Parents(X;)) for all i,
and defines a probability distribution over X;,...,X, as
pP(Xy,--,Xq) = My, p(X|Parents(X))).
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[Bayesian networks: Semantics ]

A

= pX)p(YIX)P(ZIXY)=p(X,Y,Z)=p(X)p(Y)p(Z|X,Y), s0
pP(Y[X)=p(Y). so
Xis independent of Y !!!
No numeric calculation required !!!
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[Bayesian networks: Semantics ]

= Which independencies are represented in a
DAG ?

weig%j
e B
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[Bayesian networks: Semantics ]

X+ +2) = pX2)=E

p(X)g(YIX)p(ZIY)
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[Bayesian networks: Semantics ]

OO, OO
W @ 0@ @
@
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[Bayesian networks: Semantics ]

= Which independencies are represented in a
DAG ? Use the d-separation criterion.

. B
= X is independent of Y given Z when for every
undirected path between X and Y there exists
a node Z in the path such that

o Zdoesn't have two parents in the path and Z is in Z,
or

o Zhas two parents in the path and neither Z nor any
of its descendants is in Z.
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[Bayesian networks: Semantics ]

V) (V) XULYV? W W)
X1Y|Z?
(%) (v) X LY|UV ? (x) (v)
ULz|X?
(z) uLYzv? (z)

= Two DAGs represent the same independencies
iff they have the same adjacencies and
immoralities.
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[Bayesian networks: Semantics ]

. . 13
Figure 2: Hasse diagram of the space of Markov equivalence classes of Bayesian network

structures over three variables.

[Bayesian networks: Semantics ]

= The Markov boundary of X, MB(X), is the minimal
set such that X L Rest | MB(X).
©@<®

= MB(X)=Parents(X) U ChiIdren(X) U Spouses(X).
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[Bayesian networks: Learning ]

= So far, we have a framework that
o simplifies specifying probability distributions, and

o enables us to reason quantitative and qualitatively.

= Isit learnable from data ?
= Learning a BN B=(Bs,Bp) consists in

o learning the best DAG B, and

> learning the best probability distributions By for B,
= Access to a database D = {C;,...,C,}.
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[Bayesian networks: Learning ]

= Take any ordering Xy,...,X,.

= For each i, if P; is the smallest subset of
Xis--0: X1 such that X; L{X,....X.{}\P; | P,
then Parents(X;) = P,.

= The so-obtained DAG
o only represents true independencies, and
o no subgraph of it has this property.
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[Bayesian networks: Learning ]

The K2 algorithm

= Take any ordering Xj,...,X.
= Foreachi

Parents(X) = &.

Repeat

= Ifthere exists X in {X,,...,X.}\Parents(X;) such that
Xi £ X | Parents(X;) then add it to Parents(X;).

o]
o]
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[Bayesian networks: Learning ]

Hill-climbing approach

= Start from the empty graph.
= Repeat

o Perform the edge addition/removal that
improves the score the most*.

* Check for cycles + store scores to avoid recomputing.
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Bayesian networks: Learning

= D={Cy4,...,C,} is a database of m cases.

= p(Bs|D) = p(Bs,D) / p(D)
a p(Bs,D) = p(Bs)p(DIBs)

"

= P(Bs) fs
v ep

h=1
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P(C,|Bs, Bp) | f(Bp| B5)dBp

Bayesian networks: Learning

The K2 score

“Theorem 1. Let Z be a set of n discrete variables, where a variable x; in Z has r; possible
value assignments: (v;, Y v‘) Let D be a database of m cases, where each case con-
tains a value assignment for cach variable in Z. Let Bg denote a belief-network structure
containing just the variables in Z. Each variable x; in By has a set of parents, which we
represent with a list of variables ;. Let w; denote the jth unique instantiation of 7, relative
1o D. Suppose there are ; such unique instantiations of ;. Define Ny to be the nuraber
of cases in D in which variable x; has the value v and , is instantiated as wy. Let

Ny = 2 Ny
=1

Supposc the following assumptions hold:

1. The variables in Z are discrete
2. Cases occur independently, given a bejief-network model
3. There are no cases that have variablsé with missing values
4. Before observing D, we are indifferey( regarding which numerical probabilities to assign
0 the belief network with struc

From these four assumptions, iy/follows that

1171472008 ey
P, ) = Pado) TTTT G [T Mt
ot o @ £ D

Bayesian networks: Learning

The BDeu score

THEOREM 4 (BDE METRIC) Given domain U, suppose that p(©y|B"} ¢) is Dirich-
let with equivalent sample size N' for some complete network structure B. in U. Then,
for any network structure Bs in U, Assumptions I through 3 and 5 through 7 imply

o T(N};) £ D(NYy + Nl
#(D, BL1) = #(BL16) Hlj[ eaes il | S vy

= Use uninformative assignment ¥ ="/tr:-q)
= Note that BDeu = K2 if N, =1
= E[p(Xi=k|Parents(X;)=)] = (NijNij)/(N+Nij).

Bayesian networks: Learning

The BIC/MDL score

BIC(Bs,D) = maxg, p(D|Bs,Bp) — 0.5log m-Z; g;(r; — 1)

where maxg, p(D|Bs,Bp) is reached when
p(Xi=k|Parents(X;)=j) = Nix/N;. 1

Best parameter values for B, !!!
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® Hartemink, A. J., Gifford, D. K., Jaakkola, T. S. and Young, R. A. (2002). Combining Location
TrudeI and Expression Data for Principled Discovery of Genetic Regulatory Network Models. In Pacific
mode
Symposium on Biocomputing, 437-449.
e 33 genes involved in the budding yeast pheromone response.
e 320 samples of the expression levels of the 33 genes under dif-
ferent conditions.
e Gene expression levels discretized into 4 states.
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Figure 2: Hasse diagram of the space of M;
structures over three variables.

ov equivalence classes of Bayesian network
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Bayesian networks: Example

Group Description

Magenta | Genes expi only n MATa cells

Red Genes expressed only in MATa cells

Blue Genes with promoters bound by Stel2

Green Genes coding for components of the
heterotrimeric G-protein complex

Yellow Genes coding for core ccmuonents

of the signaling casca

Orange | Genes coding for auxmary components
of the signaling cascade

Brown | Genes coding for components of the
SWI X

White Others

@ &

Left: Functional grouping of the genes. Right: Best local optimum.

-
e
k=106 k=108 k=09
t FPs [ FNs | FPs [ FNs | FPs | FNs
T.00 0 30 0 25 0 22
0.95 o 22 o 15 0o 12 .
0.90 o 17 o 11 o 10
0.85 0 12 o 8 o 7
0.80 o 11 o 6 o 3
0.75 0 8 o 2 o 1
0.70 0 5 o 1 0 1
0.65 0 2 o 1 0 1
0.60 0 1 o o 0 o
0.55 0 1 [} [} ] [}
0.50 0 [} [} o ] [
.45 0 [} [} o ] [}
0.40 o o o o 0 o ect
0.35 o o o o 0 o
0.30 1 o o 0 0 o
0.25 6 o o o 0 o
0.%0 1? 0o 4 o 2 o ./
0.15 o 7 0 6 0 D swit
0.10 17 o 11 o 10 o @ @
0.05 25 o 18 o 14 o

Left: Trade-off between the number of FPs and FNs for undirected
edges. Right: Dashed edges correspond to TPs at ¢t = 0.60 (0 FPs, 0
FNs, 32 TPs) and solid edges at t = 0.90 (0 FPs, 11 FNs, 21 TPs).

Dynamic Bayesian networks

Figure 5.23: Prior and transition Bayesian networks are in (a). The resultant
dynamic Bayesian network for T = 2 is in (b). Note that the probablity distri-
butions are not shown.
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[Gaussian networks

e 00,57 = (o1 | 0, )711/ ri pa(s), 8, )

T | puls)i, 08" v Mz + 3 byaler —ma),v0)
XuePal(s):

 Model structure
(%] (%]
(%]

{w3;ma + bialzr — mo) + boa(wa — mal, va)
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Markov networks: Semantics

@D

= A.k.a Gaussian graphical models, @
covariance selection models, (?
Markov random fields, e

= Based on undirected graphs.
= p(Xy,..,X0) = (Mg, q(c)) / Z.
= Uu-separation criterion:
X is independent of Y given Z

if all the paths between X and Y
are blocked by 7.
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Markov networks: Learning

= Start from the empty graph.
Repeat

o If X L X,|Rest then remove the edge between X;
and X,.

Assuming X=(Xq,...,X,)~*N(u,Z).
p=E[X] and Z=cov(X,X)=E[(X-u)(X-p)’].
X; L X, | Rest if and only if Z-1[i,k]=0.
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[Why Bayesian networks ? ]

= Solidly founded on probability theory.

= Can cope with noise and probabilistic relations.
= Graphical interface.

= Learnable from data and prior knowledge.

= Offer flexible reasoning.

= Accept both causal and acausal interpretation.

= Model both linear and non-linear interactions.

= Too many samples are required for accuracy.

= Scalable to thousands of genes ?

= Gaussian networks limited to linear interactions.
= Learning Markov networks is not so well studied.
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[More on Bayesian networks ]

= Continuous random variables, e.g.
Gaussian networks.

= Leaning via independence tests, e.g. PC
algorithm.

= Learning in the space of equivalent BNs,
e.g. GES, KES, PC algorithm.

= Model averaging, e.g. MCMC.
= Learning from interventional data.
= Causal Bayesian networks.
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\

Causal Bayesian networks

— Biological  emmpeasurements ===-Bayesian
X network = networks
=Causal Bayesian networks probability
. distribution
sInterventions
sLearning from observations

sLearning from observations and interventions

[Causal Bayesian networks ]

= Causal BN = BN + causal interpretation, i.e.
Parents(X) are the direct causes of X.

= A causal BN is a BN and, thus,
o the probability distribution factorizes accordingly,
o d-separation applies,
o it allows probabilistic inference, and
o itis learnable from data.

= Causal BNs enables us to predict the effect of

=Example 1 interventions, e.g. the effect of a drug. This is
=Example 2 not possible with acausal BNs.
[Interventions ] [Interventions ]

= A BN can tell us how the distribution of X
changes when observing Y, i.e. p(X|Y=y).
= In addition to this, a causal BN can tell us
how the distribution of X changes when
intervening on Y, i.e. p(X|do(Y=y)).
= Check
o p(Cancer=yes|WhiteTeeth=no)
o p(Cancer=yes|do(WhiteTeeth=no))
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= A causal BN enables us to predict the effect
of an intervention on X, as

o p(Xy,.., X ldo(Xi=x4)) = My p(X||Parents(X))),
or as

o delete the edges from Parents(X;) to X, and,
then, "observe” X;=x;.

= This is not possible with BNs.
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[Interventions ] [Learning from observations ]
= Which nodes get affected by an interventionon X ? IC algorithm (=PC algorithm)
Use d-separation. 1. Start from the complete graph
Answer: Only the descendants of X and, thus, . P graph.
p(Y|do(X=x)) = p(Y) if Y is not one of them. 2. Foreach pair of i and X
If X; 1 X,|S; then remove the edge between X; and X,.

= Predicting the effect of an intervention that rewires the s, Foreach induced subgraph Xi-Y-X

causal BN

If Yis not in Sy then X/=>Y<—=X,.
Orient as many lines as possible.

p(Xa,..., X, |do(Parents(X;)=NewParents(X,)) =

p(X;|NewParents(X;)) M p(XilParenls(X‘;),

4
Output is not
oras ~@======maBNbutaclass
o rewire the causal BN accordingly. of equivalent BNs !!!
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Learning from observations ] Learning from observations ]
[and interventions [and interventions
= Choose between the equivalent BNs XY = As before
and X<—'Y on the baeis of 0, BN =5 B;"@'EI. Hr(ul;“ﬂ)\) _ H F(AE’&\ —j)

but now Nk is the number of cases in D in
which X; is observed in state k and its
arents Jare in state j>

Fnospho-

Phospho-v T orospnov |
X =y Xy

= p(Y|do(X=x)) = p(Y|X=x) # p(Y) and
= p(X|do(Y=y)) = p(X) # p(X[Y=y), so X=>Y.

11/14/2008

= E[p(Xj=k|Parents(X;)=})] = (N'ij+Nix)/(Nj:Nj).
= Similar for BIC/MDL.

Jose M. Pefia@ KI 39 11/14/2008

Jose M. Pefia@ KI

Learning from observations ]
and interventions Example 1 & frottaian b
= —> LAl $
) sy @—» CRTPR AT
= Even with interventions ambiguity may remain. o Kol G St o W Q) L
B : Data. Science 308 (2005) 523-529.
= Two causal BNs are causally equivalent wrt do(X=x) if <0 perturbatons - 600 bation <5400 s s e
they are acausally equivalent before and after do(X=x). samples !1l And each from a single cell !!! ideal !!! @;@ men Al
P20} - ® O~ .
@O0 00 00| Fbr—f
: .mK'(—u Rf&#\—cmmun ani
= E.g., the 2nd. and 3rd. are causally equivalent. \"':’:",,Lc;f
= In other words, two causal BNs are causally equivalent =
wrt do(X=x) iff they are acausally equivalentand X has - .
the same parents in both BNs. =
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Example 1 Example 1

A T B
{ i Unstimulated Unstimulated acking | Tunestea T-menced | f;&
2 ;’\ } o [ w ey
D Teposa |0 e e
\ / DD £ =
\ o Rovea | 2 3 T
2 / @ [ 0 v T
g \ o
i il Sk ® ===
Ha - @ @
H co3cnzs cowcpzs o O
5 stimulated stimulated
&
pe028
— = Contrl
= et st

10" 102 10° 100 107 10’
Phospho-AKT Phospho-PKA
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= Books

o Pearl (1988, 2000), Castillo et al. (1997), Neapolitan (2003),
Lauritzen (1999), Jensen (1996, 2000), ...
Articles, e.g. UAIL

= Software
o www.hugin.dk
http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html
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