
Learning non-monotonic causal theories
from narratives of actions

David Lorenzo

Computer Science Dept.
Univ. Coru~na

15071 A Coru~na (Spain)

Abstract

Non-monotonic formalisms for reasoning
about actions and change have become a
whole sub�eld of Arti�cial Intelligence. Cur-
rent implementations allow to work with very
expressive action theories involving rami�ca-
tions, concurrent actions, complex quali�ca-
tions and so on. A natural question that can
be posed is whether this kind of declarative
knowledge can be learned from observed time
traces of property values from an existing dy-
namic system. For this task we consider a
narrative-based logical theory of change in
the form of Extended Logic Programs where
logic-based learning methods can be applied
e�ectively. The use of a narrative formal-
ism provides more expressivity on the the-
ories that are learned, for instance, to learn
the e�ects of concurrent actions.

1 Introduction

Non-monotonic formalisms for reasoning about actions
and change have become a whole sub�eld of Arti�cial
Intelligence. These formalisms serve as an unifying ap-
proach that subsumes the many special purpose mech-
anisms that have been developed in other approaches,
and that accommodates all the features of dynami-
cal systems [24]. In these formalisms, system's behav-
iors are naturally viewed as appropriate logical conse-
quences of the domain's description, hence the spec-
i�cation of actions and their e�ects is made intuitive
and natural. Current implementations like VITAL [7],
CCALC [17], PAL [4], among others, allow to work
with very expressive action theories involving rami�-
cations, concurrent actions, complex quali�cations and
so on.

A natural question that can be posed is whether this
kind of declarative knowledge can be learned from ob-
served time traces of property values from an exist-
ing dynamic system. Any attempt to learn such theo-
ries must cope with various facets such as inertia (and
the associated Frame Problem), constraints and indi-
rect e�ects (and the associated Rami�cation problem),
non-deterministic and other complex e�ects of actions.
Machine Learning methods have been used to learn
planning operators [20, 5, 27], however, in most cases
the inferred model corresponds to a set of STRIPS-like
operators [8]. Some extensions have been considered
since then, that are able to cope with more complex
e�ects [3], however, they rely on special purpose for-
malisms, which makes the results of learning very de-
pendent on the particular formalism and diÆcult to
transfer.

Our work di�ers from previous approaches also in
the use of Inductive Logic Programming [23] methods
which allow a natural integration with implementa-
tions of Action Theories based on Logic Programming.
Unlike classical inductive learning, ILP uses Logic Pro-
gramming as the representational mechanism for hy-
potheses and observations. We adopt Extended Logic
Programs as the form of programs to be learned, where
two kinds of negation{negation as failure and classical
negation{are e�ectively used in the presence of incom-
plete information.

This paper is organized as follows. Section 2 brie
y
describes logic-based formalisms for reasoning about
actions and how these can be learned by adapting cur-
rent ILP methods for static domains. In section 3 we
consider the use of rami�cation constraints to learn
the indirect e�ects of actions. In section 4, we describe
a prototype based on conventional ILP methods and
some experimental results. In section 5 we extend the
framework to learn the e�ects of concurrent actions.
Finally, in section 6 we present some conclusions and
outlook future work.

2 Learning Action Theories from

narratives

A fundamental problem in machine learning is the
representation language used for the learning process.
This is specially important when dealing with tempo-
ral data, where most of the previous methods treat
temporal data as an unordered collection of events,
ignoring its temporal information or need extensive
transformations. In this paper, we consider the use of
Action Languages [10] as the representational method
underlying the learning process, which bene�ts from
the declarative nature and the inferential capacity
of these logic-based formalisms. The most classical
formalisms for reasoning about actions and change
are the Situation Calculus [18] and the Event Calcu-
lus [13]. In both cases, logic Programs can be used to
represent the e�ects of actions by importing the corre-
sponding ontology, where e�ect axioms are logic pro-
grams with a �xed clausal structure. In [16] we used an
implementation of the Situation Calculus similar to [9],
because of its simpler formalization with respect to the
Event Calculus. However, Situation Calculus has sev-
eral problems that limit its applicability [11], hence we
have used a narrative-based version with a predicate
happens/2 to mean for the execution of actions, apart
from the predicate holds/2 that is used for recording
the values of
uents at each situation (s � 0). This
Logic Programming implementation uses an special
predicate caused/3 [14] (or abnormal/3 [2]) and nega-
tion as failure to implement inertia. Formally we have
that an action theory is a conjunction of:

� A �nite set of general clauses [:]Holds(f; 0) where 0 denotes
the initial situation.

� A �nite set of clauses in the form

Caused(f; v; t) Happens(a; t); � (1)

where � consists of literals in the form [:]Holds(f 0; t-1). The
description states that, in any situation, if the precondition
holds then the e�ect will hold in the resulting situation. These
axioms are called e�ect axioms or action laws.

� The universal frame axiom describes how the world stays the
same (as opposed to how it changes).

Holds(f; t) Happens(a; t);Holds(f; t-1); (2)

not Caused(f; v; t)

:Holds(f; t) Happens(a; t);:Holds(f; t-1); (3)

not Caused(f; v; t)

� Some clauses that propagate caused values to Holds.

Holds(f; t) Caused(f; true; t) (4)

:Holds(f; t) Caused(f; false; t) (5)

Inertia is tackled in the following way: a
uent may
only change if a cause for the change can be derived

from the theory. Thus, we can add as many e�ect
axioms as we like and rely upon axioms (2) and (3)
to implement inertia. Other formalizations de�ne a
predicate Pos/2 apart from holds/2 and caused/3, such
that for any action a and any situation s, Poss(a; s) is
true if a is executable in s. Thus, caused/3 represents
the conditional e�ects and Poss would represent the
executability of the action. A similar shape for the
programs to be learned based on the Event Calculus
could also be used.

Given the description of an initial state of the world,
and a set of observations of a dynamic system, the
learning task we consider is to �nd a theory that cor-
rectly predicts the state of the world after the execu-
tion of any sequence of actions starting from any initial
state. Let us consider the blocks world. Observations
are in the form of narratives of actions (Fig. 1).

B

C

A

B

C D D

C D D CC

BA

B

A A

B

D

A

D

C

B

A

move(B,A)

A

B

C D

B A

D C

B

A

DC

move(A,D) move(B,A)

move(D,B)

move(A,table) move(D,A)

Figure 1: Narratives in the Blocks world

Each narrative consists of the values of
uents at
the initial situation represented with the predicate
holds/2, the actions executed and the e�ects produced
by the actions, represented with the predicate hap-
pens/2 and caused/3 respectively. For instance, the
�rst narrative of Fig. 1 is represented as follows:

holds(clear(a); 0) happens(move(a; d); 1) happens(move(b; a); 2)
holds(clear(d); 0) caused(on(a; b); f; 1) caused(on(b; c); f; 2)
holds(on(a; b); 0) caused(on(a; d); t; 1) caused(on(b; a); t; 2)
holds(on(b; c); 0) caused(clear(b); t; 1) caused(clear(c); t; 2)
holds(on(c; table); 0) caused(clear(d); f; 1) caused(clear(a); f; 2)
� � �

so that caused/3 represents the truth value and the
causality that were represented separately by holds/2
and a�ects/3 in [16]. Each narrative may correspond
to a di�erent scenario or a di�erent initial situation,
which makes that examples covering a wide range of
situations can be used for learning. In the Situation
Calculus, multiple narratives of events are represented
in a single model, however, they are now considered
for learning as separate models, one for each narra-
tive. This �ts in the \learning from interpretations"
paradigm of ILP where examples consist of multiple
interpretations and not just one interpretation as it is
usual in ILP. In our case, an interpretation corresponds
to a narrative.

These observations can be provided directly to a ILP
algorithm, however, the learner needs a full description

of each narrative, hence if a
uent does not change
after executing an action, e.g., holds(on(b; c); 1), its
truth value must be explicitly asserted in the input
data. In previous approaches, both kinds of obser-
vations had to be provided as ground facts so that
non-a�ected values of
uents must be part of the in-
formation given to the learning algorithm, thus having
to provide the learner with large datasets for each nar-
rative from which only a small fraction corresponds to
e�ects of actions. In some cases, explicit frame axioms
are obtained as part of the learning results [25]. This
can be avoided if we include axioms (2 and 3) in the
input data, so that observations need only be explic-
itly given for the e�ects of actions, whereas the inertia
axiom propagates non-a�ected truth values from one
situation to the next one, completing every situation.
This is possible because of the explicit separation be-
tween the predicates caused/3 and holds/2.

With respect to negative examples for each
uent, it is
assumed that an action is not successful in the situa-
tions where the
uent did not change. For this reason,
we build negative examples for the predicate caused/3
for those
uents not a�ected by actions. By doing
so, applying the induced rules on the observations will
not result in postulating new e�ects not considered ini-
tially in the narratives used for learning. This CWA
makes an inductive leap of a di�erent kind, in the
sense that it postulates that the induced rules will be
valid on unseen narratives. However, if narratives are
partially speci�ed, additional methods are needed for
learning to succeed [15].

Once narratives are encoded as shown above, conven-
tional ILP methods can be applied to learn a de�nition
for the positive and negative values of
uents. Positive
examples E+ consist of ground facts caused(f; v; t)
that correspond to the e�ects of actions, both for the
positive value and for the negative value. Negative ex-
amples E� consist of ground facts caused(f; v; t) rep-
resenting observations where a
uent f was not af-
fected by any action. Apart from positive and nega-
tive examples, ILP uses so-called Background Knowl-
edge (B), consisting basically of predicate de�nitions,
and builds a de�nition of a target predicate in terms
of itself and the background predicates. In our case,
background knowledge includes a set of ground facts
happens(a; t) for every situation in a narrative, rep-
resenting that an action a was executed at time t,
holds/2 ground facts for
uents at the initial situation
of each narrative, the universal inertia axiom (eq. 2,3),
axioms (4 and 5), and domain-dependent static predi-
cates common to all narratives. The objective is to �nd
a theory H composed of e�ect axioms in the form (1),
such that:

(8e+ 2 E+) B [H j= e+ (6)

(8e� 2 E�) B [H 6j= e� (7)

In order to satisfy the completeness requirement, the
learned rules for the positive and the negative concept
will entail all positive examples (eq. 6). The consis-
tency requirement is satis�ed when the induced rules
do not entail any of the negative examples (eq. 7).

3 Learning rami�cations of actions

Previous approaches to learning action models are re-
stricted to predicting a single outcome or e�ect of an
action. This forces the explicit representation of all
the e�ects of an action as direct e�ects, producing the
so-called Rami�cation problem. In some cases, it is dif-
�cult to express some action preconditions explicitly as
a condition on the starting state. This makes e�ect ax-
ioms increasingly complex and consequently harder to
learn, since they need to anticipate the rami�cations
of the executed action. Most solutions that have been
proposed for the rami�cation problem require e�ect
axioms to specify the most signi�cant e�ects of an ac-
tion and rely on rami�cation constraints, i.e., general
laws describing dependences between
uents, for spec-
ifying additional changes that are due to the action.
A rami�cation constraint is a formula

caused(f; v; t) � (8)

where the Holds literals in � are only of the form
[:]Holds(f 0; t). According to this, indirect e�ects are
derived from the state of
uents, while direct e�ects
come from the execution of actions.

The learner must now infer how properties of a do-
main are (directly/indirectly) a�ected by the execu-
tion of actions. In general, actions can have multiple
direct and indirect e�ects, and
uents can be a direct
(resp. indirect) e�ect of multiple actions. In prac-
tice, we allow the learner to determine at each step
whether a
uent should be learned as a direct or an
indirect e�ect, thus learning possibly a mix of axioms
based on a compression-based measure so that smaller
theories are preferred. The insight is that indirect ef-
fects can make programs sensibly shorter, given that a
rami�cation constraint may subsume the direct e�ects
of several actions, which have a positive in
uence in
their learnability, as the diÆculty of learning a logic
program is very much related to its length.

Indirect e�ects actually represent a propagation of
changes, hence rami�cation constraints are allowed
to cover only those examples where the action exe-
cuted produced several simultaneous e�ects, and at
least one of the
uents in the body must have changed
simultaneously with the
uent in the head. Note also
that the predicate caused/3 cannot be substituted by

holds/2 in (8) because a
uent that has been initi-
ated/terminated directly through an e�ect axiom can-
not be terminated/initiated indirectly through such a
rami�cation constraint, unless it is released from in-
ertia beforehand, otherwise it would lead to contra-
diction. However, a number of \useless" (even if cor-
rect) instances of caused/3 are derived even for those
situations where a
uent does not change. This con-
tradicts the observations given that negative examples
for a
uent are given for those situations where the
u-
ent does not change. To avoid this, the consistency of
rami�cation constraints is not tested on those negative
examples where a
uent does not change its value.

4 Learning with conventional ILP

methods

We have developed a prototype LRAC consisting of
an \ordinary" ILP algorithm. We do not assume any
particular learning algorithm, however, in the pro-
totype we used the notion of Inverting Entailment
(IE) that is the technique used in the system Pro-
gol [22]. The IE method computes the most speci�c
generalization (also called bottom clause) from a pos-
itive example with respect to the background knowl-
edge. For instance, the most speci�c generalization of
caused(on(c; table); t; 4) is1:

caused(on(A,B),t,C) :- happens(move(A,B),C), diff(A,B), diff(B,A),

-holds(on(A,B),C-1), -holds(on(B,A),C-1), holds(on(A,E),C-1),

holds(on(B,F),C-1), holds(clear(A),C-1), holds(clear(B),C-1),

-holds(on(A,F),C-1), -holds(on(B,E),C-1), -holds(on(F,A),C-1),

-holds(on(F,B),C-1), -holds(clear(F),C-1), holds(on(F,E),C-1),

diff(A,E), diff(A,F), diff(B,E),diff(B,F), diff(E,A), diff(E,B),

diff(E,F), diff(F,A),diff(F,B), diff(F,E), table(E).

E�ect axioms introduce a bias for the clauses to be
learned, where holds/2 literals in the body can only
refer to the previous situation. In general, the bottom
clause can have in�nite cardinality, however some bi-
ases are considered to keep it manageable, e.g., type
information for
uent and action literals, bounds on
the length of hypotheses and the depth of variables,
and other syntactic restrictions. LRAC searches in a
top-down fashion to �nd a subset of literals of the bot-
tom clause that explains as many of the positive exam-
ples as possible, so that the search space is bounded by
this most speci�c clause and the most general clause
(with an empty body). Then the explained examples
are separated and the algorithm recursively conquers
the remaining positive examples.

The rule generation phase will be called twice for each

uent, once for the positive concept and once for the

1Background for the blocks world consists of domain
predicates on=2, clear=1, block=1, table=1, and a predicate
diff=2 to represent X 6= Y .

negative concept, and will be repeated searching for
e�ect axioms and for rami�cation constraints. For
testing the coverage of hypotheses, these are evalu-
ated by performing a derivation of each example from
a program composed by the hypothesis, the back-
ground theory and the clauses previously learned,
so that the coverage test corresponds to a temporal
projection problem for each hypothesis generated by
LRAC, which is a high overload for medium-sized do-
mains. However, the common approach in ILP is to
use �-subsumption which is computationally more ef-
�cient so that a clause covers extensionally an exam-
ple e, i.e., there exists a ground instance of the clause
e l1; : : : ; ln where each li belongs to B [feg. How-
ever, �-subsumption needs some assumptions to guar-
antee completeness and soundness [15]. For instance,
care must be taken to ensure that the addition of ram-
i�cation constraints to a theory does not cause a non-
�nite recursion, where
uents may use one another in
their de�nitions. If a cycle is identi�ed, the last clause
is removed and remembered, so that in the case in
which it is generated again in the specialization loop,
it is immediately discarded. This is done in order to
avoid that the system goes into a loop of continuously
generating and retracting the same clause.

For the experimental part we have considered several
challenge problems in the literature of reasoning about
actions, as well as other domains used in AIPS plan-
ning competitions [19]. The objective is to show not
only if a suÆciently general theory can be learned from
observations but also if the learned theory for each do-
main matches the description found in the literature.
Let us consider a prototypical problem of the liter-
ature [26], that consists of a circuit that includes a
lamp, a relay, and three switches sw1, sw2 and sw3,
together with actions in the form ti (i = 1 : : : 3).

�
�
�
�

��
��
��
��

��
��
��
��

��

��

�
�
�
�

+

¬ sw1

relay¬

sw

sw

light¬

3

2

Figure 2: An electric circuit

We used a simple wander program that collects data
about its actions and the
uents that changed while
exploring the environment. Input data consists of 21
narratives from which LRAC found:

caused(sw1,t,A) :- happens(t1,A),-holds(sw1,A-1).
caused(sw1,f,A) :- happens(t1,A),holds(sw1,A-1).
caused(sw2,t,A) :- happens(t2,A),-holds(sw2,A-1),

-holds(relay,A-1).
caused(sw2,f,A) :- happens(t2,A),holds(sw2,A-1).

caused(sw2,f,A) :- holds(relay,A).
caused(sw3,f,A) :- happens(t3,A),holds(sw3,A).
caused(sw3,t,A) :- happens(t3,A),-holds(sw3,A).
caused(light,t,A) :- holds(sw1,A), holds(sw2,A).
caused(light,f,A) :- -holds(sw1,A).
caused(light,f,A) :- -holds(sw2,A).
caused(relay,t,A) :- holds(sw1,A), holds(sw3,A).
caused(relay,f,A) :- -holds(sw1,A).
caused(relay,f,A) :- -holds(sw3,A).

According to the rules, action t1 (resp. t3) toggles
switch sw1 (resp. sw3). The relay is controlled by
switches sw1 and sw3, i.e., the relay is active when-
ever both sw1 and sw3 hold simultaneously, so that
only rami�cation constraints are learned for the relay
instead of the corresponding e�ect axioms for all the
actions that a�ect it, i.e., t1 and t3, thus producing a
shorter theory. Similarly for light with sw1 and sw2.
With respect to sw2, the negative value is in some
cases a direct e�ect of t2 so that sw2 can be closed
only when the relay was previously inactive, and in
other cases an indirect e�ect of the actions that acti-
vate the relay. The use of the rami�cation constraint
for the negative value also produces a shorter theory,
otherwise LRAC would need to learn an e�ect axiom
for the actions that activate the relay.

In the blocks world, from 48 narratives of length 6,
LRAC learned the following clauses:

caused(on(A,B),t,C) :- happens(move(A,B),C),
holds(clear(A),C-1),holds(clear(B),C-1).

caused(on(A,B),t,C) :- happens(move(A,B),C),
holds(clear(A),C-1),table(B).

caused(on(A,B),f,C) :- holds(on(A,D),C),diff(B,D).
caused(clear(A),t,B) :- happens(move(C,D),B),

holds(clear(D),B-1),holds(clear(C),B-1),
holds(on(C,A),B-1),diff(D,A).

caused(clear(A),t,B) :- happens(move(C,D),B),holds(clear(C),B-1),
holds(on(C,A),B-1),table(D).

caused(clear(B),f,A) :- holds(on(_,B),A).

LRAC learned two e�ect axioms for the positive value
of on=2 that deal separately with the cases where a
block is moved onto other block or onto the table 2.
The use of rami�cation constraints produces a shorter
theory for the negative value of on=2, even with a sin-
gle action move=2, and it represents that on=2 is a
functional
uent. The rami�cation constraint for the
negative value of clear=1 does not produce a clear ben-
e�t mainly because there are no other actions that
a�ect it apart from move=2. However, as the rami-
�cation constraint is shorter than the corresponding
e�ect axiom, LRAC is biased to prefer it. Actually
the positive value of clear=2 is also an indirect e�ect,
given that a block is clear if there is no another block
on it, however, LRAC learned two e�ect axioms for
the move=2 action due to the limited quanti�cation of
logic programs.

2The table is an special location that is always clear.

5 Concurrent actions

We have also assumed that actions are atomic. If con-
current actions are allowed, then an e�ect may de-
pend on a particular combination of actions, an action
may qualify another action's e�ects, e�ects can be can-
celled, and so on [1]. As a consequence, learning about
concurrent actions even in simple domains, is a com-
plex task because the theory to be learned must cope
with every possible interaction between actions. In
this case, negative examples correspond to those situ-
ations where an e�ect is not caused because there are
missing preconditions, missing actions or actions that
are executed additionally.

Concurrent actions are introduced by allowing multi-
ple instances of the predicate happens/2 in the body
of rules to be learned. Default negation is used to
cope with the non-execution of con
icting actions. We
explicitly use positive and negative happens/2 literals
so that at least a positive happens/2 literal must be
added to the body, whereas the negative counterpart
of happens/2 will include any potentially cancelling
action, which are taken from those actions executed
in the negative examples. By doing so, LRAC can
specialize an overgeneral e�ect axiom by adding posi-
tive and negative holds/2 and happens/2 literals. Ef-
fects of concurrent actions can be also seen in terms
of inheritance [1], i.e., compound actions normally in-
herit e�ects from their subactions, and cancelling ac-
tions cancel inheritance of the e�ects of atomic actions.
However, we use positive and negative happens/2 liter-
als instead of cancelling and inheritance axioms, given
that the latter express separately the positive occur-
rences of actions and their preconditions from the can-
celling actions and their preconditions, and it is not
obvious how they can be learned separately.

Let us consider again the circuit of Figure 2. Flu-
ents sw1 and sw3 are independent e�ects, hence the
e�ect axioms learned for them do not di�er from those
learned when a single action is executed. With re-
spect to the state of light, the consequences of execut-
ing, e.g. t1, depend on the previous value of sw2 in
a di�erent way depending on whether t2 is also exe-
cuted or not simultaneously. For instance, when both
switches are closed simultaneously, they produce inde-
pendent e�ects and the accumulative e�ect of activat-
ing the light. As a consequence, many more clauses
have to be learned to cope with every possible in-
teraction between actions. However, LRAC learned
the same de�nition for light, because the rami�cation
constraints express a dependence between the switches
and light without making reference to the actions ex-
ecuted. Similarly for the relay that is controlled by

sw1 and sw3. With respect to sw2, LRAC found the
following de�nition:

caused(sw2,f,A) :- happens(t2,A),holds(sw2,A-1).
caused(sw2,f,A) :- holds(relay,A).
caused(sw2,t,A) :- happens(t2,A),

not happens(t1,A),not happens(t3,A),
-holds(sw2,A-1),-holds(relay,A-1).

caused(sw2,t,A) :- happens(t2,A),not happens(t1,A),
-holds(sw2,A-1),-holds(sw1,A-1).

caused(sw2,t,A) :- happens(t2,A),not happens(t3,A),
-holds(sw2,A-1),-holds(sw3,A-1).

caused(sw2,t,A) :- happens(t2,A),happens(t1,A),happens(t3,A),
-holds(sw2,A-1),-holds(relay,A-1),
holds(sw1,A-1).

caused(sw2,t,A) :- happens(t2,A),happens(t1,A),happens(t3,A),
-holds(sw2,A-1),-holds(relay,A-1),
holds(sw3,A-1).

When only atomic actions are executed, LRAC learned
two e�ect axioms and one rami�cation constraint.
However, if we execute t2 and other action that ac-
tivates the relay at the same time (e.g., t3), sw2 may
be closed for an instant but it will be de�nitely open
when the relay becomes active, so that the e�ect ax-
iom for the positive value of sw2 needs to consider all
subsets of cancelling actions that could activate the re-
lay, together with their preconditions. This makes the
descriptions of actions cumbersome and diÆcult for
complex domains, and consequently harder to learn.

In most current action formalisms (VITAL [7],
CCALC [17], etc.), such complex quali�cations to ac-
tions are often expressed apart from the e�ect axioms
in the form of integrity constraints that forbid some
next states produced by e�ect axioms, that correspond
to non-allowed states of a domain [12]. For instance,
in the previous circuit, we can extract a set of con-
straints that correspond to those states not allowed
for the switches, for instance, that sw2 is never closed
when the relay is active. From such constraint, we
have the following alternative de�nition for the posi-
tive value of sw2:

caused(sw2,t,A) :- happens(t2,A),-holds(sw2,A-1).
:- holds(sw2,A),holds(relay,A).

In this case, the constraint specializes the overgeneral
e�ect axiom for sw2, so that only valid and legal re-
sulting states are allowed. By doing so, the state of
sw2 does not depend on what other actions are exe-
cuted apart from t2, but on the state of the relay in the
resulting situation, which provides with a much sim-
pler de�nition. A consequence is that these constraints
can make programs sensibly shorter and thus easier to
learn. The interest of such quali�cation constraints
is clearer when learning the e�ects of concurrent ac-
tions, since we may need to anticipate the e�ects of the
co-occurring actions. We are currently considering to
learn such quali�cation constraints to specialize over-
general e�ect axioms instead of fully specialize them

by adding preconditions. The choice of the constraints
is not independent from the rules of the theory, and
the diÆculty lies in �nding the \relevant" constraints
that would compensate correctly for the rules of the
theory [6].

6 Conclusions

A logic programming formalization of action domains
has been well-studied, yet not much previous work [21]
exists on the combination with learning methods. The
presented approach improves on previous ones by pro-
viding more expressivity, so that it can solve some
problems that were unsolvable before. Further work
needs to be done to show the adaptation to more and
increasingly more complex scenarios, and with di�er-
ent noise levels, e.g., to improve its adequation for
dealing with real robot's environments. More com-
plex phenomena can be dealt with in an homogeneous
way, by slightly changing the form of the rules to be
learned or building special
uents, e.g., for durative
actions or delayed e�ects. Further work also includes
the management of continuously varying parameters
as a consequence of a process execution.

Acknowledgements

This research was supported in part by the Govern-
ment of Spain, grant TIC2001-0393.

References

[1] C. Baral and M. Gelfond. Reasoning about e�ects
of concurrent actions. Journal of Logic Program-
ming, 31(1{3):85{117, 1997.

[2] C. Baral and J. Lobo. Defeasible speci�cations
in action theories. In Proceedings of the 15th In-
ternational Joint Conference on Arti�cial Intel-
ligence (IJCAI-97), pages 1441{1446, San Fran-
cisco, 1997. Morgan Kaufmann Publishers.

[3] S. Benson. Inductive learning of reactive action
models. In Proc. 12th International Conference
on Machine Learning, pages 47{54. Morgan Kauf-
mann, 1995.

[4] P. Cabalar, M. Cabarcos, and R. P. Otero. PAL:
Pertinence action language. In Proceedings of the
8th Intl. Workshop on Non-Monotonic Reasoning
NMR'2000 (Collocated with KR'2000), Brecken-
ridge, Colorado, USA, 2000.

[5] J. G. Carbonell and Y. Gil. Learning by experi-
mentation: The operator re�nement method. In

R. S. Michalski and Y. Kodrato�, editors, Ma-
chine Learning: An Arti�cial Intelligence Ap-
proach, Volume III. Morgan Kaufmann, San Ma-
teo, California, 1990.

[6] Y. Dimopoulos, S. D�zeroski, and A. Kakas. In-
tegrating explanatory and descriptive learning
in ILP. In Proceedings of the 15th Interna-
tional Joint Conference on Arti�cial Intelligence
(IJCAI-97), pages 900{907, San Francisco, 1997.
Morgan Kaufmann Publishers.

[7] P. Doherty and J. Kvarnstrom. Tackling the qual-
i�cation problem using
uent dependency con-
straints: Preliminary report. In International
Workshop on Temporal Representation and Rea-
soning, pages 97{104, 1998.

[8] R. E. Fikes and N. J. Nilsson. STRIPS: A new
approach to the application of theorem proving
to problem solving. In D. C. Cooper, editor,
Proceedings of the 2nd International Joint Con-
ference on Arti�cial Intelligence, pages 608{620,
London, UK, 1971. William Kaufmann.

[9] M. Gelfond and V. Lifschitz. Representing action
and change by logic programs. Journal of Logic
Programming, 17:301{321, 1993.

[10] M. Gelfond and V. Lifschitz. Action languages.
Electronic Transactions on AI, 3(16), 1998.

[11] M. Gelfond, V. Lifschitz, and A. Rabinov. What
are the limitations of the situation calculus? In
Automated Reasoning: Essays in Honor of Woody
Bledsoe, pages 167{179. Kluwer Academic Pub-
lishers, Dordrecht, 1986.

[12] Matthew L. Ginsberg and David E. Smith. Rea-
soning about action II: the quali�cation problem.
In Frank M. Brown, editor, The frame problem
in arti�cial intelligence: proc. of 1987 workshop.
Morgan Kaufmann, 1987.

[13] R. Kowalski and M. Sergot. A logic-based calculus
of events. New Generation Computing, 4:67{95,
1986.

[14] F. Lin. Embracing causality in specifying the in-
direct e�ects of actions. In C. S. Mellish, editor,
Proceedings of the International Joint Conference
on Arti�cial Intelligence (IJCAI). Morgan Kauf-
mann, 1995.

[15] D. Lorenzo. Learning non-monotonic Logic Pro-
grams to Reason about Actions and Change. PhD
thesis, Departamento de Computaci�on, Facultade
de Inform�atica, Univ. A Coru~na, Spain, 2001.

[16] D. Lorenzo and R.P. Otero. Learning to reason
about actions. In W. Horn (Ed.), Proceedings of
the 14th European Conference on Arti�cial Intel-
ligence, pages 435{439. IOS Press, Amsterdam,
2000.

[17] N. McCain and H. Turner. A causal theory of
rami�cations and quali�cations. In Proc. of the
Intl. Joint Conf. on Arti�cial Intelligence (IJ-
CAI), pages 1978{1984, 1995.

[18] J. McCarthy and P.J. Hayes. Some philosophical
problems from the standpoint of arti�cial intelli-
gence. Machine Intelligence, 4:463{502, 1969.

[19] D. McDermott. The 1998 ai planning systems
competition. AI Magazine, 21(2):35{55, 2000.

[20] T. M. Mitchell, P. E. Utgo�, and R. Banerji.
Learning by experimentation: acquiring and re-
�ning problem-solving heuristics. In R. S. Michal-
ski, J. G. Carbonell, and T. M. Mitchell, editors,
Machine Learning: An Arti�cial Intelligence Ap-
proach, pages 163{190. Morgan Kaufmann, San
Mateo, California, 1983.

[21] S. Moyle and S. Muggleton. Learning programs in
the event calculus. In N. Lavra�c and S. D�zeroski,
editors, Proceedings of the Seventh Inductive
Logic Programming Workshop (ILP97), LNAI
1297, pages 205{212, Berlin, 1997. Springer-
Verlag.

[22] S. Muggleton. Inverse entailment and Progol.
New Generation Computing, Special issue on
Inductive Logic Programming, 13(3-4):245{286,
1995.

[23] S. Muggleton and L. De Raedt. Inductive logic
programming: Theory and methods. Journal of
Logic Programming, 19/20:629{679, 1994.

[24] R. Reiter. Knowledge in action: Logical Founda-
tions for describing and implementing dynamical
systems. MIT Press, 1998.

[25] W. M. Shen. Autonomous Learning from the En-
vironment. Computer Science Press, 1994.

[26] M. Thielscher. Rami�cation and causality. Arti-
�cial Intelligence Journal, 1-2(89):317{364, 1997.

[27] X. Wang. Learning by observation and practice:
an incremental approach for planning operator
acquisition. In Proc. 12th International Confer-
ence on Machine Learning, pages 549{557. Mor-
gan Kaufmann, 1995.

